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We present a new application of Lagrangian Perturbation Theory (LPT): the stability

analysis of fluid flows. As a test case that demonstrates the framework we focus on

the plane Couette flow. The incompressible Navier-Stokes equation is recast such that

the particle position is the fundamental variable, expressed as a function of Lagrangian

coordinates. The displacement due to the steady state flow is taken to be the zeroth order

solution and the position is formally expanded in terms of a small parameter (generally,

the strength of the initial perturbation). The resulting hierarchy of equations is solved

analytically at first order. We find that we recover the standard result in the Eulerian frame:

the plane Couette flow is asymptotically stable for all Reynolds numbers. However, it is

also well established that experiments contradict this prediction. In the Eulerian picture,

one of the proposed explanations is the phenomenon of “transient growth” which is

related to the non-normal nature of the linear stability operator. The first order solution in

the Lagrangian frame also shows this feature, albeit qualitatively. As a first step, and for

the purposes of analytic manipulation, we consider only linear stability of 2D perturbations

but the framework presented is general and can be extended to higher orders, other flows

and/or 3D perturbations.

Keywords: stability analysis, perturbation theory, fluid dynamics, Lagrangian approaches, fluid dynamics evolution

1. INTRODUCTION

Understanding the transition of fluid flows from the stable to turbulent regime is one of the
central questions in the studies of turbulence. In usual linear stability analysis one formally
expands the Navier-Stokes equation about a steady state flow assuming that the perturbations
to the background flow are small. Study of linear stability of laminar flows, such as the
plane Couette flow, commenced over a hundred years ago with the seminal work by Orr
[1] and Sommerfeld [2]. The resulting Orr-Sommerfeld equation has been studied extensively
over the decades (see Bayly et al. [3] for a review). Purely analytic investigations were not
conclusive [4–6] and many efforts were devoted to obtaining a numerical solution of this
equation. The basic idea was the same: expand the velocity in terms of an orthogonal set of
basis functions and recast the system as an eigenvalue problem. But the analyses differed in
their choices of basis functions, which resulted in different convergence rates. The numerical
results indicated that the plane Couette flow is linearly stable for all Reynolds numbers whereas
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the plane Poiseuille flow exhibits a transition to turbulence at
Re = 5772.22 [7]. Further insight into these results was obtained
by other combined numerical and analytical techniques [8–10].

However experimental results particularly for shear driven
flows, show a discrepancy with linear predictions. For example,
the plane Couette flow shows a transition to turbulence when
none is expected while the plane Poiseuille transitions to
turbulence at a Reynolds number much lower than the linear
estimate [11–13]. Various approaches have been employed to
explain this transition. One way is to computationally investigate
the full non-linear Navier-Stokes equation as was done by
Orszag and collaborators [14, 15] who showed that the energy
growth in the system corresponds to a sub-critical bifurcation.
Another is to look for finite amplitude equilibrium states near
the transition and examine their stability against two and
three dimensional perturbations [16]. A third approach is to
understand the stability properties of the perturbed base flow
[17, 18]. Further developments in the 1990s showed that the
instability can be attributed to the “non-normality” of the linear
stability operator [19, 20]. The eigenvectors of the linear operator
are not orthogonal and this allows for the possibility of transient
growth before the eventual asymptotic decay implied by the
negative eigenvalues. The non-linear term can then amplify this
growth [21–23]; see Grossmann [24] and Schmid [25] for recent
reviews.

Majority of the analytical stability analysis has been carried
out in the Eulerian frame. In this frame the velocity is the
fundamental variable and is expressed as a function of a fixed
Eulerian coordinate system (grid coordinates). On the other hand
in the Lagrangian frame, the particle position is fundamental and
is expressed as a function of a Lagrangian coordinate (usually
the initial position) and time. Eulerian measurements are easier,
whereas Lagrangian methods require sophisticated 3D particle
tracking techniques (for example La Porta et al. [26, 27]). The
choice of frame depends on the problem at hand. Much analytic
and numerical work has been done in the Lagrangian frame
in terms of analyzing particle statistics, predicting scaling laws,
structure of correlation functions etc (see for example [28] and
references therein). In the context of geophysical flows, the
Lagrangian picture has been used extensively to understand the
backreaction effect of non-linear perturbations on the mean
background flow following the formulation by Andrews and
McIntyre [29]. Formal work regarding mathematical properties
of the Lagrangian trajectories has been also performed [30]
recently. However, linear stability analysis in this frame has been
relatively rare.

