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The emergence of cooperation among selfish agents that have no incentive to cooperate

is a non-trivial phenomenon that has long intrigued biologists, social scientists and

physicists. The iterated Prisoner’s Dilemma (IPD) game provides a natural framework for

investigating this phenomenon. Here, agents repeatedly interact with their opponents,

and their choice to either cooperate or defect is determined at each round by knowledge

of the previous outcomes. The spatial version of IPD, where each agent interacts only

with their nearest neighbors on a specified connection topology, has been used to

study the evolution of cooperation under conditions of bounded rationality. In this paper

we study how the collective behavior that arises from the simultaneous actions of the

agents (implemented by synchronous update) is affected by (i) uncertainty, measured

as noise intensity K, (ii) the payoff b, quantifying the temptation to defect, and (iii) the

nature of the underlying connection topology. In particular, we study the phase transitions

between states characterized by distinct collective dynamics as the connection topology

is gradually altered from a two-dimensional lattice to a random network. This is achieved

by rewiring links between agents with a probability p following the small-world network

construction paradigm. On crossing a specified threshold value of b, the game switches

from being Prisoner’s Dilemma, characterized by a unique equilibrium, to Stag Hunt, a

well-known coordination game having multiple equilibria. We observe that the system

can exhibit three collective states corresponding to a pair of absorbing states (viz.,

all agents cooperating or defecting) and a fluctuating state characterized by agents

switching intermittently between cooperation and defection. As noise and temptation can

be interpreted as temperature and an external field respectively, a strong analogy can be

drawn between the phase diagrams of such games with that of interacting spin systems.

Considering the 3-dimensional p − K − b parameter space allows us to investigate the

different phase transitions that occur between these collective states and characterize

them using finite-size scaling. We find that the values of the critical exponents depend on

the connection topology and are different from the Directed Percolation (DP) universality

class.
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1. INTRODUCTION

The only thing that will redeem mankind is cooperation

Bertrand Russell

Consider a simple thought experiment: two autonomous agents
are required to expend equal effort in order to achieve a mutually
beneficial outcome. Each agent however realizes that they would
be better off as “free riders”—they could reap the benefits of
the other’s work without any contribution on their part. If both
agents think alike, no effort would be spent by either, leading
to an undesirable outcome for both. This hypothetical scenario
highlights one of the most puzzling and profound questions that
has long intrigued biologists, sociologists and mathematicians
alike, namely whether there is a simple mechanism that can
explain the emergence and maintenance of cooperation. Indeed,
the implications of the free rider problem in the context of
human societies has long troubled many, as actions guided
through self-interest invariably leads to an unsustainable burden
on shared resources (often referred to as the tragedy of
the commons [1]). However, far from being an unobtainable
outcome, cooperation is in fact widely seen in nature and is a
fundamental mechanism underlying the organization of systems
as diverse as genomes, multicellular organisms and human
societies [2]. It is the nature of this interaction-driven self-
organized emergence of cooperative behavior in populations
of individuals that only consider their self-interest, then, that
poses a conundrum. In the words of Robert Axelrod: “Under
what conditions will cooperation emerge in a world of egoists
without central authority?” [3]. The theoretical framework of
game theory has been employed to investigate the dynamical
evolution of cooperation in social dilemmas [4], as well as in

FIGURE 1 | (Left) Generic payoff matrix for symmetric two-player games. The first and second entries of each payoff pair for each of the four possible outcomes refer

to the payoffs assigned to agents A and B, respectively. (Right) Schematic illustrating the different types of symmetric 2× 2 games that arise within the parameter

range that we consider (adapted from [14]). Depending on the relative ordering of the payoffs the nature of the game changes between Prisoner’s Dilemma (PD:

T > R > P > S), Snowdrift (SD: T > R > S > P), Stag Hunt (SH: R > T > P > S) and Harmony (HA: R > T > S > P). Note that as R > P for all of these games, we

can set R = 1 and P = 0 which fixes the scale and origin, respectively, of the units in which payoff values are measured. Thus, without any loss of generality, we

visualize the games on the S− T plane in the figure. For the results presented here, we focus on the case S = 0, and vary the temptation T, i.e., we move along the

T-axis, highlighted in red.

microbial populations [5] and, more generally, on networks of
interactions [6].

Perhaps the best-known paradigm for the study of cooperative
behavior is the Prisoner’s Dilemma game [7]—a model that
examines the possible outcomes of strategic interactions between
players, and which does not favor unilateral cooperation. Over
the last half century there have been numerous studies on various
facets of this game [8]. While the classical two-player Prisoner’s
Dilemma game involving rational players is well-understood,
bounded rationality can arise from the introduction of physical
constraints. For instance, if the players are located on the vertices
of a network, they will interact only with their nearest neighbors.
In this situation, each player has incomplete information, as
she will only be aware of the actions of her neighbors in the
network. This is of particular significance in iterated games,
wherein players can choose a new action at each subsequent time
step. Here, complex dynamical behavior can arise depending on
the decision-making mechanism and aspects of the underlying
topology. Elucidating the role of spatial effects is hence a complex
and long-standing challenge [9]. Following the surge of interest
in network science over the last couple of decades, there have
been several investigations into the collective dynamics of a
large number of players that interact through games with their
neighbors on an underlying network. While such studies have
typically attempted to uncover aspects of network topology that
would favor cooperation [10, 11], systems of this nature also
yield a number of interesting questions from a statistical physics
perspective [12, 13]. For instance, if the collective dynamical
patterns are interpreted as “phases” of the system, then one may
examine the nature of the resulting phase transitions, as well as
the properties of inherent critical points.

