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Sōka University, Japan

Reviewed by:

Francisco Welington Lima,

Federal University of Piauí, Brazil

Renaud Lambiotte,

University of Oxford, United Kingdom

*Correspondence:

Shin-Ichiro Kumamoto

kumamoto@rieb.kobe-u.ac.jp

Specialty section:

This article was submitted to

Interdisciplinary Physics,

a section of the journal

Frontiers in Physics

Received: 13 October 2017

Accepted: 14 February 2018

Published: 15 March 2018

Citation:

Kumamoto S-I and Kamihigashi T

(2018) Power Laws in Stochastic

Processes for Social Phenomena: An

Introductory Review.

Front. Phys. 6:20.

doi: 10.3389/fphy.2018.00020
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for Social Phenomena: An
Introductory Review
Shin-Ichiro Kumamoto* and Takashi Kamihigashi
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Many phenomena with power laws have been observed in various fields of the natural

and social sciences, and these power laws are often interpreted as the macro behaviors

of systems that consist of micro units. In this paper, we review some basic mathematical

mechanisms that are known to generate power laws. In particular, we focus on stochastic

processes including the Yule process and the Simon process as well as some recent

models. The main purpose of this paper is to explain the mathematical details of their

mechanisms in a self-contained manner.
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1. INTRODUCTION

Many phenomena with power laws have been observed in various fields of the natural and social
sciences: physics, biology, earth planetary science, computer science, economics, and so on. These
power laws can be interpreted as the macro behaviors of the systems that consist of micro units
(i.e., agents, individuals, particles, and so on). In other words, the ensemble of dynamics of these
micro units is observed as the behavior of the whole system such as a power law1. To obtain a
deep understanding of the phenomenon for the system, we must first observe the behavior on the
macro side, then assume the stochastic dynamics on themicro side, and finally reveal the theoretical
method connecting both sides. Thus, the mechanisms generating power laws have been studied as
the second and final steps in the study of power laws.

Next, we mathematically define the power law. When the probability density function p(x) for a
continuous random variable2 X̂ is given by

p(x) = Cx−α (x ≥ xmin) , (1)

we say that X̂ satisfies the power law. The exponent α is called the exponent of power law, C is the
normalization constant, and xmin is the minimum value that x satisfies the power law. The power
law is the only function satisfying the scale-free property [1]

p(bx) = f (b)p(x) for any b. (2)

Then we define the cumulative distribution function P>(x) as

1For the example of a city, the micro dynamics correspond to immigration, emigration, births, and deaths, and the macro

behavior is the distribution of the population.
2The hat of Ômeans that Ô is a random variable.
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P>(x) := P{X̂ ≥ x} =
∫ ∞

x
p(x)dx. (3)

When the probability density function satisfies the power law
p(x) = Cx−α ,

P>(x) ∝ x−α+1. (4)

The behavior of the cumulative distribution function with the
power law is a straight line in a log–log plot for x ≥ xmin

(Figure 1).
Next, we list some examples of power laws in various

phenomena.

(a) Populations of cities [2].
(b) Frequency of use of words [3, 4].
(c) Number of papers published by scientists [5].
(d) Number of citations received by papers [6].
(e) Number of species in biological genera [7, 8].
(f) Number of links on the World Wide Web [9].
(g) Individual wealth and income [10].
(h) Sizes of firms (the number of employees, assets, or market

capitalization) [11–17].
(i) Sizes of earthquakes [18].
(j) Sizes of forest fires [19].

Furthermore, we partly list the generating mechanisms that
are important for applications, and the phenomena to which
they are applied in the above list, such as “mechanism ⇒
phenomena.”

• Growth and preferential attachment:

- Yule process [20]⇒ (e);
- Simon process [21]⇒ (a), (b), (c), (e), and (g);
- Barabási–Albert (BA) model [22]⇒ (d) and (f).

• Stochastic models based on Geometric Brownian motion
(GBM):

- GBM with a reflecting wall [23]⇒ (a), (g), and (h);
- GBM with reset events [24, 25]⇒ (g).
- Kesten process [26]⇒ (g).

FIGURE 1 | Log–log plot for the cumulative distribution function of the

populations of Japanese cities in 2015, with xmin ≃ 100, 000. Data from the

basic resident register.

- Generalized Lotka–Volterra (GLV) model [27–29]⇒ (g);
- Bouchaud–Mézard (BM) model [30]⇒ (g).

• Combination of exponentials (change of variable) [31]⇒ (b).
• Self-organized criticality [32]⇒ (i) and (j).
• Highly optimized tolerance [33, 34]⇒ (j).

Though there are many other generating mechanisms besides
them3, the mechanisms of the above list are particularly
well known and widely applied to phenomena in various
fields.

In this paper, we focus on the generating mechanisms with the
stochastic processes in the above list4: the growth and preferential
attachment and the stochastic models based on the GBM, which,
in particular, are widely applied in social science. In addition, we
explain about the combination of exponentials that is related to
the mechanism of the Yule process. We mainly give full details
of the mathematical formalisms for these mechanisms in self-
contained manner, because understanding them is important for
researchers in any field to create new models generating power
laws in empirical data. The necessary mathematical supplements
to understand these mechanisms are given in the Appendix at the
end of this paper.

2. GROWTH AND PREFERENTIAL
ATTACHMENT

As the name suggests, this mechanism consists of the two
characteristics: growth and preferential attachment. In the
example of a city, the meanings of growth and preferential
attachment are as follows.

• Growth: The number of cities increases.
• Preferential attachment: The more populated cities become,

the higher the probability that the population will increase.
Namely, it is “the rich get richer” process5.

In this section, we deal with the Yule process, the Simon process,
and the BA model, which all have these two characteristics. The
Yule process generates the power law about the number of species
within genera in biology. The Simon process generates the power
laws about the frequency of use of a word in a text, the population
of cities, and so on (see the list in the Introduction for details).
The BA model generates the power law about the number of
edges incident to nodes in the network. We now explain in detail
how these three mechanisms mathematically generate the power
laws.

3Readers interested in more phenomena with power laws and their generating

mechanisms should refer to the reviews and textbooks by Mitzenmacher [35],

Newman [1], Sornette [36], Hayashi et al. [37], Farmer and Geanakoplos [38],

Gabaix [39, 40], Simkin and Roychowdhury [41], Pinto et al. [42], Piantadosi [43],

Machado et al. [44], and Slanina [45].
4Though the multiplicative process [46] is also the stochastic process, it is not

explained in this paper because the multiplicative process is interpreted as the

discrete-time version of the GBM of the continuous-time stochastic process.

Namely, the multiplicative process is essentially equivalent to the GBM (see

Appendix A.4).
5Preferential attachment is also called the Matthew effect [47] or the cumulative

advantage [48].
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2.1. Yule Process
The Yule process [20] was invented to model stochastic
population growth with the preferential attachment process for
the model of speciation in biology. In this process, new species
and genera are born by biological mutations that are interpreted
as the branchings from the lines of existing species in the
evolutionary tree (Figures 2, 3).