In this paper, we examine the stability of laminar flows using
a perturbative scheme in the Lagrangian frame i.e., Lagrangian
Perturbation Theory (LPT). As a simple test case, we focus only
on 2D perturbations of the incompressible plane Couette flow
but the formalism is general and can be extended to other flows.
One of the motivations to use this method is that the Lagrangian
derivative includes by definition the non-linear term (v · ∇)v and
hence it ought to be able to better estimate the non-linear effect.
Furthermore, a flow which is unstable in the Eulerian frame is
also unstable in the Lagrangian frame. Thus, the investigation of
Lagrangian stability can provide an independent confirmation of

Eulerian stability. The main drawback of this scheme is that relies
on the one-to-oneness of the map between the Eulerian and the
Lagrangian frame and fails when particles cross. It is not expected
to model the turbulent regime where orbit crossing is likely to
occur.

LPT has been used in other branches of physics, most notably
in cosmology, to model the growth of non-linear structure in the
universe. The statistical theories of homogeneous and isotropic
turbulence and the growth of non-linear cosmological large scale
structure share many common features. The velocity field in the
case of turbulence and the density field in the case of cosmology
are both modeled as random fluctuations in a homogenous
and isotropic background. In turbulence, the convective term
in Navier-Stokes is the main source of non-linearity. Higher
order velocity correlation functions are the main quantities of
interest and one is interested in their scaling properties. In
cosmology, the non-linearity arises both from the convective
term in the Euler equation and gravity. Density correlations
are of importance and they are used to constrain cosmological
parameters. In the past, many perturbative techniques from
the theory of turbulence have been successfully applied to
analytically model cosmological structure. For example: Taruya
and Hiramatsu [31] use the Direct Interaction Approximation
method of Kraichnan [32–34] to address the “closure problem”
of the hierarchy of moment equations. Crocce and Scoccimarro
[35] use the techniques discussed in Wyld [36] and L’vov
and Proccacia [37] to formulate a renormalized perturbation
theory. The adhesion approximation [38], used to deal with
Lagrangian particle crossings is essentially the model of 3D
Burgers turbulence, see work by Frisch and collaborators [39, 40],
Gaite [41].

We attempt to do the reverse: use a technique from the
theory of large scale structure to understand the transition to
turbulence. In this paper, we present the first step in applying
LPT to the analysis of the incompressible Navier-Stokes equation.
For simplicity we restrict to 2D perturbations and compute
the first order solution of the scheme. The linear analysis
using LPT analytically confirms the linear Eulerian stability
result that the plane Couette flow is asymptotically stable at all
Reynolds numbers. In addition it recovers the feature of transient
growth, which in the Eulerian case is attributed to the non-
normality of the linear stability operator. To the best of our
knowledge a perturbative analysis in the Lagrangian frame has
been performed in the past by Pierson [42] in the context of
geophysical flows. But our work differs from Pierson’s because
the order counting and flow geometries are different giving rise
to a different set of equations and solutions. Pierson uses the
Lagrangian particle labels as the zeroth order solution whereas
we use the displacement due to the base flow as the zeroth order
solution. The latter approach allows one to more easily track the
dependence of the base flow making it easier to generalize.

The paper is organized as follows section 2 sets up the
equations in the Lagrangian frame. Section 3 outlines the
perturbative solution. The full solution needs to be computed
numerically, but we show analytically that at late times the
perturbations decay, confirming linear stability. Section 4
discusses the procedure to recover the Eulerian velocity from
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FIGURE 1 | Schematic representation of the 2D plane Couette flow. Two

parallel plates are a distance h apart; the steady laminar flow has a linear

profile w.r.t. the y coordinate i.e., vs.s. = {cy, 0, 0}. For the semi-bounded

case, h → ∞.

the Lagrangian velocity. Section 5 provides a discussion and
summary.