In this work, we examine the emergent collective dynamics
in a system of agents that interact through games with their
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neighbors on an underlying topology whose structure we
systematically vary from that of a lattice to a random network.
Unlike the majority of studies of such spatial games, the states
of the agents are updated synchronously. In addition to the
network structure, we consider the effect of stochasticity in
decision-making, i.e., the degree of uncertainty associated with
an agent’s choice of action. Furthermore, we examine in detail
the nature of the phase transitions between the different regimes
of collective activity that this system exhibits. In the next section,
we describe the canonical Prisoner’s Dilemma model, explain
its relationship with other cooperative games, and discuss the
significance of “temptation.” We also briefly mention previous
attempts at investigating various aspects of iterated games. We
discuss the role played by spatial structure, and detail the
mechanism through which one can interpolate between a square
lattice and a random network. This is followed by a description of
the results obtained from our simulations in which we examine
the joint effects of noise and network structure on the resulting
collective dynamics. In particular, we report critical exponents
obtained through finite-size scaling for transitions between
different collective states. In contrast to previous studies on the
critical nature of such transitions, which have focused on the
behavior as the game payoff value corresponding to “temptation”
is varied, here we investigate the phase transitions with respect to
the degree of uncertainty (analogous to “temperature” or thermal
noise in physical systems that undergo transitions). We conclude
with a discussion of the potential significance of these results, and
suggest avenues for future exploration.

2. TWO-PERSON SYMMETRIC GAMES

The archetypal Prisoner’s Dilemma (PD) game [15], a
mathematical model used to study non-cooperative interactions
between agents, belongs to the family of symmetric two-player
games where each agent independently and simultaneously
chooses between two possible actions, viz., cooperation
(C) and defection (D). Such 2 × 2 games hence have four
possible outcomes which are not equally favorable to both
players [16, 17]. Agents are assumed to be “rational,” or purely
self-interested, i.e., their sole criteria in making a decision is
whether or not a particular action would lead to an outcome
that benefits them. Depending on the outcome, each of the
players receive payoffs P, R, S or T in accordance with the
matrix shown in Figure 1 (left). If both players choose C,
each receives the payoff R, which is the reward for mutual
cooperation. On the other hand, if both choose D, they receive
the payoff P, the penalty for mutual defection. However, if
one player chooses C while the other chooses D, the defector
receives T (the “temptation” to unilaterally defect) while the
other receives S (the “sucker’s payoff” for unreciprocated
cooperation).

Different types of games can be defined in terms of the relative
ordering of the payoff values P, R, S and T (Figure 1, right). For
a PD game in the strict sense, T > R > P > S and 2R > T+S
in the classical context. Often (following [18, 19]) the values of
P are S are chosen identically to be zero, but in principle this

represents a situation that lies on the border between PD and
the Snowdrift (or Chicken) game for which T > R > S > P.
The latter is an anti-coordination game which has been used to
study brinkmanship [20] (e.g., in the scenario of mutual assured
destruction in nuclear warfare) in which agents receive the least
payoff if they both choose the same action D. Experiments
where human players repeatedly play the Snowdrift game have
consistently yielded higher levels of cooperation than situations
in which they repeatedly play PD [21]. Another distinct game that
can be defined using the same payoff matrix in Figure 1 (left) is
the Stag Hunt (SH) game, which is often used to study situations
of social coordination [22]. The main distinction between this
game and PD is that unilateral defection is not as favorable as
mutual cooperation, and the payoff structure is thus R > T ≥
P > S. Hence, by simply varying the temptation T, one can
smoothly interpolate between a PD and an SH game. Note that,
as R > P for all of these games, there is no loss of generality
if we fix R = 1 and P = 0 which fixes the scale and origin,
respectively, of the units in which payoff values are measured.
Thus, in Figure 1 (right) we show only the S − T plane of
the parameter space. For the simulations reported in this paper,
following the convention introduced by Nowak and May [18],
we restrict ourselves to the case S = 0 and vary the temptation
T (whose value is denoted by b as per [18]), i.e., we move along
the T-axis, highlighted in red in Figure 1 (right). Thus for T > 1,
strictly speaking, we are on the borderline between PD and SD,
while for T < 1, we are on the borderline between SH and the
Harmony game (HA, for which R > T > S > P). However, for
simplicity, we refer to the T > 1 and T < 1 regimes as PD and
SH, respectively.

