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Models of social diffusion reflect processes of how new products, ideas, or behaviors are

adopted in a population. These models typically lead to a continuous or a discontinuous

phase transition of the number of adopters as a function of a control parameter. We

explore a simple model of social adoption where the agents can be in two states, either

adopters or non-adopters, and can switch between these two states interacting with

other agents through a network. The probability of an agent to switch from non-adopter to

adopter depends on the number of adopters in her network neighborhood, the adoption

threshold T and the adoption coefficient a, two parameters defining a Hill function. In

contrast, the transition from adopter to non-adopter is spontaneous at a certain rate µ. In

a mean-field approach, we derive the governing ordinary differential equations and show

that the nature of the transition between the global non-adoption and global adoption

regimes depends mostly on the balance between the probability to adopt with one and

two adopters. The transition changes from continuous, via a transcritical bifurcation,

to discontinuous, via a combination of a saddle-node and a transcritical bifurcation,

through a supercritical pitchfork bifurcation. We characterize the full parameter space.

Finally, we compare our analytical results with Monte Carlo simulations on annealed and

quenched degree regular networks, showing a better agreement for the annealed case.

Our results show how a simple model is able to capture two seemingly very different types

of transitions, i.e., continuous and discontinuous and thus unifies underlying dynamics for

different systems. Furthermore, the form of the adoption probability used here is based

on empirical measurements.

Keywords: adoption, phase transition, mean-field, social contagion, spreading

1. INTRODUCTION

Spreading processes are ubiquitous in nature: the contagion of diseases [1], herd behavior
in animals [2], the diffusion of innovations [3], rumor spreading [4], the evolution of social
movements [5], the propagation of hashtags in Twitter [6], etc. All these processes share similar
dynamics; in a population of initially neutral (disease-free, unaware of some information, etc.)
agents (humans, animals, or even bots), some of them start carrying some information, pathogen,
or behavior, i.e., they adopt this innovation. Through a transmission process they can pass it on to
other agents, starting in this way the process of adoption diffusion.

The diffusion of adoption has been extensively studied and modeled in several fields including
Biology, Physics and Social Sciences [7–10]. In general, new adopters have been in contact with
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one or several adopters, with two main mechanisms: in disease-
like models [11, 12], adoption takes place with an adoption
probability per contact with an adopter which is constant
irrespective of the number of adopters; in threshold-like models
[8, 11–13], adoption happens only after a critical number of
adopters has been reached. There are also models of “generalized
contagion” [14], where both disease-like and threshold behaviors
are special cases.

However, while the models describe individual adoption
probabilities, most of the related empirical research was based on
aggregated data, typically cumulative adoption curves [15, 16].
Recent studies have focused on individuals’ behavior, where the
number of adopters accessed by each individual can be measured
[17–20]. These measurements have a direct connection with the
form of the adoption probability. In this paper we explore the
probability function obtained by Milgram et al. [17] from a social
experiment. They analyzed the correlation between the size of a
group looking at the same point in the street and the number of
passerby that joined the behavior of looking at that point. The
results of the experiment can be fitted with a Hill function for the
probability of adoption [20]. We will show that the shape of the
adoption probability leads to two different behaviors depending
on the parameter values: either a continuous or a discontinuous
phase transition. This provides a simple model that describes
both regimes within the same framework, depending only on two
parameters; with a probability function linked to empirical data.

2. RESULTS

An agent that has not adopted yet, adopts with some probability
when interacting with an adopter, which turns her an adopter-
maker too. After adoption, the agent is “recovered” at a certain
rate µ and becomes again a potential adopter. Here, we study the
consequences of the probability of adoption. The transition from
adopter to non-adopter is assumed to occur at some constant
rate µ.