These branchings occur as Poisson processes and add
lines of new genera or species to the evolutionary tree. The
Yule process mathematically corresponds to the stochastic
process that the numbers of genera and species increase
independently by following the linear birth processes (see
Appendix A.3)6. In other words, we consider the evolutionary
tree of species (Figure 2) and that of genera (Figure 3)
separately.

In short, the Yule process is the combination of the stochastic
processes for the numbers of species and genera (Figure 4) [41,
49, 50].

• The number of species within a genus increases as the linear
birth process with the Poisson rate λsns, where λs is a positive
constant and ns is the number of species within the genus at
that time.

• The number of genera within a family increases as the linear
birth process with the Poisson rate λgng, where λg is a positive

FIGURE 2 | An example of the evolutionary tree of species in the Yule process.

FIGURE 3 | An example of the evolutionary tree of genera in the Yule process.

6The characteristic of growth is the increase in the number of genera. The

characteristic of preferential attachment is that the more species within a genus,

the more new species are born.

constant and ng is the number of genera within the family at
that time.

To obtain the probability distribution of the number of species
within genera at a large time7, we need the conditional probability
distribution of the number of species included in the genus whose
age (i.e., the time intervals elapsed since the birth) is t. Let us use
rs(n, t) to denote its conditional probability distribution, where
n (∈ N) is the number of species and t (∈ R) is the age of the
genus.

First, rs(1, t) is equivalent to the probability that no
new species is born in (a, a + t] after the genus is born8

at an arbitrary time a. Accordingly, we obtain rs(1, t)
from (A.2) as

rs(1, t) = P{N̂s(a+ t)− N̂s(a) = 0; rate λs} = e−λst , (5)

where N̂s(t) is the number of species born in (0, t] by the Poisson
process with the Poisson rate λs .

Second, we calculate rs(2, t). It is equivalent to the probability
that one new species is born in (a, a + t] after the genus is born
at an arbitrary time a. Then we assume that one new species is
born in the infinitesimal time interval [a + τ1, a + τ1 + dτ1).
From (A.2) and (A.3), we obtain the probabilities for one

FIGURE 4 | An example of the evolutionary tree for the Yule process. The

black solid lines show the branchings of species. The black broken lines show

the branchings of genera. One genus is represented by the part surrounded by

the red dotted lines. In this figure, though, the probability of branching for a

new genus seems to depend on the number of species in the original genus

and, in fact, the Poisson rate for branching of a genus is constant in the Yule

process.

7We consider the probability distribution only at a large time for the stationary

state.
8This new genus is equivalent to the first species born in its own genus. Therefore,

the new genus is counted as one for the number of species.
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birth or no birth in each of the three divided time intervals:



















P{no birth in(a, a+ τ1); rate λs} = e−λsτ1 ,

P{one birth in [a+ τ1, a+ τ1 + dτ1); rate λs} = P{N̂s(a+ τ1 + dτ1)− N̂s(a+ τ1) = 1; rate λs}
= e−λsdτ1λsdτ1 ≃ λsdτ1,

P{no birth in [a+ τ1 + dτ1, a+ t); rate 2λs} = e−2λs(a+t−τ1−dτ1) ≃ e−2λs(a+t−τ1).

(6)

Integrating the product of these probabilities with respect to τ1,
we obtain

rs(2, t) =
∫ t

0
e−λsτ1λse

−2λs(t−τ1)dτ1 = e−λst(1− e−λst). (7)

Similarly, rs(3, t) is given by

rs(3, t) =
∫ t

0
e−λsτ1λsdτ1

∫ t

τ1

e−2λs(τ2−τ1)(2λs)e
−3λs(t−τ2)dτ2

= e−λst(1− e−λst)2.

(8)

Finally, repeating the same procedure, we obtain rs(n, t), that is,
the conditional probability distribution of the number of species
included in the genus at the age of t:

rs(n, t) = e−nλst
n−1
∏

k=1

[

∫ t

τk−1

eλsτkkλsdτk

]

(τ0 := 0)

= e−nλst(n− 1)!

n−1
∏

k=1

[

∫ eλst

xk−1

dxk

]

(xk := eλsτk , x0 := 1)

= e−λst(1− e−λst)n−1.

(9)

Next, let ℓg(t) be the probability distribution function for the age
of genera at a large time in the linear birth process. It is given by
(A.15) as

ℓg(t) = λge
−λgt . (10)

Consequently, the probability density of the number of species
within genera at a large time, denoted by q(n), is given
by integrating the product of the conditional probability
distribution of the number of species within genera and the
probability density function for the age of genera at a large time:

q(n) =
∫ ∞

0
rs(n, t)ℓg(t)dt =

∫ ∞

0
e−λst(1− e−λst)n−1λge

−λgtdt

=
λg

λs

∫ 1

0
x

λg
λs (1− x)n−1dx (x : = e−λst)

= :

λg

λs
B

(

λg

λs
+ 1, n

)

,

(11)

where the beta function B(a, b) is defined as

B(a, b) := Ŵ(a)Ŵ(b)

Ŵ(a+ b)
=
∫ 1

0
xa−1(1− x)b−1dx

(

Ŵ(a) :=
∫ ∞

0
ta−1e−tdt

)

. (12)

When b takes a large value, the beta function is approximately

B(a, b) ∝ b−a (b≫ 1). (13)

Therefore, for a large number of species, the probability
distribution of the number of species within genera at a large time
satisfies the power law as

q(n) ∝ n
−
(

λg
λs
+1
)

(n≫ 1), (14)

where the exponent of power law is
λg
λs

+ 1.

2.2. Simon Process
The Simon process [21] is interpreted as a discrete-time
stochastic process for the growth in the numbers of urns and
balls contained in those urns: an urn and the number of balls
in the urn correspond to a word and the number of times that
the word is used. In this stochastic process, a certain number of
balls are newly added and stochastically distributed to the existing
urns containing some balls at each time step. After that, one urn
containing a certain number of balls (it need not be the same as
the number of balls added above) is also added newly. Repeating
this procedure, the number of balls and urns grows stochastically.

We calculate the stationary probability distribution of balls
contained in urns at a large time.

First, we define all quantities for the Simon process by using
the following notation:

• t (= 0, 1, 2, · · · ), discrete time;
• k0, number of balls contained in each urn in the initial state

(before balls are added);
• m, number of balls added at each time step;
• B(t) (= B(0) + t(m + k0)), total number of balls before balls

are distributed at t;
• U(t) (= U(0)+ t), number of urns before balls are distributed

at t;
• group-(k), group of all the urns containing k balls;

• f̂ (k, t), number of urns belonging to the group-(k) before balls
are distributed at t.

Next, we provide the detailed procedure with the stochastic rule
as follows (Figure 5).
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1. There are U(0) urns containing k0 balls at the initial time9

t = 0.
2. Them balls are newly added at each time step10.
3. Each of them balls is distributed once for each group-(k) with

the probability
kf̂ (k, t)

B(t)
11.