2. EQUATIONS IN THE LAGRANGIAN
FRAME

The incompressible fluid is described by the system of equations:

dv

dt
= −

∇P

ρ
+ ν∇2v, (1)

∇ · v = 0, (2)

where d/dt is the usual convective derivative d
dt

= ∂
∂t+(v·∇) and

P, ρ and ν denote the pressure, density and kinematic viscosity
respectively. In this paper, we will focus only on laminar flows,
in particular on the plane Couette flow which consists of two
parallel plates moving with respect to each other with a steady
state velocity vs.s. (see Figure 1). The velocity profile is invariant
along the flow direction (defined to be the x-axis) and varies
only in the direction perpendicular to the flow (defined to be
the y-axis). Let r = {x, y, z} denote the physical position of a
fluid element. We will restrict to 2D perturbations and hence
the fluid displacements are confined only to the xy-plane. The
system given by Equations (1) and (2) is Eulerian: the velocity is
the fundamental quantity and is usually solved in terms of the
fixed coordinate system (grid coordinates) i.e., v = vE(r), where
the subscript “E” denotes Eulerian. On the other hand, in the
Lagrangian framework, the particle position is the fundamental
quantity and is usually solved in terms of some fixed Lagrangian
coordinate and time. We choose the Lagrangian coordinate R =

{X,Y ,Z} to be the physical position at the initial time (t = 0).
Thus,

R = r(R, 0). (3)

The physical position at any later time is:

r ≡ r(R, t) (4)

and the corresponding Lagrangian velocity is:

vL = ṙ(R, t), (5)

where the subscript “L” denotes Lagrangian and “dot” denotes
the time derivative d/dt. Note that in the Lagrangian frame
the spatial variable R does not change with time. Thus, d/dt
is not represented in terms of a partial time derivative and the
convective term as is done in the Eulerian frame; instead it is the
total derivative and is also denoted as D/Dt in the literature.

Taking the curl of Equation (1) and making r the fundamental
variable, the system of Equations (1) and (2) can be equivalently
expressed as:

∇r × r̈ = ν∇2
r (∇r × ṙ), (6)

∇r · ṙ = 0. (7)

The spatial derivatives in the above equation are with respect
to the physical variable r. These have to be transformed to
derivatives with respect to the Lagrangian coordinate (see
Appendix 6.1). This yields the system:

ǫijkǫjmnǫlm′n′ r̈k,lrm,m′ rn,n′ = νǫijkǫjfgǫmf ′g′ǫldeǫqd′e′ǫlabǫpa′b′ rd,d′ re,e′
{

1

2J
ra,a′ rb,b′

(

1

2J
ṙk,mrf ,f ′ rg,g′

)

,p

}

,q

(8)

ǫilmǫjl′m′ ṙi,jrl,l′ rm,m′ = 0, (9)

where the commas denote derivatives with respect to the
Lagrangian spatial coordinate and

J = Det

(

∂ri

∂Rj

)

=
1

6
ǫijkǫlmnri,lrj,mrk,n (10)

is the determinant of the Jacobian of the transformation between
the Eulerian and Lagrangian coordinates. Note that the time
derivative commutes with the spatial Lagrangian differentiation
i.e., “dots” and “commas” commute.