In the standard SIS (susceptible-infected-susceptible) model
[1], the adoption probability (from susceptible to infected, S →

I) β is constant for each interaction with an adopter. In general,
the adoption probability can be a general function of the number
of adopted neighbors, n:

P(n) = λ′f (n) . (1)

In this contribution we will consider the function proposed by
Gallup et al. [20]

f (n) =
na

Ta + na
, (2)

where λ′ is persuasion capacity (similar to β = λ′ for T = 0
and a = 1), a is the adoption coefficient (or Hill coefficient) and
controls how fast/slow this probability increases with n and T is
the adoption threshold and fixes the number of adopters needed
to reach half the persuasion limit. λ′, T and a are real positive
numbers. This type of function is known as Hill function and
has been used in models of population growth and decline [21–
23]. The evolution of such a system in an annealed degree regular

network (a network where all the nodes have the same number of
neighbors or degree k but where they are chosen randomly in the
population at each interaction) is determined by

dρ

dt′
= −µρ + (1− ρ)A, (3)

where ρ is the density of adopters and A is the probability of
adoption given the density ρ and is given by

A =

k
∑

n=0

P(n)

(

k
n

)

ρn(1− ρ)k−n . (4)

The number of infected neighbors is assumed to be binomially
distributed with a success probability equal to the global density
of infected agents. Without loss of generality we get rid of
parameter µ by changing the timescale and rescaling the
persuasion capacity λ′

t = µt′ (5)

λ =
λ′

µ
, (6)

which is equivalent to setting µ = 1. The equilibrium solutions
for the system are determined by the condition

− ρ∗ + (1− ρ∗)A∗ = 0 . (7)

Given a particular value of a and T, there are at most three
possible solutions for ρ∗ (Figure 1): (i) ρ∗ = 0, corresponding
to the adoption-free regime, (ii) ρ∗ = ρup, represented by the
upper branch, and (iii) ρ∗ = ρdown, the lower branch.

The stability of the fixed points can be easily checked by linear
stability analysis. The solution ρ∗ = 0 changes stability at

λ0 =
1

kf (1)
, (8)

being stable for λ < λ0 and unstable otherwise. As can be seen in
Figure 1, if the solution ρ∗ = 0 intersects the upper branch, then
that branch is stable and the solution ρ∗ = 0 changes stability
via a transcritical bifurcation. Then for λ > λ0 and for any initial
ρ0 6= 0 the system will end up in the fixed point ρup (Figure 1A).
If, on the contrary, the solution ρ∗ = 0 intersects the lower
branch, this one is unstable and there is a region λ1 < λ < λ0 for
which two stable solutions (ρ∗ = 0 and ρup) coexist, separated
by an unstable solution ρdown (Figure 1B). For λ = λ1 the two
fixed points of opposite stability annihilate through a saddle-
node bifurcation, while at λ = λ0 we still have a transcritical
bifurcation. Therefore, in that region the final state of the system
will be the upper branch solution ρup if the initial density ρ0 >

ρdown and 0 otherwise and we can observe hysteresis. For λ > λ0
and for any initial ρ0 > 0 the system will end at ρup. Note that
λ0 is only the critical point for continuous transitions, while for
discontinuous ones would be λ1. The sign of the derivative of
the ρ∗ function at the intersection of ρ∗ = 0 and the other
branches determines the type of transition. If the derivative is
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FIGURE 1 | Complete solutions of Equation (7) are shown in black for T = 3, k = 10, and a = 1.2, 1.53, 1.8 (A–C, respectively). Continuous lines represent stable

solutions. Note that when λ0 intersects the upper branch, the transition is continuous (A). When λ0 intersects the lower branch (C), two stable solutions coexist in the

region λ1 < λ < λ0, 0 and ρup, and the transition is discontinuous. Simulations of the microscopic model are shown in blue points in (A,B). For (C) the simulation is

shown in (D), that amplifies the region λ1 − λ0, showing the hysteresis of the system. (B) illustrates the case when λ0 = λ1.

positive (ρ∗ = 0 intersects ρup), the transition is continuous,
while if it is negative (ρ∗ = 0 intersects ρdown), the transition
is discontinuous (Equations 9a,b, respectively).