4. Then the balls distributed to the group-(k) are further
distributed to the urns within the group with arbitrary
probabilities12 with the assumption that each urn can only get
up to one ball at each time step13.

5. At the end of each time step, one urn containing k0 balls is
added.

6. We repeat steps 2–5.

Then we can obtain the expectation values of E[f̂ (k, t + 1)] (k ≥
k0) from the above stochastic rule as































E[f̂ (k, t + 1)] = f̂ (k, t)− mkf̂ (k, t)

B(t)
+ m(k− 1)f̂ (k− 1, t)

B(t)
(k > k0),

E[f̂ (k0, t + 1)] = f̂ (k0, t)−
mk0 f̂ (k0, t)

B(t)
+ 1.

(15)
At a large time t, we can make an approximation f̂ (k, t) ≃
E[f̂ (k, t)] for k ≥ k0 and obtain







































E[f̂ (k, t + 1)] ≃ E[f̂ (k, t)]− mkE[f̂ (k, t)]

B(t)
+

m(k− 1)E[f̂ (k− 1, t)]

B(t)
(k > k0)

E[f̂ (k0, t + 1)] ≃ E[f̂ (k0, t)]−
mk0E[f̂ (k0, t)]

B(t)
+ 1.

(16)

The probability distribution of the number of balls in urns,

denoted by p(k, t), can be represented by E[f̂ (k, t + 1)]:

p(k, t) = E[f̂ (k, t)]

U(t)
. (17)

9Since we finally take the limit t → ∞, the initial state does not actually affect the

stationary state. However, to make it easier to imagine the procedure, we set the

initial state in this manner.
10This shows the characteristic of growth.
11This shows the characteristic of preferential attachment.
12When distributing balls in the group-(k), we do not set the probability that each
urn in the group gets one ball. To obtain a master equation later, we only have

to know the number of the balls distributed to the group-(k) under the condition
that each urn can only get one ball at most. Namely, setting those probabilities is

equivalent to imposing too strong a condition to obtain the master equation.
13Though one urn can get two or more balls, this possibility is small enough in

the limit of large time. This is because the number of urns is large enough in a

large time so that this possibility is ignored. Similarly, though more balls can be

distributed than the number of urns in a group-(k), this possibility is also small

enough in the limit of large time.

Consequently, the master equation for p(k, t) is given by































U(t + 1)p(k, t + 1) = U(t)p(k, t)− mkU(t)

B(t)
p(k, t)+

m(k− 1)U(t)

B(t)
p(k− 1, t) (k > k0),

U(t + 1)p(k0, t + 1) = U(t)p(k0, t)−
mkU(t)

B(t)
p(k0, t)+ 1.

(18)
We are interested in only the stationary distribution function p(k)
that is defined as p(k, t) in the limit of large time:

p(k) := lim
t→∞

p(k, t). (19)

Then, considering

lim
t→∞

U(t)

B(t)
= 1

m+ k0
(20)

and taking the limit t → ∞ for Equation (18), we obtain



















p(k) = k− 1

k+ 1+ k0
m

p(k− 1) (k > k0),

p(k0) =
m+ k0

k0(m+ 1)+m
.

(21)

We can solve these equations recursively:

p(k) = (k− 1)(k− 2) · · · k0
(

k+ 1+ k0
m

) (

k+ k0
m

)

· · ·
(

k0 + 2+ k0
m

)p(k0)

= (k− 1)(k− 2) · · · k0
(

k− 1+ α
) (

k− 2+ α
)

· · ·
(

k0 + α
)p(k0)

(

α := 2+ k0
m

)

= Ŵ(k)Ŵ(k0 + α)

Ŵ(k0)Ŵ(k+ α)
p(k0)

= B(k,α)

B(k0,α)
p(k0).

(22)

For the large k, the stationary probability distribution of the
number of balls in urns satisfies the power law as

p(k) ∝ k
−
(

k0
m +2

)

(

k≫ 1
)

, (23)

where the exponent of power law is k0
m + 2.

2.3. Barabási–Albert Model
The BAmodel [22] is one of the scale-free networkmodels for the
growth in the number of nodes and edges. Mathematically, the
BAmodel can be interpreted as a special case of the Simonmodel.
In particular, the nodes and edges in the BAmodel correspond to
the urns and balls in the Simon model, respectively (Figure 6).
In this model, one node with a certain number of edges are
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FIGURE 5 | An example of the Simon model with k0 = 2, U(0) = 4, and m = 3.

FIGURE 6 | An example of equivalence between a networks and the urns

containing balls.

newly added at each time step. Then following a stochastic rule,
the edges of new node are connected to the existing nodes.
Repeating this procedure, the number of nodes and edges grows
stochastically.

We calculate the stationary probability distribution of edges
connecting to nodes at a large time. First, we define all quantities
for the BA model by using the following notation:

• t (= 0, 1, 2, · · · ), discrete time;
• k0, number of edges that the additional new node has;
• B(t) (= B(0) + 2tk0), total number of degrees in the network

before the new node is added at t;
• U(t) (= U(0)+ t), number of nodes in the network before the

new node is added at t;
• f̂ (k, t), number of nodes with the degree k before the new node

is added at t;
• k̂i(t), number of the edges of node-i (where i is the label of the

node) before the new node is added at t.

Next, we give the detailed procedure with the stochastic rule for
the BA model as follows (Figure 7).

1. At the initial time t = 0, there is an arbitrary connected
network withU(0) nodes that are all connected to nodes other
than themselves14.

2. One new node with k0 edges is added15.

14Since we finally take the limit t → ∞ as in the Simon model, the initial state

does not actually affect the stationary state.
15This shows the characteristic of growth.

3. The k0 edges of the new node are connected to the existing
nodes following the stochastic rule16,17: the probability that

one edge is connected to the existing node-i is
k̂i(t)

B(t)
under the

assumption that each node can only connect to one node at
each time step18.

4. We repeat steps 2 and 3.

Consequently, we obtain the same master equation for the
probability distribution of edges as (18) withm = k0:



























U(t + 1)p(k, t + 1) = U(t)p(k, t)− k0kU(t)

B(t)
p(k, t)+

k0(k− 1)U(t)

B(t)
p(k− 1, t) (k > k0),

U(t + 1)p(k0, t + 1) = U(t)p(k0, t)−
k0kU(t)

B(t)
p(k0, t)+ 1.

(24)
We can solve this master equation and obtain the stationary
distribution function p(k) := limt→∞ p(k, t) for the large k from
Equations (21–23):

p(k) ∝ k−α

(

α := 2+ k0
k0

= 3

)

, (25)

where the exponent of power law is 3.