It is assumed that both players understand the consequence
of each collective outcome resulting from their actions. In
particular, in the case of PD, an agent is aware that if she chooses
to defect she will at worst obtain a payoff of P (and at best T).
Conversely, if she chooses to cooperate, she will at worst receive
a payoff S (and at best R). As S < P and R < T, cooperation
always appears to be less lucrative than defection to each player.
Hence, the dominant strategy for each player in PD is to always
defect. Note that mutual defection is also the Nash equilibrium

in PD, as no player can do better by unilaterally deviating from
it [23]. However, when both players choose to defect, they each
receive the payoff P which leaves them worse off than if they
had chosen to cooperate with each other (as R > P). Thus, the
“dilemma” inherent in PD is that even though defection would
be the rational choice for each agent, they would have done better
had they both chosen to cooperate instead [24]. Note that in the
SD and SH games, the players do not have a strictly dominant
strategy and these games are in fact characterized by multiple
Nash equilibria.

3. ITERATED GAMES AND NETWORK
RECIPROCITY

Although mutual defection appears to be the only possible
outcome for rational agents in the one-shot PD game discussed
above (but see [25, 26] for an alternative paradigm), other
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outcomes including mutual cooperation become possible when
agents repeatedly play the game with each other. Such Iterated
Prisoner’s Dilemma (IPD) games can incorporate varying degrees
of memory, i.e., information regarding the outcomes over several
previous rounds. In order to observe outcomes other thanmutual
defection in IPD it is important that the players do not know
the total number of rounds beforehand [27]. This is because
when the agents are aware of this number, it can be proved by
backward induction that the rational choice would be to always
defect. In the absence of this knowledge, cooperative strategies
can emerge [28]. Indeed, the IPD game has proven to be a
robust tool for studying a wide range of scenarios involving the
emergence of cooperative behavior [3, 29].

When populations of agents, whose interactions are
constrained by an underlying connection topology, iteratively
play PD with each of their nearest neighbors, additional non-
trivial dynamical phenomena can emerge [30]. Specifically, the
population can sustain a non-zero level of cooperation through a
mechanism known as network reciprocity [2]. This concept is a
generalization of “spatial reciprocity” that was first demonstrated
by Nowak and May [18]. They considered a spatial IPD game
wherein a system of agents are placed on the vertices of a square
lattice. Each agent repeatedly engages in PD with those in the
neighboring sites. Players are each initially assigned randomly
selected actions (C or D) that are used in all of their interactions
in that round. At the end of a round, each agent independently
decides on the action to be employed in the next round by
comparing her total payoff (received as a result of all interactions
in that round) with that of her neighbors. Nowak and May
demonstrated that even simple strategies for updating an agent’s
action, such as imitate the best, can elicit a non-trivial collective
behavior. In particular, it was observed that cooperators and
defectors coexist in the system for arbitrarily long times.

The inherent symmetries of a lattice impose certain
constraints on the nature of the collective dynamics that
can be observed in the spatial IPD. Moreover, the assumption
that the connection topology of a regular lattice governs the
interactions between agents in any biological or social setting
is somewhat unrealistic. To this end, the more generalized
structure of networks have been employed to define the
neighborhood organization of agents playing IPD [9, 31–39].
An important question in this context relates to the effect of
degree heterogeneity, i.e., variability in the number of neighbors
of each agent. For this purpose, the IPD has been investigated
with different classes of networks that are distinct in terms of the
nature of the associated degree distribution. For example, it was
observed that a greater level of cooperation can be obtained in
both scale-free (SF) [40] and Erdös-Rényi (ER) networks [11], as
compared to degree homogeneous networks. This outcome was
seen to hold even for other games such as Snowdrift and Stag
Hunt [41].

Another approach for investigating the role of network
topology on system dynamics is provided by the small-world
network construction paradigm introduced by Watts and
Strogatz [42]. Here, beginning with a system of nodes connected
to their neighbors in a regular lattice, long-range connections
are introduced by allowing links to be randomly rewired with

a probability p (Figure 2A). In the extreme case p = 1, one
obtains a random network that, if sufficiently dense, has the
properties of an ER network. For intermediate values, i.e. 0 <

p < 1, the resulting network exhibits so-called “small-world”
characteristics, corresponding to the coexistence of low average
path length and high clustering. Note that the networks obtained
all have the same average degree kavg as the original lattice.
Although there have been a number of studies on how small-
world connection topology can affect the resulting collective
dynamics in the context of the spatially extended IPD [43–46],
there is scope for a detailed investigation of the joint effects of
noise and topology on the emergence of cooperation.

Introducing noise in the dynamics allows one to explore
uncertainty on the part of the agent in deciding whether to switch
between actions. Such uncertainty can arise from imperfect or
incomplete information about the system that agents have access
to. An action update rule that explicitly incorporates a tunable
degree of stochasticity in the decision-making process is the
Fermi rule [47]. Here, each agent i randomly picks one of her
neighbors j and copies its action with a probability given by the
Fermi distribution function:

5i→j =
1

1+ exp(−(πj − πi)/K)
, (1)

whereK can be thought of as the temperature, which is a measure
of the “noise” in the decision-making process. In the noise-free
case, i.e., in the limit K → 0, agent i must copy the action of
j if πj > πi (as 5i→j = 1), and will not copy j if πj < πi

(as 5i→j = 0). Conversely, in the limit K → ∞ this decision
(whether i should copy the action of j) is made completely at
random (as 5i→j = 0.5). Note that, in the presence of noise, the
Fermi rule allows agents to copy the action of neighbors that have
a lower total payoff than them.