3. LAGRANGIAN PERTURBATION THEORY
(LPT)

In the Lagrangian perturbative scheme, r is formally expanded as:

r(R, t) =

∞
∑

n=0

p(n)(R, t)1n (11)

where p(n) is the n-th order term and 1 is just a formal book-
keeping parameter related to the strength of the initial velocity
perturbation. The definition of the Lagrangian coordinate
(Equation (3)) is used to set the initial values of the displacement
vectors at each order. We choose:

p(0)(R, 0) = R, (12)

p(n)(R, 0) = 0 ∀ n > 0. (13)
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3.1. Zeroth Order
The background steady state solution for the plane Couette flow
is given by vs.s.E = {cy, 0, 0}. By definition, y = Y at the initial time.
Then the initial velocity in the Lagrangian frame is vL(R, 0) =

{cY , 0, 0}. Thus the particle at initial position R at t = 0 is at
R + vL(R, 0)t after time t. We take this to be the zeroth order
solution for the position vector i.e.,

p(0)(R, t) = R+ vL(R, 0)t. (14)

In the Eulerian framework, stability of the flow is examined
by perturbing around the steady state velocity in Eulerian
coordinates. The zeroth order solution in that case is always
an exact solution of the incompressible Navier-Stokes system.
It is necessary to check that the transformation to Lagrangian
coordinates preserves this property of the background solution.
This is shown in Appendix 6.2.

3.2. First Order Equations
Substitute the ansatz of Equation (11) in the system of Equations
(8) and (9) and keep terms up to first order. Using the zeroth
order solution given by Equation (14) (see Appendix 6.3 for
details), the equation for the first order displacement is:

∇R · ṗ(1) = c
(

p
(1)
Y ,X + tṗ

(1)
Y ,X

)

(15)

p̈
(1)
Y ,X − p̈

(1)
X,Y + ctp̈

(1)
X,X = ν

(

∇2
R − 2ct

∂2

∂X∂Y
+ c2t2

∂

∂X2

)

(

ṗ
(1)
Y ,X − ṗ

(1)
X,Y + ctṗ

(1)
X,X − cp

(1)
X,X

)

.

(16)

Here p
(1)
Y ,X denotes the derivative of the Y component of p(1) w.r.t.

X (partial spatial derivative). In the usual Eulerian perturbation
theory the perturbed velocity also remains divergence-free at
first (and higher) orders; this condition arises because the flow
is incompressible. This condition translated into the Lagrangian
frame at first order gives Equation (15). Note that the divergence
of the perturbed velocity in the Lagrangian frame is not zero
at any order; the non-zero terms arise from the transformation
between the Eulerian and Lagrangian coordinate. In order to
satisfy Equation (15), we assume p(1) to have the form

p(1)(X,Y , t) =

{

∂ψ

∂Y
− ct

∂ψ

∂X
,−
∂ψ

∂X
, 0

}

, (17)

where, ψ is a scalar function of Lagrangian coordinates and time
i.e., ψ ≡ ψ(X,Y , t). This gives:

ṗ(1)(X,Y , t) =

{

∂ψ̇

∂Y
− c

∂ψ

∂X
− ct

∂ψ̇

∂X
,−
∂ψ̇

∂X
, 0

}

. (18)

ψ is analogous to a stream-function, but not the same as one
encountered in the usual Orr-Sommerfeld analysis. Substituting
the form of Equation (17) in Equation (16) and simplifying gives:

d

dt

[

(1+ c2t2)
∂2

∂X2
+

∂2

∂Y2
− 2ct

∂2

∂X∂Y

]

ψ̇

= ν

[

(1+ c2t2)
∂2

∂X2
+

∂2

∂Y2
− 2ct

∂2

∂X∂Y

]2

ψ̇ . (19)

This system can be recast as:

Aψ̇ = φ, (20)

φ̇ = νAφ, (21)

where the operatorA

A = (1+ c2t2)
∂2

∂X2
+

∂2

∂Y2
− 2ct

∂2

∂X∂Y
. (22)

The solution is obtained by first solving Equation (21) for φ and
then solving Equation (20) for ψ̇ . Integrate to get ψ .

3.3. Initial and Boundary Conditions
The symmetry of the underlying flow implies periodic boundary
conditions along the X-axis for solving both φ and ψ̇ . We assume
that the X-dependent part of the solution can be separated from
the rest and represent it by a Fourier series expansion. With
this ansatz, the net system defined by Equations (20) and (21)
is second order in time and fourth order in the spatial variable Y .
Accordingly two temporal initial conditions and four boundary
conditions (two for ψ̇ and two for φ) are needed.