3. STOCHASTIC MODELS BASED ON
GEOMETRIC BROWNIAN MOTION

In this section we look at five stochastic processes, generating
power laws, which can be represented by the stochastic
differential equations (SDEs). They all are mathematically based
on the GBM and accompanied by a constraint (i.e., additional
condition) or additional terms to the SDE. The constraints
correspond to a reflecting wall19 as a boundary condition [23],

16This shows the characteristic of preferential attachment.
17This setting of probability is equivalent to the balls distributed to the group-(k)
being further distributed to the urns within the group with equal probabilities in

step 4 in the Simon model. That is, the stochastic rule for the BA model is stronger

than that of the Simon model as a condition.
18Though one node can actually connect two or more nodes, this possibility is

small enough in the limit of large time. This is because the number of nodes is

large enough in a large time so that this possibility is ignored.
19The reflecting wall means that there is the minimum value for a random variable

(e.g., population of a city).
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FIGURE 7 | An example of the BA model with k0 = 2 and U(0) = 4 and the Simon model equivalent to it.

and reset events (i.e., birth and death process20) [25]. The
stochastic processes with additional terms to the SDE of GBM are
the Kesten process, the GLV model, and the BM model. Though
the effect of additional term to the GMB in the Kesten process is
similar to a reflecting wall, those of the GLVmodel and BMmodel
correspond to the interactions between particles, agents, or
individuals. Wemainly explain the mathematical formalisms and
properties of these qualitatively different stochastic processes.

3.1. Geometric Brownian Motion
The GBM, on which many models for power laws are based,
is one of the most important stochastic processes. It is
mathematically defined by the SDE

dX̂(t) = µX̂(t)dt + σ X̂(t)dB̂(t), (26)

where B̂(t) is a standard Brownian motion, µ is the drift, and σ is
the volatility.

The SDE (Equation 26) gives us the partial differential
equation (PDE), that is, the Fokker–Planck equation (FPE) [51]:

∂p(x, t)

∂t
= − ∂

∂x
{µxp(x, t)} + ∂2

∂x2

{

σ 2x2

2
p(x, t)

}

, (27)

where p(x, t) is the probability density function. The solution of
Equation (27) with the initial distribution p(x, 0) = δ(x− x0) is

p(x, t) = 1

x
√
2πσ 2t

exp






−

{

log x− log x0 −
(

µ − σ 2

2

)

t
}2

2σ 2t






,

(28)
where x0 is the initial position of the particle. This solution is the
log-normal distribution where the expectation value and variance
are

E[x̂] = x0e
µt , Var[x̂] = x0

2e2µt(eσ
2t − 1). (29)

In the limit t → ∞, the log-normal distribution never converges
to the stationary solution. To obtain it, therefore, we need to

20The birth and death process means that a new unit (e.g., city or firm) can be born

at a rate and die at the same rate.

impose some additional conditions on the SDE (Equation 26)
or modify the SDE itself. We introduce the conditions and
modifications in the following sections.

3.2. GBM With a Reflecting Wall
We consider the GBM with the reflecting wall (see Appendix A.5
for details). The stationary solution p(x) for the FPE (Equation
27) is defined by

∂p(x)

∂t
= 0, (30)

which is equivalent to the second-order ordinary differential
equation (ODE):

0 = − d

dx
{µxp(x)} + d2

dx2

{

σ 2x2

2
p(x)

}

. (31)

As a result, we obtain the first-order ODE:

µxp(x)− d

dx

{

σ 2x2

2
p(x)

}

= D, (32)

where D is an arbitrary constant. We take D = 0 to obtain a
normalizable power-law probability distribution. The solution of
Equation (32) with D = 0 is

p(x) = Cx−α

(

C := p(x0)x0
α , α := 2− 2µ

σ 2

)

, (33)

where x0 is an arbitrary constant. For this stationary solution p(x)
to exist, it must satisfy the normalization condition:

1 =
∫ xmax

xmin

p(x)dx. (34)

We set the reflecting wall at x = xmin(> 0) and take xmax = ∞.
The existence of the reflecting wall is mathematically equivalent
to the conditions X̂(t) > xmin and p(x) = 0 for x < xmin. Then
we assume α > 1. The normalization condition

1 =
∫ ∞

xmin

p(x)dx = C

α − 1
(xmin)

−α+1 (35)
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determines the constant C as

C = (α − 1)(xmin)
−α+1. (36)

Thus, we have the normalized stationary solution

p(x) = (α − 1)(xmin)
−α+1x−α

(

α = 2− 2µ

σ 2
> 1

)

, (37)

where the exponent of power law is 2− 2µ
σ 2 .

Next, we generalize this formalism from the GBA to the Itô
process which can have the stationary solution [52]:

dX̂(t) = a(X̂(t))dt + b(X̂(t))dB̂(t). (38)

The stationary solution (see Appendix A.5 for details) is given by

p(x) = C

b(x)2
exp

[∫ x

x0

2a(x′)

b(x′)2
dx′
]

, (39)

where C is the normalization constant. Following Yakovenko and
Rosser [53] and Banerjee and Yakovenko [54], we take a(x) and
b(x) as

a(x) = µx+ µ∗, b(x) = σ

√

2(x2 + x∗2), (40)

which is interpreted as a kind of qualitative combination of the
generalizedWiener process21 andGBM. Consequently, we obtain
the stationary solution

p(x) = C

[

1+
( x

x∗

)2
]

µ

2σ2
−1

exp

[

µ∗

σ 2x∗
arctan

( x

x∗

)

]

. (41)

For x ≪ x∗, the stationary solution becomes the exponential
distribution while for the large x, it satisfies the power law as

p(x) ∝ x
−
(

2− µ

σ2

)

(

x≫ x∗
)

, (42)

where the exponent of power law is 2− µ

σ 2 .

3.3. GBM With Reset Events
We consider the particles that follow the GBM with the
reset events, that is, the birth and death events22. For
simplicity, we assume that particles can disappear with a certain
probability by following a Poisson process and immediately
appear at a point so that the number of particles is
conserved. By these reset events, the FPE (Equation 27) is
changed into

∂p(x, t)

∂t
= − ∂

∂x
{µxp(x, t)} + ∂2

∂x2

{

σ 2x2

2
p(x, t)

}

+ ηδ(x− x∗)− ηp(x, t), (43)

21The SDE of generalized Wiener process is represented by dX̂(t) = adt + bdB̂(t),
where a and b are constants.
22Following Gabaix [39] and Toda [55], we derive the stationary probability

density function.

where η is the probability for a particle in [x, x+dx) to disappear
per the time interval dt, and the particle reappears immediately
at x = x∗(> 0). Accordingly, we obtain the second-order ODE
for the stationary solution p(x):

0 = − d

dx
{µxp(x)} + d2

dx2

{

(σx)2

2
p(x)

}

− ηp(x), (44)

which is held except for x = x∗. To solve this equation easily, we
change the variable x into y := log x. The new probability density
function q(y) is determined by

q(y) = p(x)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

. (45)

Then we obtain the ODE for q(y):

0 = −
(

µ − σ 2

2

)

dq(y)

dy
+ σ 2

2

d2q(y)

dy2
− ηq(y), (46)

except for y = y∗ (y∗ := log x∗). The general solution of this
second-order ODE is







































q(y) = C1e
λ1y + C2e

λ2y,

λ1 = 1
σ 2

(

µ − σ 2

2 +
√

(

µ − σ 2

2

)2
+ 2σ 2η

)

> 0,

λ2 =
1

σ 2



µ − σ 2

2
−

√

(

µ − σ 2

2

)2

+ 2σ 2η



 < 0,

(47)

where C1 and C2 are the arbitrary constants determined by the
normalization condition:

1 =
∫ ∞

0
p(x)dx =

∫ ∞

−∞
q(y)dy. (48)

To normalize the solution (Equation 47), we impose the
boundary conditions q(∞) = q(−∞) = 0, which result in
C1 = 0 for y ≥ y∗ and C2 = 0 for y < y∗, that is,

q(y) =







C1e
λ1y (y < y∗),

C2e
λ2y (y ≥ y∗).