In this paper we investigate in detail how the emergent
collective dynamics of a population of strategic agents is jointly
affected by uncertainty in individual behavior and the topology
of the network governing their interactions. We focus on systems
of N = L × L agents (with L ranging between 48 and 128)
that iteratively play a symmetric two-person game (PD or SH)
against their neighbors (no self-interactions are considered) on
a specified connection topology. The nature of the game is
varied by using different values b for the temptation payoff.
Agents synchronously update their actions (similar to Nowak
and May [18], and Kuperman and Risau-Gusman [48]) using
the aforementioned Fermi rule. By altering the intensity of noise
(K), we also explore the role of uncertainty in the decision-
making process. Finally, we observe how interpolating between a
regular lattice (with periodic boundary conditions) and a random
network by changing the rewiring probability p from 0 to 1 in the
small-world network construction paradigm changes the nature
of the collective states observed in the K − b parameter space.
While there have been earlier studies of the phase diagrams of PD
and SH games in spatially extended systems (see [9] for a review)
as well as the effect of noise on their collective dynamics [49–
58], there have been only a limited number of investigations into
the nature of the phase transitions between the different regimes
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FIGURE 2 | (A) Schematic illustrating the rewiring procedure for generating networks using the small-world construction paradigm [42]. Beginning with a system of

nodes connected in a lattice topology [left], the decision to randomly rewire each link is specified by a probability p. For the extreme case p = 1, one obtains a random

network that, if sufficiently dense, has the properties of an Erdös-Rényi network [right], while for intermediate values of p the resulting network [center] exhibits

so-called “small-world” characteristics, viz., a high clustering coefficient and a small average path length. These networks are used here to investigate the role of

connection topology on the collective dynamics in spatially extended versions of IPD. (B) A characteristic time-series of the fraction f (C) of cooperators in a lattice of

N = 128× 128 agents. Each agent plays IPD with their 8 nearest neighbors. The result shown is obtained using a temptation b = 1.1 and inverse noise K = 0.45.

Initially, 50% of the agents are randomly selected to be cooperators. Snapshots of the lattice are displayed at three instants denoted by the filled circles on the time

series. In each snapshot, cooperators are marked as yellow and defectors as green. Periodic boundary conditions have been assumed.

of collective behavior (see, for example, [47, 59–62]). Previous
studies that have quantitatively analyzed the phase transition by
measuring the critical exponents have focused on the transition
obtained by changing the temptation payoff value b and have
only considered asynchronous update schemes. In contrast, we
investigate the “thermally-driven” transitions, i.e., those which
arise upon varying the level of noise with synchronous (or
parallel) updating of the states of the agents. Furthermore, we
characterize the exponents using themethod of finite-size scaling.

4. RESULTS

When agents play IPD (i.e., b > 1) with neighbors on a lattice
using the Fermi rule to update their actions, the system converges
to one of two possible collective dynamical states depending
on the choice of b and K. These correspond to (i) all agents
defecting (all D), i.e., the fraction of cooperators f (C) = 0, and
(ii) a fluctuating regime (0 < f (C) < 1) where each agent
intermittently switches between cooperation and defection. At
the interface of the all D and fluctuating regimes, we observe
a long transient time in f (C) prior to the system converging to
the final state, as is expected for critical slowing down in the

neighborhood of a transition [63]. This is shown in Figure 2B for
the case where the initial configuration is an equal mixture (50%)
of cooperators and defectors, randomly distributed on a lattice
(using a Moore neighborhood, i.e., each node has degree k = 8).
We note that during this extended transient period cooperators
tend to aggregate into a number of clusters of varying sizes. The
formation of these clusters is driven by the fact that a cooperator
receives a much higher aggregate payoff when its neighborhood
has more cooperators [19]. On the other hand, defectors tend to
benefit only if they are relatively isolated from other defectors.
The boundaries of these clusters are unstable and evolve over
time, as cooperators at the edge of a cluster find defection to
be more lucrative and hence switch. For the case b < 1 (i.e.,
in the SH regime), a third collective state corresponding to all
agents cooperating (all C: f (C) = 1) can be observed. We note
that as agents can only adopt the actions of their neighbors the
collective dynamical states corresponding to all C and all D are
both absorbing states.

We next examine the collective dynamics over a range of
values of b and K by varying the connection topology from a
square lattice to a random network. This is done by choosing a
range of different values of the rewiring parameter p. As seen in
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FIGURE 3 | Phase diagrams for the fraction of cooperators on a network of size N = 1282 and average degree kavg = 8, displayed over a range of values of the

temptation payoff b and noise K, for different values of the rewiring parameter p. The initial fraction of cooperators is 0.5. The color indicates the fraction of

cooperators (f (C), whose value is indicated in the colorbar) in the system after 104 iterations, with white corresponding to the case of all C (f (C) = 1) and black to all D

(f (C) = 0). The blue horizontal line in each panel indicates b = 1, and demarcates the SH (b < 1) and PD (b > 1) regimes. For the case of a lattice (p = 0), we observe

that a dynamical state corresponding to all C can only be achieved if b < 1, i.e., in the SH regime, while in the PD regime, this scenario will only emerge for larger p.