The perturbation velocity profile at t = 0 is specified initially.
In numerical simulations this is done by exciting specific modes
or specifying an initial power spectrum of the perturbation. Let
v0(X,Y) formally denote this initial perturbation.

ṗ(1)(X,Y , t = 0) = v0(X,Y). (23)

The definition of the Lagrangian coordinate provides the other
initial condition. Equation (13) for n = 1 is:

p(1)(X,Y , t = 0) = 0 ∀ X,Y . (24)

The boundary conditions are more involved. The symmetry of
the underlying flow implies periodic boundary conditions along
the X-axis for solving both φ and ψ̇ . The no slip condition
imposed on the wall at Y = 0 means:

ṗ(1)(X,Y = 0, t) = 0 ∀ t. (25)

These are two conditions corresponding to the X and Y
coordinate. Note that ṗ depends explicitly on ψ and ψ̇ but only
indirectly on φ. For simplicity we will assume that the flow is
semi-bounded i.e., wall is placed only at Y = 0. This allows us
to relate Equation (25) to conditions on ψ̇ . Using the definition
of ṗ(1) from Equation (18) in Equation (25) gives:

∂ψ̇

∂Y

∣

∣

∣

∣

Y = 0

= c
∂ψ

∂X

∣

∣

∣

∣

Y = 0

∀ t, (26)

∂ψ̇

∂X

∣

∣

∣

∣

Y = 0

= 0 ∀ t. (27)

Using Equation (27) and using the fact that the time derivative

commutes with the spatial derivative gives d
dt

(

∂ψ
∂X

∣

∣

∣

Y=0

)

= 0, at
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all times t. Evaluating the Y-coordinate of Equation (24) at Y = 0

using Equation (17) gives ∂ψ
∂X

∣

∣

∣

Y=0
= 0 at the initial time t = 0.

Since the time derivative is zero, ∂ψ
∂X

∣

∣

∣

Y=0
stays zero at all times.

Thus the r.h.s. of Equation (26) is zero at all times and it follows
that:

∂ψ̇

∂Y

∣

∣

∣

∣

Y=0

= 0 ∀ t. (28)

We assume periodic b.c. (Fourier decomposition) along the
Y axis for φ. Equations (27) and (28) provide the boundary
conditions for ψ̇ .

3.4. First Order Solution
We now solve for φ and ψ subject to the above conditions.
Equation (21) for φ has spatial and temporal derivatives
appearing on different sides of the equation and hence is
separable. Following the arguments in the earlier section, the
ansatz for φ is:

φ(X,Y , t) =
∑

kx ,ky

φ̃(kx, ky)e
ikxXeikyY f (t). (29)

Substituting in Equation (21), gives:

df

dt
= ν

(

−k2x(1+ c2t2)− k2y + 2ctkxky

)

f . (30)

The solution is:

f (t) = f (0)e
ν

(

−k2t+kxkyct
2−

k2xc
2t3

3

)

(31)

where k2 = k2x + k2y and f (0) is the integration constant to be set
later. The solution for φ is:

φ(X,Y , t) = f (0)
∑

kx ,ky

φ̃(kx, ky)e
ikxXeikyYe

ν

(

−k2t+kxkyct
2−

k2xc
2t3

3

)

.

(32)
One can now solve Equation (20) for ψ̇ . From the structure of
the equation one can assume that the purely temporal functions
are the same for both φ and ψ̇ . Any additional time dependence
introduced via the operator A is necessarily also a function of Y .
This gives the ansatz:

ψ̇(X,Y , t) =
∑

kx ,ky

φ̃(kx, ky)e
ikxXgky (Y , t)f (t). (33)

The subscript ky denotes the dependence of g on the parameter
ky. We will drop it in subsequent evaluations. Substituting in
Equation (20) and using Equation (32) gives:

− k2x(1+ c2t2)g(Y , t)− 2ikxctg
′(Y , t)+ g′′(Y , t) = eikyY , (34)

where the primes denote differentiation w.r.t Y . The solution
for g(Y , t) can be split into a homogenous part and a particular
solution: g(Y , t) = ghomo.(Y , t)+ gpart.(Y , t) where

ghomo.(Y , t) = C1(t)e
(−kx+kxict)Y + C2(t)e

(kx+kxict)Y (35)

and

gpart.(Y , t) = C3(t)e
ikyY , (36)

where

C−1
3 (t) = −k2x(1+ c2t2)− k2y + 2kxkyct. (37)

Satisfying the boundary conditions represented by Equations (27)
and (28) fixes C1(t) and C2(t).