(49)

Accordingly, the normalization condition

1 =
∫ y∗

−∞
C1e

λ1ydy+
∫ ∞

y∗
C2e

λ2ydy (50)

and the continuous condition at y = y∗, namely, C1e
λ1y∗ =

C2e
λ2y∗ give us the normalized solution of Equation (46) as

q(y) =















λ1λ2

λ2 − λ1
eλ1(y−y∗) (y < y∗),

λ1λ2

λ2 − λ1
eλ2(y−y∗) (y ≥ y∗).

(51)
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Consequently, we obtain the solution of Equation (44):

p(x) = q(log x)

x
=















λ1λ2

λ2 − λ1
(x∗)−λ1xλ1−1 (0 < x < x∗),

λ1λ2

λ2 − λ1
(x∗)−λ2xλ2−1 (x∗ ≤ x),

(52)
which is called the double Pareto distribution [25]. The exponents
of the power law are 1− λ1 and 1− λ2.

Next, we derive the probability density function (Equation 52)
by another method as follows [56]. The lifetimes of particles are
independently distributed with the exponential distribution as
ℓLT(τ ) = ηe−ητ , because the death events occur as a Poisson
process, with rate η, which have the time-reversal symmetry
property. Accordingly, the ages of particles (i.e., the time intervals
elapsed since the birth of them) at a large time are also
independently distributed with the exponential distribution:

ℓA(t) = ηe−ηt . (53)

The probability density function of particles of age t as the
conditional probability distribution is given by the log-normal
distribution (Equation 28) with x0 = x∗. Consequently, the
probability density function of the coordinate of particle at a
large time, denoted by p(x), is given by integrating the product
of Equations (53) and (28):

p(x) =
∫ ∞

0
ηe−ηt 1

x
√
2πσ 2t

exp






−

{

log x− log x∗ −
(

µ − σ 2

2

)

t
}2

2σ 2t






dt.

(54)

We can calculate this with the change of variable u2 := t and the
identity [35]

∫ ∞

0
exp

(

−au2 − b

u2

)

du = 1

2

√

π

a
exp(−2

√
ab). (55)

Thus, we obtain the same result with Equation (52)23 without
solving the ODE (Equation 44).

3.4. Kesten Process
The Kesten process [26] is defined as a stochastic process whereby
an additional term is added to the SDE of the GBM; namely, the
SDE is represented by

dX̂(t) = µX̂(t)dt + σ X̂(t)dB̂(t)+ ĉdt, (56)

where ĉ, in the additional term, is a random variable. We can
expect that the additional term prevents X̂(t) from decreasing
toward−∞ in a similar way as the reflecting wall in section 3.2

23The two solutions in Equation (52) result from

√

(

log
x

x∗

)2
= − log

x

x∗
for

(0 < x < x∗), and

√

(

log
x

x∗

)2
= log

x

x∗
for (x∗ ≤ x).

Here, we simply take ĉ as a positive constant: ĉ = c (> 0). We
then obtain the FPE for the probability density function:

∂p(x, t)

∂t
= − ∂

∂x
{(µx+ c)p(x, t)} + ∂2

∂x2

{

σ 2x2

2
p(x, t)

}

. (57)

The ODE for the stationary solution p(x) is given by

0 = − d

dx
{(µx+ c)p(x)} + d2

dx2

{

(σx)2

2
p(x)

}

. (58)

Consequently, we obtain the normalized stationary solution of
Equation (58)24:

p(x) = 1

Ŵ(α − 1)

(

2c

σ 2

)α−1

exp

[

− 2c

σ 2x

]

x−α

(

α := 2− 2µ

σ 2

)

,

(59)
where Ŵ(α) is the gamma function defined in Equation (12). For
the large x, the stationary solution satisfies the power law given as

p(x) ∝ x−β (x≫ 1), (60)

where the exponent of the power law is 2− 2µ
σ 2 . Although c, in the

additional term, achieves the stationary state, it is independent of
the exponent. It is worth noting that the exponent of the power
law is affected not by the constant c of the additional term, but
by the drift µ and volatility σ of the GBM. The additional term
affects only the lower tail of the probability density function. Even
for c as a random variable, these properties are invariant.

3.5. Generalized Lotka–Volterra Model
The GLV model was introduced for the analysis of individual
income distribution. We consider the dynamical system
composed of N agents (individuals) with incomes that grow by
the GBM process and have the interactions for the redistribution
of wealth [27–29]. The GLV model is represented by the system
of SDEs called the GLV equations:

dX̂i(t) = µX̂i(t)dt + σ X̂i(t)dB̂i(t) + ξ Û(t)dt − ηÛ(t)X̂i(t)dt
(

Û(t) : = 1

N

N
∑

i=1

X̂i(t), ξ > 0

)

, (61)

where X̂i(t) is the individual income of agent i (i = 1, 2, · · · ,N)
at t, and Û(t) is the average income for the whole system. To keep
X̂i(t) > 0, the third term in RHS of Equation (61) redistributes
a fraction of the total income for the whole system. This term
can be interpreted as the effect of a tax or social security policy.
The fourth term controls the growth of whole system and can be
interpreted as the effect of finiteness of resources, technological
innovations, wars, natural disasters, and so on.

The GLV equations have no stationary solution, and the total
income for the entire system is not constant with time. Here, we
introduce the new random variable as the relative value:

Ŷi(t) : =
X̂i(t)

Û(t)
. (62)

24Following Slanina [45], we solve the ODE.
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Then we obtain the SDEs for Ŷi(t) as

dŶi(t) =
dX̂i(t)

Û(t)
− X̂i(t)dÛ(t)

Û(t)2

= ξ (1− Ŷi(t))dt + σ Ŷi(t)dB̂i(t)−
σ Ŷi(t)

NÛ(t)

N
∑

i=1

X̂i(t)dB̂i(t),

(63)

where the last term in the second row is of the orderN− 1
2 , because

the standard deviation of
∑N

i=1 X̂i(t)dB̂i(t) is of the order
√
N.

We then take the large N limit as the mean field
approximation and obtain the new system of SDEs:

dŶi(t) ≃ −ξ Ŷi(t)dt + σ Ŷi(t)dB̂i(t)+ ξdt, (64)

which has the same form as the SDE of Equation (56) in the
Kesten process. We can use the result of Equation (59) to obtain
the normalized stationary probability density:

q(y) = 1

Ŵ(α − 1)

(

2ξ

σ 2

)α−1

exp

[

− 2ξ

σ 2y

]

y−α

(

α := 2+ 2ξ

σ 2

)

.