The phase diagrams are constructed from single realizations of the dynamics for a given set of parameter values.

Figure 3, all three distinct regimes of collective dynamics can be
observed in the generated networks. The three regimes, viz., all
D, all C and fluctuating, interface at a single point in the resulting
phase diagram. This is reminiscent of a “triple point” observed
in the study of phase transitions in fluid systems. For the case of
a lattice (p = 0) the all C regime is only observed for b < 1,
i.e., in the SH regime, while fluctuation is observed for b > 1
for an intermediate range of values of K. In the limit of K → 0,
where an agent deterministically chooses to copy the action of a
randomly chosen neighbor if the latter’s payoff is relatively higher,
one may expect that the system will converge to an all D state
for any b > 1. Indeed this is what we observe when the average
degree is either very small or very large. Thus, increasing K can
give rise to a reentrant phase behavior where the asymptotic state
of the system in the PD regime can, for an optimal range of b,
exhibit successive noise-driven order-to-disorder and disorder-
to-order transitions. Specifically, the collective dynamical state
of the system changes from the homogeneous all D (ordered) to
the fluctuating (disordered) state and then back again to the all
D state. However, for an intermediate range of average degree
(including for kavg = 8, used for all results shown here), we
observe only the disorder-to-order transition. This is because the
fluctuating regime exists even for K → 0 over a limited range
of b(≥ 1). We note that, despite differences in the details of
the models, this result is similar to the observation of non-zero
fraction of cooperators reported for a range of b > 1 by Nowak
and May [18] for their deterministic system.

While increasing the temperature (or noise) is expected to
drive a system from order to disorder, the reverse transition from
the disordered or fluctuating state to the ordered all D state may
appear surprising. A possible mechanism for the appearance of
complete defection at higher values of K might be the noise-
induced breakup of cooperator clusters. Similarly, an increase

in the noise in the SH regime (b < 1) results in a transition
from an all C to an all D state. As both all C and all D states
are Nash-equilibria of the two-player SH, the appearance of only
one of these states in the spatially extended system is presumably
a symmetry-breaking effect of the implicit bounded rationality.
The latter arises because interactions are restricted by the contact
structure of the underlying network. Noise can then be seen as
providing a mechanism for selecting between the two broken-
symmetry absorbing states. For larger values of p, the all C state
can be observed in the PD regime (b > 1) provided K is in an
intermediate range. Thus, noise permits the appearance of an all
C state in the PD regime as well as an all D state in the SH regime.
We note that in earlier studies (e.g., [9]) which have investigated
the state transitions in spatial games by varying b and K, the all D
region is not observed in the SH regime (b < 1). This difference
from our results can be explained as arising from the different
updating schemes used, viz., asynchronous update, in contrast
to the synchronous update scheme used here. We have explicitly
verified that qualitatively similar results to those reported in the
earlier studies are obtained by using an asynchronous update
scheme. As p is increased further, the location of the triple point
shifts from the b < 1 (SH) region to the b > 1 (PD) region.

For higher values of K, there appears to be a small region at
the boundary between the all D and all C regimes characterized
by 0 < f (C) < 1 (see Figure 3). We would like to emphasize
that the dynamics in this region is qualitatively distinct from that
in the fluctuating regime seen for small K. It is easy to see that
in the limit of K → ∞ the system would either converge to
an all C or all D state asymptotically regardless of b. However,
convergence to these states can take extremely long times, much
longer than the usual duration of simulations. Conversely, the
fluctuating regime (which also has a mean value of f (C) between
0 and 1) is characterized by the fact that the asymptotic state
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FIGURE 4 | (A,B) Convergence time τc for agents on a network of size N = 1282 and average degree kavg = 8, for rewiring parameters (A) p = 0 and (B) p = 1. The

blue horizontal line corresponds to b = 1, and demarcates the SH (b < 1) and PD (b > 1) regimes. Darker colors indicate a more rapid convergence to any one of the

absorbing states (viz., all C or all D). We note that when K ≫ 1, larger values of τc are obtained. This is because at high noise intensity (high K), the system takes a

long time to converge to an absorbing state. The regions marked as white in the high K regime correspond to the system not converging to the steady state within the

duration of the simulation (104 time steps). On the other hand, the white regions seen for lower K(. 1) correspond to the system persisting in a steady state, viz., the

fluctuating regime. These two qualitatively different white regions can be differentiated by the sharpness of their boundaries. (C,D) The average convergence time 〈τc〉
as a function of K for the case (C) p = 0, b = 0.94 and (D) p = 1, b = 0.98. The results are averaged over 103 trials, and shown for different system sizes. The

situations displayed correspond to the transition between the all D and all C regimes. We observe that the convergence time at the interface of the two regimes

diverges as the system size is increased.