C−1
1 (t) = 2kx(kx(1− ict)+ iky),

C−1
2 (t) = 2kx(kx(1+ ict)− iky). (38)

The net solution for g is

g(Y , t) = C1(t)e
(−kx+ictkx)Y+C2(t)e

(kx+ictkx)Y+C3(t)e
ikyY . (39)

ψ is obtained by integrating ψ̇ w.r.t. time:

ψ =
∑

kx ,ky

φ̃(kx, ky)e
ikxX

∫

g(Y , t′)f (t′)dt′ + C(X,Y), (40)

where C(X,Y) is the constant of integration. This can be re-
written as:

ψ =
∑

kx ,ky

f (0)φ̃(kx, ky)e
ikxXh(Y , t)+ C(X,Y), (41)

where h(Y , t) =
∫

g(Y , t)f (t)/f (0)dt. The initial condition
Equation (24) is satisfied if ψ = 0 at t = 0. This fixes C(X,Y) =
−f (0)φ̃(kx, ky)e

ikxXh(Y , t = 0) giving:

ψ =
∑

kx ,ky

f (0)φ̃(kx, ky)e
ikxX[h(Y , t)− h(Y , t = 0)]. (42)

The only quantities remaining to be determined are f (0) and
φ̃(kx, ky). This is set by the initial velocity perturbation. The
individual components φ(kx, ky) and characterize its shape and
f (0) sets the overall initial amplitude.

Late time behavior: The above prescription completely
specifies the initial conditions and the numerical solution for ψ
can be computed at any later time. Simplified analytic expressions
can be obtained at late times. Note that the terms arising from
the homogenous part of the solution are damped and oscillatory.
If the integration is over a sufficiently large time interval t >>
(ckx)

−1 they integrate to zero leaving:

ψ ∼ eikxXeikyY
∫

C3(t
′)f (t′)dt′ (43)

Substituting for C3 and f from Equations (31) and (37) gives:

ψ ∼ ψ̃(kx, ky)f (0)e
ikxXeikyY

∫

−
e−

νk2xc
2 t′3

3

k2xc
2t′2

dt′ (44)

∼
f (0)

k2xc
2t

[

e−
νk2xc

2 t3

3 + t

(

νk2xc
2

3

)1/3

γ

(

2

3
,
νk2xc

2t3

3

)

]

+ C(X,Y)

(45)
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where γ (s, z) =
∫ z
o e−z′z′s−1dz′ is the lower incomplete gamma

function.
Thus ψ and hence the velocity perturbation evolves as ∼

e−
νk2xc

2t3

3 at late times and the flow is linearly stable in the
Lagrangian frame. This late time behavior is in exact agreement
with that of Press and Marcus [10] which was obtained using
symmetry arguments for the unbounded Couette flow1. Once ψ
is known, the full first order displacement and velocity can be
computed from Equations (17) and (18).

In the above analysis we used Fourier basis functions for both
the X and Y axis in solving for φ. This allowed us to solve for
φ and ψ in succession. If the flow is bounded at some finite Y
then the boundary conditions are more complicated. One has
to choose appropriate basis functions which will satisfy them.
Although we do not provide a complete numerical solution
for this case, we briefly sketch its form in Appendix 6.4. We
note that the temporal function f (t) has a similar exponential

form; velocity perturbation evolves as ∼ e−
νk2xc

2t3

3 at late times.
Defining the Reynolds number for the bounded flow of height
h as Re = vs.s.(h) · h/ν = ch2/ν, the perturbation evolves as

∼ exp (−
h2k2xc

3t3

3Re ).