(65)
For large y, the stationary solution satisfies the power law as
follows:

q(y) ∝ y−α (y≫ 1), (66)

where the exponent of the power law is 2+ 2ξ
σ 2 . Consequently, by

a change of variables, and the mean field approximation, the GLV
model with interactions gives us the same result as that obtained
by the Kesten process without interactions.

3.6. Bouchaud–Mézard Model
The BM model was introduced for the analysis of wealth
distribution [30, 57–59]. We suppose there is an economic
network composed of N agents (individuals) with wealth that
grows by the GBM process and is redistributed by the exchanges
between agents. The BM model is represented by the system of
SDEs as follows:

dX̂i(t) = µX̂i(t)dt+σ X̂i(t)dB̂i(t)+
∑

j( 6=i)

aij(X̂j(t)− X̂i(t))dt (67)

where X̂i(t) is the individual wealth of agent i at t, and aij is
the positive exchange rate between agent i and j. The wealth is
exchanged by the third term in RHS of Equation (67), which can
be interpreted as a kind of trading in the economic network.

For simplicity, we take aij as the constant a
N (> 0) in

preparation for the mean field approximation. Here, we again
introduce the new random variables as the average of wealth and
the relative value:

Ŷi(t) :=
X̂i(t)

Û(t)

(

Û(t) := 1

N

N
∑

i=1

X̂i(t)

)

. (68)

We then obtain the SDEs for Ŷi(t) in the mean field
approximation:

dŶi(t) =
dX̂i(t)

Û(t)
− X̂i(t)dÛ(t)

Û(t)2

≃ −aŶi(t)dt + σ Ŷi(t)dB̂i(t)+ adt,

(69)

which has the same form as the SDE of Equation (64) in the
LV model. Consequently, we obtain the normalized stationary
solution:

q(y) = 1

Ŵ(α − 1)

(

2a

σ 2

)α−1

exp

[

− 2a

σ 2y

]

y−α

(

α := 2+ 2a

σ 2

)

.

(70)
For large y, the stationary solution satisfies the following power
law:

q(y) ∝ y−α (y≫ 1), (71)

where the exponent of the power law is 2+ 2a
σ 2 . It is worth noting

that though the forms of the additional terms in the GLV model
and BM model are quantitatively different from those of the
Kesten process, the results are eventually the same in the mean
field approximation.

4. COMBINATION OF EXPONENTIALS

When we have a probability density or distribution function
for a random variable, we can obtain a new distribution by
a change of variable. In particular, we can obtain a power
law function from an exponential distribution by taking a new
variable as the exponential function of the original variable.
This mechanism was used to interpret the observed power
law for the frequency of use of words with the assumption
of random typings on a typewriter [31]. In this section, firstly
we formalize this mechanism. Then we give the examples of
applications to the Yule process and critical phenomena in
physics.

4.1. General Formalism
Suppose the probability density function for a continuous
random variable x is given by

p(x) = Aeax (A > 0). (72)

We change the variable x into the new variable y as

y = Bebx (B > 0). (73)

Thus the new probability density function q(y) is obtained
as

q(y) = p(x)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

= A

|b|B a
b
y
a
b−1 ∝ y

a
b−1, (74)

where the exponent of power law is a
b − 1.
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Similarly, when the x is a discrete random variable, the new
probability distribution function q(y) is obtained as

q(y) = p(x) = A

B
a
b
y
a
b ∝ y

a
b , (75)

where the exponent of power law is a
b .

4.2. Application to Yule Process
The power law of the Yule process can be interpreted using a
combination of exponentials with a rough approximation [41].
Firstly, by changing the Poisson rate λs into λg in (A.15), the
probability density function of the age of genera at a large time
is obtained as

p(t) = λge
−λgt . (76)

Then, from (A.12) with ns0 = 1, we approximately obtain the
number of species within the genus of age t as

n(t) ≃ E[N̂s(t)] = eλst . (77)

Finally, taking A = λg, a = −λg, B = 1, and b = λs in
Equation (74), the probability density function of the number of
species within genera is

q(n) =
λg

λs
n
−
(

λg
λs
+1
)

, (78)

where the exponent of power law is
λg
λs

+ 1. This exponent
coincides with Equation (14). Thus the generating mechanism
of power law in the Yule process can be roughly interpreted as
a combination of exponentials as well.

4.3. Application to Critical Phenomena
It is well-known that in certain critical phenomena, some
physical quantities (e.g., correlation length, susceptibility, and
specific heat) take the form of power functions of the reduced
temperature T−Tc

Tc
near the critical temperature Tc. By the

renormalization group analysis [60], this property can be
interpreted as emerging from a combination of exponentials [41].

We consider two physical quantities x and y whose
scaling dimensions are dx and dy, respectively. When we
perform the scale transformation (i.e., renormalization group
transformation) by the scaling factor b near the critical point, we
suppose that x and y are multiplied by λx and λy, respectively. By
the dimensional analysis, we obtain

λx = bdx , λy = bdy
(

log λy

log λx
=

dy
dx

)

. (79)

Then we obtain geometric progressions for the transformed x
and y:

{

x : x0 → λxx0 → (λx)
2x0 → · · · ,

y : y0 → λyy0 → (λy)
2y0 → · · · ,

(80)

where x0 and y0 are the initial values of the transformation. Let
us denote x and y transformed n times by xn and yn, respectively.

Accordingly, xn and yn are defined as







xn := (λx)
nx0 = x0e

(log λx)n,

yn := (λy)
ny0 = y0e

(log λy)n,
(81)

which constitute a combination of exponentials. Therefore,
taking A = y0, a = log λy, B = x0, and b = log λx in Equation
(75), we can write down yn as a function of xn as

yn = y0

(

xn
x0

)

log λy
log λx

∝ xn
dy
dx , (82)

where the exponent of power law is− dy
dx
. We emphasize that this

is a simple consequence of the dimensional analysis.
Furthermore, if y := p(x), the two geometric progressions

(Equation 80) lead to

λyy = p(λxx), (83)

which satisfies the scale-free property (Equation 2) with b =
λx and f (b) = λy. Namely, the two geometric progressions,
equivalent to a combination of exponentials by the scale
transformation, assures that the scale-free property holds25.

5. CONCLUSIONS

We have reviewed nine generating mathematical mechanisms
of power laws (i.e., Yule process, Simon process, Barabási–
Albert model, geometric Brownian motion with a reflecting wall
and reset events, Kesten process, Generalized Lotka–Volterra
model, and Bouchaud–Mézard model, and the combination of
exponentials) that are widely applied in the social sciences. Since
these mechanisms are only prototypes, the exponents of the
power laws derived from them may not match those of real
phenomena (e.g., number of links on the WWW, and so on).
As explained in this paper, however, these mechanisms have been
improved so that the exponents match those of real phenomena,
while the basic principles of the improved mechanisms remain
the same. Though many power laws as macro behaviors of
systems have been studied, the mechanisms generating them
from micro dynamics are not yet completely understood. In
physics, however, the understanding of thermodynamics of
macro behavior from quantum mechanics of micro dynamics
has been advanced considerably based on statistical mechanics. A
similar development may also be possible in the study of power
laws.
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APPENDIX

Some mathematical supplements are given in this appendix.