dρ∗

dλ

∣

∣

∣

∣

λ0

> 0 H⇒ f (2) <
2k

k− 1
f (1) (9a)

dρ∗

dλ

∣

∣

∣

∣

λ0

< 0 H⇒ f (2) >
2k

k− 1
f (1) . (9b)

For the particular case when f (2) = 2k
k−1

f (1) both λ0 and
λ1 coincide. For this condition one can show, by approximating
Equation (7) to third order in ρ∗, that the bifurcation diagram is
that one of a supercritical pitchfork bifurcation, i.e., the equation
is equivalent to ẋ = rx − x3 (Figure 1C). In this case, the final
fate of the system is similar to the continuous case. For λ < λ0
there is no global adoption and the system ends at ρ∗ = 0, while
for λ > λ0 any initial condition ρ0 6= 0 will bring the system to
ρup.

Simulations using a microscopic model are also included in
the plots of Figure 1. This microscopic model simulates an SIS
dynamics in a degree regular network of k = 10 that changes at
each time step. From one step to another, an agent is selected;
if it is an adopter it recovers with probability µ, if not, it adopts
with probability P(n), where n is the number of adopters among k
randomly chosen agents. There is an initial seed of infected agents
which we fix to 1% of the total population.

In Figures 1A,B results of the simulations are shown in blue
dots over the analytical solution. For Figure 1C, simulations

are shown in Figure 1D. As can be seen, the system exhibits
hysteresis in the region λ1 < λ < λ0, where there is bistability.
The system ends at ρup or ρdown depending on the initial
condition.

Figure 1 also illustrates the two different kinds of transitions.
The density of adopters stays at zero until a critical value of λ,
where the system goes to ρup by either a continuous transition or
a discontinuous transition. As can be observed, provided a value
for T, the size of the jump increases with a. For values of a ∼ 1
the system resembles the epidemic-like models while for values
a > 1 the transition is threshold-like.

For the case of our choice of f (n) (Equation 2) the conditions
in Equation (9) give bounds for the parameters region for which
the transition is of one regime or the other:

Cont.: T <

(

2a(k+ 1)

2a(k− 1)− 2k

)
1
a

(10a)

Disc.: T >

(

2a(k+ 1)

2a(k− 1)− 2k

)
1
a

. (10b)

Figure 2 shows this parameters space for k = 5, 10, 20.
The white region represents the parameters combination for a
continuous transition while the light gray region corresponds to
a discontinuous transition. The dark gray region is the condition
that λ0 ≤ 1 on Equation (8), that is, that the value where both
curves meet is in the range λ ≤ 1,

T < (k− 1)
1
a . (11)
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FIGURE 2 | Parameter space for a regular random network with k = 5, 10, 20 (A–C, respectively). The white area is for continuous transitions while the light gray area

is for discontinuous transitions. Both areas are separated by the curve given by Equation (10), corresponding to a supercritical pitchfork bifurcation diagram. In the

dark gray area only the solution ρ* = 0 exists, i.e., there is not global adoption.

This constraint implies that the in dark gray region in the plot
there is only one possible solution, ρ∗ = 0.

Both conditions together, Equations (10, 11), predict the
values of the parameters for which the model shows one type
of transition or another, or none. For example, in Figure 2B, a
continuous transition is allowed for all values of a ∈ [1, 2] and
some values of T ∈ [0, 10], while the discontinuous transition
is only possible for values of a higher than 1.25 and values of T
higher than 1.5. As can be seen in Figure 2, for small values of k,
there are only continuous transitions, while for higher values of k,
also discontinuous transitions are allowed. Besides, the higher the
value of k, the more parameter space allows for ρ 6= 0 solutions.