3.5. Discussion
The main temporal dependence of the Lagrangian solution
is given by the exponential term in Equation (31). All three
terms in the exponent arise from the viscous component as is
indicated by the factor ν multiplying them. The linear term
−νk2t in the exponent also arises in standard Eulerian linear
perturbation theory, but quadratic and cubic terms are new
in the Lagrangian frame. It is also interesting to note that

the solution for a small time interval can grow as eνkxkyct
2

before eventually falling off as e−νk
2
xc

2t3/3 at late times. For
sufficiently large ky, this term can dominate the dynamics.
This hints at the phenomenon of transient growth which is
believed to be responsible for the instabilities observed in shear
flow experiments. In Eulerian perturbation theory this transient
growth has been attributed to the fact that the linear stability
operator is non-normal. The stability in these cases is not
governed just by the spectrum, but by its pseudospectrum [19,
20]. However, the linear transient growth explanation has also
found critics [43]. In particular, the effect of the non-linearity
on the mean background flow plays an important role in the
transition to turbulence. Recently, Fukumoto et al. [44] used
Lagrangian approach to study the weakly non-linear stability in
the case of elliptical flows. Understanding the transient growth
and weakly non-linear regime for the plane Couette flow using
LPT is left for future work.

Stability analyses in the Eulerian and Lagrangian frame differ
in one fundamental aspect. In the former, non-linear convective
terms such as (v · ∇)v, which are second order in the velocity
perturbation are ignored whereas in the Lagrangian frame, they
get absorbed into the time derivative operator. This suggests a
potential advantage of the Lagrangian frame over the Eulerian

1We have chosen dimensional units since for the semi-bounded flow, there is no

inherent length scale to define the Reynolds number. Thus, p is a displacement and

ψ has dimensions ofm2; g ∼ m2; f ∼ t−1.

frame. However, other than the fact that we get exponents that
are quadratic and cubic in t, we do not get qualitatively different
results at linear order in the two frames. In Appendix 6.5 we
estimate the effect of the convective term in Eulerian perturbation
theory using an interative procedure. It shows qualitatively a
similar behavior as compared to the first order Lagrangian
solution, but there is no quantitative agreement nor does it
provide any additional quantitative insights into the nature of
transient growth. Finally, we must remind ourselves that there
is never a clear matching between orders in the Eulerian and
Lagrangian frame. A more quantitative comparison of the linear
LPT solution to that obtained in the Eulerian picture can be
done only when the Lagrangian to Eulerian map is inverted as is
described in the next section (see section 4). This requires further
numerical work and is beyond the scope of this paper.

4. TRANSFORMING BACK TO THE
EULERIAN FRAME

The LPT scheme outlined in the previous section solves
Equations (6) and (7) for the variable r. However, the original
system whose solution we seek is given by Equations (1) and
(2). Equation (6) is obtained by taking spatial derivatives of
Equation (1) and hence the LPT solution is insensitive to any
spatially homogenous time dependent transformation 1r(t). In
recent work, Nadkarni-Ghosh and Chernoff [45] showed that
convergence properties of the perturbative solution crucially
depend on fixing this degree of freedom, although the work was
in the context of a different physical system, namely dark matter
fluid gravitating an expanding universe. Since our aim in this
paper is to merely examine the stability, we do not explicitly
calculate the exact form of 1r(t), but outline its solution. Let
rphys denote the solution in the physical frame that satisfies the
original set and rLPT denote the solution in the calculational
frame obtained by the perturbative treatment discussed in the
previous section. The two are related as:

r = rLPT +1r(t). (46)

By substituting Equation (46) in Equation (1) (with v = dr/dt),
one obtains a differential equation for 1r(t), where the source
terms are determined by the LPT solution. The initial conditions
for 1r are specified by the transformation between the physical
frame and the calculational frame at the initial time. In the simple
case of the plane Couette flow, we can assume 1r(0) = 0 and
1ṙ(0) = 0. The net physical solution and velocity:

r(R, t) = R+ p(0)(R, t)+ p(1)(R, t)+1r(t), (47)

vL(R, t) = ṗ(0)(R, t)+ ṗ(1)(R, t)+1ṙ(t). (48)