is not one of the absorbing states. The time taken to converge
to an absorbing state, τc, is displayed over a range of b and
K in Figures 4A,B for the extreme cases p = 0 and p = 1,
respectively. We observe that the all D and all C states in Figure 3
are characterized by small values of τc. The interface between
these two absorbing states, examined in detail in Figures 4C,D,
corresponding to an abrupt transition between f (C) = 0 and
f (C) = 1, exhibits a divergence in the mean time 〈τc〉 required
for the system to converge (shown for several system sizes).
The fluctuating state, which by definition corresponds to a state
distinct from any of the absorbing states, is characterized by
τc having the maximum possible value, corresponding to the
entire duration of simulation. Thus, as the divergence of τc
cannot be used to characterize the order-disorder transition at
the interface of the fluctuating and absorbing states, we have
to identify the critical interface between them using a response
function. For this purpose we consider the susceptibility of the
order parameter [64]:

χ = N
(

〈f 2(C)〉 − 〈f (C)〉2
)

. (2)

We next examine in detail the nature of the phase transitions
between the three regimes of collective behavior for the extreme
cases p = 0 and p = 1. For each of the transitions, we employ the
following procedure. We first estimate the critical noise Kc(N)
for each system size by obtaining the value of K at which the
corresponding χ attains its peak χc(N). In order to determine
how the critical noise scales with system size, we consider the
expression [65]

Kc(N) = Kc(∞)+ c N−1/ν , (3)

where Kc(∞) is the estimated critical noise for an infinitely large
system, c is a constant and ν is a scaling exponent. As Equation (3)

has three free parameters, we first estimate the parameter ν by
considering the scaling of the width1(N) of the transition region
of the order parameter with system size, viz., 1(N) ∼ N−1/ν . To
do this, we obtain the value of the order parameter at equidistant
points around fc(N), viz., f1,2(N) = fc(N) ± 1

2df (we have
chosen df = min[fc(N), 1 − fc(N)]). We then determine the
noise strengths K1,2(N) at which the order parameter assumes
the values f1,2(N). The width 1(N) is calculated as the difference
between K1(N) and K2(N), and least square fitting of log(1(N))
to log(N) provides an estimate of ν. The values of Kc(∞) and
c in Equation (3) can then be obtained through a least square
fit. Finally, we note that the value of the order parameter fc(N)
at the critical noise scales with system size as fc(N) ∼ N−β/ν ,
while the value of the susceptibility χc(N) at the critical noise
scales with system size as χc(N) ∼ Nγ /ν . Thus, least square fitting
of log(fc(N)) to log(N) provides the estimated value of β , while
least square fitting of log(χc(N)) to log(N) provides the estimated
value of γ . Note that for the case p = 0, the scaling is done with
respect to L(=

√
N) rather than N.

We first consider the interface between the all D and
fluctuating regimes. In Figures 5A,C we display the variation of
average fraction of cooperators 〈f (C)〉 with noise noise K for
the cases of p = 0 at b = 0.96 (a) and p = 1 at b = 1.05
(b), calculated over 103 trials, for different system sizes N. We
display the deviation of the order parameter 〈f (C)〉 from its value
fc(N) at the critical point Kc(N), scaled by Nβ/ν . In Figures 5B,D

we show the corresponding susceptibilities χ scaled by N−γ /ν .
We collapse the individual curves using finite size scaling. Thus,
in Figures 5A,B the quantities are displayed as functions of the
scaled abscissae L1/ν(K − Kc(L)), while in Figures 5C,D they are
displayed as functions of the scaled abscissae N1/ν(K − Kc(N)).
The two insets in Figure 5A show the obtained fit of Equation (3)
to the critical noise Kc(L), with the estimated value of Kc(∞)
displayed within (indicated by a black filled circle), as well as the
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FIGURE 5 | Collective behavior of a network of agents at the interface of all D and fluctuating regimes for different system sizes. Finite-size scaling results are shown

for the cases (A,B) p = 0, b = 0.96, and (C,D) p = 1, b = 1.05. (A,C) show the order parameter, viz., mean fraction of cooperators 〈f (C)〉 (averaged over 103 trials),

while (B,D) show the corresponding dependence of the susceptibility χ [obtained from Equation (2) using values of f (C) obtained over 103 trials] on K. The abscissae

of each of the panels represents the deviation of the noise K from the critical noise value Kc(N), scaled by N1/ν . The ordinate for (A,C) shows the deviation of the order

parameter from its value fc(N) at the critical point Kc(N), scaled by Nβ/ν , while the ordinate for (B,D) shows the susceptibility scaled by Nγ /ν . The curves are seen to

collapse upon using exponent values obtained from finite-size scaling, viz., (A,B) ν = 1.81± 0.14, β/ν = 0.61± 0.05, γ /ν = −0.08± 0.06 and (C,D)

ν = 1.66± 0.14, β/ν = 0.28± 0.04, γ /ν = 0.42± 0.03. The insets in (A,C) show the least-square fits of Equation (3) to Kc and log(fc) to log(N), while the insets in

(B,D) show the least-square fits of log(1c) to log(N) and log(χc) to log(N). Different symbols are used to indicate the different system sizes N for which the simulations

were carried out, namely, a purple triangle (N = 482), a pink circle (N = 642), a blue square (N = 962) and a red diamond (N = 1282). Note that for the case p = 0,

i.e., (A,B), the scaling is in terms of L rather than N.

least-square fit of log(fc(L)) to log(L), with the estimated value of
β/ν displayed. The two insets in Figure 5B show the least-square
fit of log(1(L)) to log(L), with the estimated value of ν displayed
within, as well as the least-square fit of log(χc(L)) to log(L), with
the estimated value of γ /ν displayed. Similar insets are displayed
in Figures 5C,D, which were obtained using N rather than L.