A.1. Poisson Process
We consider the Poisson process [61, 62] with the Poisson rate λ

(a positive constant), that is, the events occur on average λ times
per unit time. The probability that an event occurs n times in
(t, t + h] follows the Poisson distribution:

P{N̂(t+ h)− N̂(t) = n; rate λ} = e−λh (λh)
n

n!
, (n = 0, 1, 2, · · · )

(A.1)
where N̂(t) denotes the number of times that the events occur in
(0, t]. When h is the infinitesimal time interval, the probabilities
of event occurrence can be expressed by o(hk). The probability
that no event occurs in (t, t + h] is

P{N̂(t + h)− N̂(t) = 0; rate λ} = e−λh

= 1− λh+ o(h).

(

lim
h→0

o(hk)

hk
= 0

)

.(A.2)

Similarly, the probability that one event occurs is

P{N̂(t + h)− N̂(t) = 1; rate λ} = e−λhλh = (1− λh+ o(h))λ
h = λh+ o(h), (A.3)

and the probability that more than two events occur is

P{N̂(t + h)− N̂(t) ≥ 2; rate λ} =
∞
∑

n=2

e−λh (λh)
n

n!

= e−λh

( ∞
∑

n=0

(λh)n

n!
− 1− λh

)

= 1− e−λh(1+ λh)

= 1− (1− λh+ o(h))(1+ λh)

= o(h).
(A.4)

A.2. Pure Birth Process
We generalize the Poisson process so that the Poisson rate
depends on the number of times that the events have already
occurred. To apply this generalized Poisson process to the
evolution model in biology, we interpret the occurrence of events
as the births of new species without deaths [61, 62].

First, we are interested in the probability that the number of
species becomes n (∈ N) at time t (∈ R) with the initial number of

species ns0 at time 0. It is denoted by p(n, t)
(

: = P{N̂s(t) = n}
)

,

where N̂s(t) is the number of species at time t. Then, we derive
the time evolution equation of p(n, t). The probability p(n, t + h)
is given as the sum of the following probabilities:

• the probability that N̂s(t) = n and no birth occurs in (t, t + h]
with rate 3s(n);

• the probability that N̂s(t) = n − 1 and one birth occurs in
(t, t + h] with rate26 3s(n− 1);

• the probability that N̂s(t) = n − 2 and two births occur in27

(t, t + h];
...

• the probability that N̂s(t) = n−k and k births occur in (t, t+h];
...

where 3s(n) is the Poisson rate when the number of species is n.
Accordingly, we obtain

p(n, t + h) = P{N̂s(t) = n ∩ no birth occurs in (t, t + h]

with 3s(n)}

+P{N̂s(t) = n− 1 ∩ 1 birth occurs in (t, t + h]

with 3s(n− 1)}

+
n−ns0
∑

k=2

P{N̂s(t) = n− k ∩ k births occur in

(t, t + h]}. (A.5)

From equations (A.2), (A.3), and (A.4), the probabilities on the
right-hand side of (A.5) are expressed respectively as the orders
of h:























































P{N̂s(t) = n ∩ no birth occurs in (t, t + h]}
= p(n, t)×

{

1− 3s(n)h+ o(h)
}

,

P{N̂s(t) = n− 1 ∩ 1 birth occurs in (t, t + h]}
= p(n− 1, t)×

{

3s(n− 1)h+ o(h)
}

,

n−ns0
∑

k=2

P{N̂s(t) = n− k ∩ k births occur in (t, t + h]} = o(h).

(A.6)

We combine (A.5) with (A.6), and obtain the difference equation:

p(n, t + h)− p(n, t)

h
= −3s(n)p(n, t)+3s(n−1)p(n−1, t)+o(h)

h
.

(A.7)

26Strictly speaking, the Poisson rate is not constant at 3s(n − 1) in (t, t +
h], that is, the Poisson rate change into 3s(n) from 3s(n − 1) when the

birth occurs. Therefore, the accurate probability is P{N̂s(t) = n − 1} ×
P{ one species is born in(t, t+ j] with rate3s(n−1)}×P{ no species is born in(t+
j, t+ h] with rate 3s(n)}, where t+ j (0 < j < h) is the time of the birth. However,

since we take the limit h → 0 at the end, even if we deal with the probability this

strictly, the time evolution equation of the final result will be the same.
27Even if we precisely consider the changing Poisson rate with births, this

probability will eventually be o(h). Therefore, we do not need the precise values

for the exact Poisson rate and the probabilities that k(≥ 2) species are born in

(t, t + h].

Frontiers in Physics | www.frontiersin.org 14 March 2018 | Volume 6 | Article 20

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Kumamoto and Kamihigashi Power Laws in Stochastic Processes

We take the limit h → 0 and obtain the ODEs with the initial
conditions:

for n > ns0,







∂p(n, t)

∂t
= −3s(n)p(n, t)+ 3s(n− 1)p(n− 1, t),

p(n, 0) = 0,

for n = ns0,







∂p(ns0, t)

∂t
= −3s(ns0)p(ns0, t),

p(ns0, 0) = 1,

(A.8)

which are called the Kolmogorov’s forward equations. The ODEs
(A.8) can be solved and yield











p(n, t) =
∫ t

0
e−3s(n)(t−s)3s(n− 1)p(n− 1, s)ds for n > ns0,

p(ns0, t) = e−3s(ns0)t .

(A.9)

A.3. Linear Birth Process
Next, we consider the linear birth process [61, 62] that is
mathematically defined as a special case of the pure birth process.
When the Poisson rate 3s(n) is proportional to the number of
species n,

3s(n) = λsn, (A.10)

where λs is a positive constant, this pure birth process is called
the linear birth process28. Then, we can interpret the birth of
new species in this process as the occurrence of branching in the
evolutionary tree (Figure 2). In particular, the linear birth process
means that the branchings occur independently on each line of a
species as the Poisson processes with the Poisson rate λs, which is
common for all existing species.

The solutions of (A.9) for the Yule process can be recursively
calculated and yield































p(n, t) =
(

n− 1

n− ns0

)

(

e−λst
)ns0 (

1− e−λst
)n−ns0

(

(n
m

)

: = n!

m!(n−m)!

)

for n > ns0,

p(ns0, t) = e−λsnt .

(A.11)

Then, the expectation value and the variance of the number of
species at time t is given by

E[N̂s(t)] =
∞
∑

n=ns0

np(n, t) = ns0e
λst ,

Var[N̂s(t)] = E[N̂s(t)
2]− E[N̂s(t)]

2 = ns0e
λst(eλst − 1).