Finally, we perform simulations to characterize numerically
the behavior of the system using a similar microscopic model on
quenched regular random network. Again, at each time step an
agent is selected, if she is an adopter it recovers with probability
µ, if not, she adopts with probability P(n), where now n refers
to the number of adopters in her network neighborhood, which
is now fixed. There is an initial seed of infected agents equal to
1% of the total population. The long term values of the fraction
of adopters ρ∞ are shown in Figure 3 for 10 realizations and
different values of a for T = 1.2, 3. The realizations are not
averaged to show the low dispersion (inset of upper panel in
Figure 3 and lower panel of Figure 3).

As Figure 2 indicates for T = 1.2 and k = 10, the system
exhibits always a continuous transition no matter the values of
a ∈ [1, 2] (inset of the upper panel). For T = 3 and k = 10,

for values of a higher than 1.5 the transition is discontinuous,
as shown in Figure 2. The upper panel of Figure 3 zooms in the
region of the critical point for the case of a = 1.0. It shows
the simulations of the microscopic model on a quenched degree
regular random network (pink), on an annealed degree regular
random network (blue) and the exact solution of the equation
(black). As can be seen, there is a small discrepancy for the model
on the quenched version of the network. This is because when
the topology is fixed correlations appear and in particular the
approximation that the infected agents are binomially distributed
among the neighbors with a success probability equal to the
global fraction of infected agents breaks down. As in the cases
presented above, the simulations on the annealed network and
the exact solution agree. For both microscopic models, the type
of transition is predicted by the parameters space represented in
Figure 2.

3. CONCLUSIONS

We have analyzed a model of social contagion (SIS-like) on
degree regular random networks with an adoption probability
measured in empirical data in Gallup et al. [20] that interpolates
between the cases of epidemic-like spreading and threshold-
like dynamics. We show that this simple model displays both
continuous and discontinuous transitions from a disease-free
state to an endemic state. We find the values of the parameters
that separate this transitions and the critical persuasion capacities
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FIGURE 3 | Simulations of the microscopic model on a degree regular random

network with degree k = 10. Individuals might adopt with probability P(n).

Upper panel shows the results for T = 1.2 and lower panel for T = 3 for

different values of a. For T = 1.2 the transitions are continuous for any a (inset,

same color code as lower panel). The upper panel shows the region of the

critical point for the simulations of the microscopic model on the quenched

network (pink), the simulations on the annealed network (blue) and the exact

solution (black line) of the equation for a = 1.0, respectively. For T = 3 there

are continuous or discontinuous transitions depending on the value of a.

λ by applying standard linear stability and bifurcation theory
tools.

The simplicity of the model studied here allows for relaxing
some of the assumptions considered here. For example, the
stability condition given by Equation (8) resembles the structure

of the critical point in the SIS model in uncorrelated random
networks with arbitrary degree distributions. Following this
similarity, we conjecture that the solution of our model in
complex networks will be given by λ0 = < k > / < k2 > f (1).
Thus degree heterogeneity will lead to the vanishing threshold
unless f (1) → 0 as N → ∞. This can be achieved for example
by considering that T = ckmax. Alternatively, an interesting
variation is to consider that the adoption probability depends not
on the absolute number of adopters but on the fraction of them.
Besides, heterogeneity can emerge not only at the degree level, but
also in the distributions of the adoption thresholdT and adoption
coefficient a and furthermore they can be correlated with the
degree of the nodes. How heterogeneity affects the nature of
the transition needs to be explored in detail. Another possible
line of research is adding non-Markovianity to the dynamics, for
example by letting the adoption probability depend not only on
the state of the neighboring agents, but also on some internal time
which takes into account when an agent tries to convince another
one for adopting the innovation.

Our results highlight that not only the structure of the
interaction network neither the dynamics alone are responsible of
the type of transition that the system displays. Furthermore, this
simplified framework is able to capture this seemingly disparate
types of transition, which are usually taken as a signature of
different dynamics. Furthermore the choice of the adoption
probability curve is based on empirical measurements from
Gallup et al. [20], which highlights the relevance of our results
for realistic modeling of social phenomena.
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