Note however that the v is known as a function of the Lagrangian
coordinate. In order to obtain the Eulerian velocity vE(r, t) one
has to solve for the initial R of the fluid element which is located
at r at time t i.e., if r = F(R, t) then the Eulerian velocity at the
coordinate point r is:

vE(r, t) = vL(F
−1(r, t), t). (49)
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5. CONCLUSION

The main motivation behind this paper was to outline the
formalism of LPT, a technique successful in other branches of
physics, and apply it to the problem of flow stability. LPT has
been used to model non-linear growth in cosmology for over
four decades. Early work was done in the 1970’s by Zeldovich
[46] with linear order perturbation theory. In the 1990s, others
including Buchert and collaborators [47] developed higher orders
and recently Nadkarni-Ghosh and Chernoff [45, 48] addressed
issues of convergence of the theory prior to orbit crossing. To
the best of our knowledge, such techniques have been sparingly
used to investigate the stability of fluid flows. As was outlined in
the introduction, the fields of turbulence and large scale growth
of structure in the universe share a common kind of complexity.
In both, linear Eulerian stability theory is usually employed to
get analytical results and the non-linear regime is often modeled
using numerical simulations. It has often been the case that
techniques developed in one branch of science later found utility
in other seemingly unrelated branches of science. New techniques
bring new insights and new ideas come from mapping concepts
of one set of things to another. Higher order perturbation theory
is always complicated, whether in Eulerian or Lagrangian frames,
but is nevertheless useful to give analytical insights and can
sometimes be used in conjunction with simulations to improve
their efficiency.

Here, we presented a first step in this direction. We focussed
on the simplest shear flow: the plane Couette flow and restricted
to 2D perturbations. This greatly simplified the expressions.
In the Eulerian analysis, it is often enough to consider 2D
perturbations thanks to Squire’s theorem [49], which states
that an unstable 3D eigenmode for some Reynolds number
implies a unstable 2D eigenmode for a lower Reynolds number.
Unfortunately, Squire’s theorem, which is based on the Orr-
Sommerfeld analysis, need not apply to the Lagrangian analysis
so one may not be able to make conclusions based on 2D
perturbations. Furthermore, it is known that transient growth
is usually weaker in 2D than in 3D perturbations [23]. For 3D
perturbations or other types of flows the framework remains the
same; of course the form of the equations is more complicated
and their analysis will require numerics. This complexity is to be
expected, but is not formally prohibitive.

It is also possible to extend to the perturbative formalism
to the non-linear regime by keeping terms to higher order
in the displacement field in Equation (11). Alternatively, it is
possible to model the non-linear regime by repeated expansions
of the linear PT (Nadkarni-Ghosh and Chernoff [45, 48]). This
technique was initially developed in order to overcome the

fact that, independent of orbit crossing, the Lagrangian series
solution has a finite time range of validity. The basic idea is
that LPT can be thought of as a numerical finite difference
scheme with an associated time stepping criterion. Recent work
[30, 50] also addresses the issue of analyticity of Lagrangian
particle trajectories from a more formal perspective. The level
of complexity of higher order LPT is perhaps comparable
to higher order perturbation theory in the Eulerian frame.
Each mode may have an associated time scale of evolution
and their interaction may possibly complicate convergence.
This phenomenon has been demonstrated on a two time-
scale problem, where the scales are well separated: one fast
and one slow (see Berry and Shukla [51] and references
therein). It may be possible to apply LPT recursively to
get the non-linear solution of the Navier-Stokes equation,
however, issues of convergence, numerical stability etc. will
need to be considered carefully to get meaningful results.
Nevertheless, Lagrangian perturbative methods provide an
alternate way to analyze the stability of fluid flows and
the solutions could either be used in isolation or could be
potentially useful in making educated guesses for starting
numerical simulations that aim to understand the transition to
turbulence.
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