The collective behavior of the system at the interface between
the fluctuating and all C regimes is examined in Figure 6. The
panels show finite size scaling for the order parameter 〈f (C)〉 and
response function χ for the extreme cases of p = 0 at b = 0.96
(a,b) and p = 1 at b = 1.05 (c,d). The critical exponents ν, β

and γ are determined using methods that are discussed in the
previous paragraph in the context of Figure 5. In Figure 7, we
display corresponding results for the interface between the all C
and all D regimes. Figures 7A,B show the behavior for the case
of p = 0 at b = 0.94, while (Figures 7C,D) are for the case
p = 1 at b = 0.98. We observe that the estimated values of
the critical exponents β for the transition between all C and all
D are effectively zero, independent of p, while ν ∼ 1 for p = 0
and ν ∼ 2 for p = 1. For the case of the regular lattice (p = 0)
this implies that the width of the transition region simply scales

as the length L of the lattice. Such a trivial scaling behavior is
expected as this particular transition will be discontinuous in the
thermodynamic limit, with the order parameter switching from
a value equal to 0 in the all D state to a value equal to 1 in
the all C state. For finite systems, the transition is less abrupt
as the change in the value of the order parameter from 0 to 1
occurs over a transition region having finite width. In contrast,
the other transitions, namely from all D to fluctuating, and from
all C to fluctuating, are of a continuous nature, characterized by
non-trivial values for the exponents ν, β , and γ .

5. DISCUSSION

When played in a spatially extended setting the iterated
PD game provides a framework for the investigation of the
process of collective decision-making under conditions of
bounded rationality. This is because agents are denied complete
information about the entire system which would have allowed
them to compute the optimal strategy. Specifically, while the
payoff matrices are known and are identical for all agents,
individuals only have knowledge of the choice of actions of that
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FIGURE 6 | Collective behavior of a network of agents at the interface of the fluctuating and all C regimes for different system sizes. Finite-size scaling results are

shown for the cases (A,B) p = 0, b = 0.96, and (C,D) p = 1, b = 1.05. (A,C) show the order parameter, viz., mean fraction of cooperators 〈f (C)〉 (averaged over 103

trials), while (B,D) show the corresponding dependence of the susceptibility χ (obtained from Equation (2) using values of f (C) obtained over 103 trials) on K. The

abscissae of each of the panels represents the deviation of the noise K from the critical noise value Kc(N), scaled by N1/ν . The ordinate for (A,C) shows the deviation

of the order parameter from its value fc(N) at the critical point Kc(N), scaled by Nβ/ν , while the ordinate for (B,D) shows the susceptibility scaled by Nγ /ν . The curves

are seen to collapse upon using exponent values obtained from finite-size scaling, viz., (A,B) ν = 1.72± 0.25, β/ν = 0.98± 0.10, γ /ν = −0.72± 0.06 and (C,D)

ν = 1.76± 0.09, β/ν = 0.32± 0.02, γ /ν = 0.39± 0.01. The insets in (A,C) show the least-square fits of Equation (3) to Kc and log(1− fc) to log(N), while the insets

in (B,D) show the least-square fits of log(1c) to log(N) and log(χc) to log(N). Different symbols are used to indicate the different system sizes N for which the

simulations were carried out, namely, a purple triangle (N = 482), a pink circle (N = 642), a blue square (N = 962) and a red diamond (N = 1282). Note that for the

case p = 0, i.e., (A,B), the scaling is in terms of L rather than N.

subset of agents with whom they had previously interacted (i.e.,
their topological neighbors). At each round, agents take into
account the success of the actions adopted by their neighbors
in the previous round and use this information to selectively
copy an action to employ in the current round. Often this
copying is done in a stochastic setting in order to capture the
uncertainty associated with the incompleteness of an agent’s
knowledge about their environment. The copying process and
stochasticity in the decision-making are additional factors that
contribute to the deviation from perfect rationality. Here we
have used a specific stochastic update (Fermi rule) that governs
the probability with which an agent adopts the action of a
randomly chosen neighbor. The uncertainty or noise associated
with this process is quantified by the temperature K, which is
one of the key parameters in our study. Another parameter that
plays a crucial role in determining the collective dynamics is
associated with the payoffmatrix of the game, viz., the temptation
T(= b) which is the payoff received by an agent upon unilateral
defection. The value of b relative to R(= 1), i.e., the reward
payoff for mutual cooperation, governs the nature of the game.
As T decreases below R, the game changes from the Prisoner’s
Dilemma (characterized by an unique equilibrium that is given
by the dominant strategy of mutual defection) to the Stag Hunt

(characterized by multiple equilibria). The K − b parameter
plane will hence exhibit different regimes of collective dynamics
arising from the interplay between the distinct equilibria and the
noise-driven fluctuations. Thus, on moving across the parameter
plane one can expect to observe phase transitions between these
regimes.