(A.12)

28Though this process is also called the Yule–Furry process, we call it the linear

birth process in this paper to distinguish it from the Yule process that generates a

power law.

Let Ps{0 < age ≤ t at τ } be the probability of the species whose
age, that is, the time intervals elapsed since the birth, is t or less at
time τ (> t). This probability is given by

Ps{0 < age ≤ t at τ } = E

[

N̂s(τ )− N̂s(τ − t)

N̂s(τ )

]

= 1− E

[

N̂s(τ − t)

N̂s(τ )

]

≃ 1− E[N̂s(τ − t)]

E[N̂s(τ )]
= 1− e−λst ,

(A.13)

where the approximately equal symbol holds only for a large
time29 τ . Therefore, it no longer depends on τ . Let us use ℓs(s)
to denote the probability density function for the age s of species
at a large time. By the probability of the species whose age is t or
less at a large time, it is defined as

∫ t

0
ℓs(s)ds = Ps{0 < age ≤ t at a large time}. (A.14)

Differentiating both sides of (A.14) with respect to t, we obtain

ℓs(t) =
dPs{0 < Age ≤ t at a large time}

dt
= λse

−λst . (A.15)

A.4. Multiplicative Process
The multiplicative process is the discrete-time stochastic process
defined as

X̂(t + 1) = r̂(t)X̂(t) (t = 0, 1, 2, · · · ), (A.16)

where r̂(t), for all times t, are independent and equally-
distributed random variables with ν : = E[log r̂(t)] and σ 2

: =
Var[log r̂(t)]. This process is essentially equivalent to the GBM
because both probability density functions are identically the
log-normal distributions in the large time limit.

We can easily obtain the solution of (A.16) in the logarithmic
form as follows:

log X̂(t) =
t−1
∑

i=0

log r̂(i)+ log x0, (A.17)

where x0 is the initial value of X̂(t). We then define the new
variable Ŷ(t) as

Ŷ(t) : = log X̂(t)− log x0 − tν√
t

=

t−1
∑

i=0

(

log r̂(i)− ν
)

√
t

. (A.18)

29We consider only the probability in a large time, because we are interested in

only the power-law distribution as the stationary state at a large time.
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By the central limit theorem, we obtain the probability density
function of Ŷ(t) in the time limit t → ∞:

q(y) = 1√
2πσ 2

exp

[

− y2

2σ 2

]

, (A.19)

which is the normal distribution. Consequently, by a change of
variables, we obtain the probability density function of X̂(t) as
follows:

p(x) = 1

x
√
2πσ 2t

exp

[

−
{

log x− log x0 − tν
}2

2σ 2t

]

, (A.20)

which is the same as the log-normal distribution as (28) of the

GBM with ν = µ − σ 2

2 .

A.5. Stationary Solution of the
Fokker–Planck Equation With Reflecting
Wall
Here we provide a stationary solution of the FPE with reflecting
wall [23, 39, 55].

The SDE30 of an Itô process for the random variable X̂(t) is
given by

dX̂(t) = a(X̂(t), t)dt + b(X̂(t), t)dB̂(t), (A.21)

where B̂(t) is a standard Brownian motion; E[dB̂(t)] =
0, Var[dB̂(t)] = dt. This SDE is equivalent to the Langevin
equation [51]:

dX̂(t)

dt
= a(X̂(t), t)+ b(X̂(t), t)Ŵ̂(t), (A.22)

where the noise term Ŵ̂(t) satisfies

{

E[Ŵ̂(t)] = 0,

E[Ŵ̂(t)Ŵ̂(t′)] = δ(t − t′).
(A.23)

We can obtain the FPE for the random variable X̂(t) with the
probability density p(x, t) as

∂p(x, t)

∂t
= − ∂

∂x
{a(x, t)p(x, t)} + ∂2

∂x2

{

b(x, t)2

2
p(x, t)

}

. (A.24)

Then we define the flux J(x, t) as

J(x, t) : = a(x, t)p(x, t)− ∂

∂x

{

b(x, t)2

2
p(x, t)

}

, (A.25)

so that we can interpret (A.24) as the continuity equation

∂p(x, t)

∂t
+ ∂J(x, t)

∂x
= 0. (A.26)

30In the Stratonovich convention this SDE is represented by dX̂(t) =
{

a(X̂(t), t)− 1

2
b(X̂(t), t)

∂b(X̂(t), t)

∂X̂(t)

}

dt + b(X̂(t), t) ◦ dB̂(t).

When a(x, t) and b(x, t) are the time-independent functions,
that is, a(x, t) = a(x) and b(x, t) = b(x), the stationary solution
p(x) is defined by the condition31

∂p(x)

∂t
= 0, (A.27)

that is equivalent to

∂J(x)

∂x
= 0, (A.28)

where J(x) is the stationary flux. Accordingly, the stationary flux
J(x) must be constant.

When the stationary flux J(x) takes a nonzero value, the
stationary state means that particles flow in from one side of
infinity and out the other side. This situation causes the stationary
probability density function p(x) to be nonzero at x = ±∞.
Consequently, the nonzero stationary flux cannot give us a
power-law probability density function that can be normalized,
because any power function blows up at one side of infinity. In
contrast, when the stationary flux J(x) vanishes anywhere, we
can set the reflecting wall at x = xmin so that the stationary
probability density function p(x) vanishes outside of the wall.
The reflecting wall enables us to obtain a power-law probability
density function that can be normalized, because we can cut
out the side of infinity where the power function blows up. For
this reason, we consider only the case that the flux vanishes at a
boundary, that is, the reflecting wall.

In this case, we obtain the second-order ODE

J(x) = a(x)p(x)− d

dx

{

b(x)2

2
p(x)

}

= 0 (A.29)

that the stationary solution p(x) satisfies.
The stationary solution is obtained as the solution of (A.29):











p(x) = p(x0)b(x0)
2ef (x),

f (x) : = −2 log{b(x)} +
∫ x

x0

2a(x′)

b(x′)2
dx′,

(A.30)

where x0(≥ xmin) is an arbitrary constant. If a(x) and b(x) are the
power functions that satisfy the condition

a(x)

b(x)2
∝ 1

x
, (A.31)

namely,






a(x) = ax2n−1 (a : constant),

b(x) = bxn (b : constant),
(A.32)

we obtain the stationary solution as the power function of x:

p(x) = Cx−α

(

C : = p(x0)x0
α , α : = 2n− 2a

b2

)

. (A.33)

31Though the existence of the stationary solution is nontrivial, we assume it here.
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This stationary solution p(x) must satisfy the normalization
condition

1 =
∫ ∞

xmin

p(x)dx, (A.34)

where we set the reflecting wall at x = xmin(> 0) and assume
α > 1. The normalization condition

1 =
∫ ∞

xmin

p(x)dx = C

α − 1
(xmin)

−α+1. (A.35)

determines the constant C as

C = (α − 1)(xmin)
−α+1. (A.36)

Thus, we have the stationary solution

p(x) = (α − 1)(xmin)
−α+1x−α

(

α = 2n− 2a

b2
> 1

)

. (A.37)
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