The principal collective dynamical regimes are a pair of
absorbing states corresponding to homogeneous outcomes, viz.,
all agents cooperating (all C) and all agents defecting (all
D), as well as a fluctuating regime where each agent switches
intermittently between cooperation and defection. The existence
of absorbing states implies that the observed transitions are
necessarily non-equilibrium in nature. We observe that a regular
lattice (p = 0) is unable to support an all C state in the
PD regime (b > 1), regardless of the number of neighbors
of each agent. We note that a novel aspect of our observation
of all C in the PD regime for the case p = 1 is that
we do not consider self-interactions, which was permitted in
previous studies that reported this behavior [47, 62]. Also, while
the two-player setting allows two coexisting equilibria in the
SH regime (b < 1), we observe only a single asymptotic
state for any specific choice of parameters for finite noise.
Specifically, the all C state is the only regime that can observed
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FIGURE 7 | Collective behavior of a network of agents at the interface of the all D and all C regimes for different system sizes. Finite-size scaling results are shown for

the cases (A,B) p = 0, b = 0.94, and (C,D) p = 1, b = 0.98. (A,C) Show the order parameter, viz., mean fraction of cooperators 〈f (C)〉 (averaged over 103 trials),

while (B,D) show the corresponding dependence of the susceptibility χ (obtained from Equation (2) using values of f (C) obtained over 103 trials) on K. The abscissae

of each of the panels represents the deviation of the noise K from the critical noise value Kc(N), scaled by N1/ν . The ordinate for (A,C) shows the deviation of the order

parameter from its value fc(N) at the critical point Kc(N), scaled by Nβ/ν , while the ordinate for (B,D) shows the susceptibility scaled by Nγ /ν . The curves are seen to

collapse upon using exponent values obtained from finite-size scaling, viz., (A,B) ν = 0.90± 0.04, β/ν = −0.09± 0.04, γ /ν = 1.69± 0.12 and (C,D)

ν = 1.96± 0.20, β/ν = −0.05± 0.02, γ /ν = 1.00± 10−4. The insets in (A,C) show the least-square fits of Equation (3) to Kc and log(fc) to log(N), while the insets in

(B,D) show the least-square fits of log(1c) to log(N) and log(χc) to log(N). Different symbols are used to indicate the different system sizes N for which the simulations

were carried out, namely, a purple triangle (N = 482), a pink circle (N = 642), a blue square (N = 962) and a red diamond (N = 1282). Note that for the case p = 0,

i.e., (A,B), the scaling is in terms of L rather than N.

at low noise, while at higher noise the all D state may also
appear.

We have investigated in detail the transition between the
different regimes and characterized them through measurement
of the critical exponents using finite-size scaling. The transition
between all D and all C is discontinuous, as it involves an
abrupt change in the order parameter f (C), viz., the asymptotic
fraction of cooperating agents. On the other hand, the transition
from these absorbing states to the fluctuating regime is a
continuous one, the latter collective state being characterized
by persistent coexistence of cooperation and defection. This is
reflected in the order parameter lying in the range 0<f(C)<
1 in the fluctuating regime. It suggests that the junction of
the interfaces of the three regimes of collective dynamics (all
C, all D and fluctuating) is a bicritical point. The meeting of
two critical (continuous) transition curves with a first-order
(discontinuous) transition line is reminiscent of the situation
seen in the anisotropic anti-ferromagnetic Heisenbergmodel (see
Figure 4.6.11(A) of Chaikin and Lubensky [66]). An important
feature of our simulation approach is the choice of synchronous
(parallel) updating of the actions of the agents. We note that the
synchronous update scheme has been cited earlier as the reason

for certain non-equilibrium systems not exhibiting universality
in their critical behavior [67, 68]. Thus, this could explain
difference between the values of the critical exponents obtained
by us that do not belong to the Directed Percolation (DP)
universality class, unlike what has been reported in some previous
studies [47, 62].

In addition to investigating the phase transitions for a specific
nature of connection topology, we have studied how the collective
dynamics changes as we interpolate between a lattice and a
random network by rewiring links with probability p through
the use of the small-world network construction paradigm. Upon
considering the entire 3-dimensional p− K − b parameter space
we find that the regime in which all agents are cooperating moves
up in the K − b plane as p is increased. This helps explain
the seemingly sudden emergence of complete cooperation in the
PD regime when one changes the connection topology from a
lattice to a random network while keeping the average number of
neighbors fixed. We also show the existence of a triple point at
which the different phases corresponding to the three collective
states meet, similar to that seen in fluid systems. The location of
this point in the parameter space depends on the coordination
number (average degree) of the lattice (network), as well as p,
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and is thus related to the dimensionality of the space in which
the system is embedded.

An important extension for the future will be a comparison
of the nature of these transitions to other models of non-
equilibrium phenomena (such as the Votermodel [69]) and to see
whether the exponents map to a well-known universality class.
We note that the noise-induced uncertainty and the temptation
payoff have an intuitive interpretation in terms of the parameters
of interacting spin models, viz., temperature and external field,
respectively. Thus, a strong analogy can be drawn between
the phase diagrams of these two types of systems. Other open
questions include the nature of the coarsening dynamics and the
size distribution of the clusters of cooperating agents close to the
order-disorder transition [11, 48, 70].
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