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State-of-the-art patient management frequently requires the use of non-invasive imaging

methods to assess the anatomy, function or molecular-biological conditions of patients

or study subjects. Such imaging methods can be singular, providing either anatomical

or molecular information, or they can be combined, thus, providing “anato-metabolic”

information. Hybrid imaging denotes image acquisitions on systems that physically

combine complementary imaging modalities for an improved diagnostic accuracy and

confidence as well as for increased patient comfort. The physical combination of formerly

independent imaging modalities was driven by leading innovators in the field of clinical

research and benefited from technological advances that permitted the operation of

PET and MR in close physical proximity, for example. This review covers milestones

of the development of various hybrid imaging systems for use in clinical practice and

small-animal research. Special attention is given to technological advances that helped

the adoption of hybrid imaging, as well as to introducing methodological concepts that

benefit from the availability of complementary anatomical and biological information, such

as new types of image reconstruction and data correction schemes. The ultimate goal of

hybrid imaging is to provide useful, complementary and quantitative information during

patient work-up. Hybrid imaging also opens the door to multi-parametric assessment

of diseases, which will help us better understand the causes of various diseases that

currently contribute to a large fraction of healthcare costs.

Keywords: hybrid imaging, combined imaging, instrumentation, nuclear medicine, data processing, data

corrections

INTRODUCTION

Since the discovery of X-rays by Wilhelm Conrad Roentgen in 1895 [1], non-invasive medical
imaging has become a standard tool for the diagnosis and staging of numerous diseases. X-ray
Computed Tomography (CT) and Magnetic Resonance (MR), first introduced in the early [1]
and late 1970s [2, 3], respectively, are the most widely used tomographic imaging techniques
for depicting morphological changes of the human anatomy [4–6]. Metabolic or functional
changes, which may occur without a corresponding change of anatomy, can be depicted by
functional imaging, which has proven to provide essential information for the diagnosis and staging
of many diseases. The first tomographic functional imaging modality was Single Photon Emission
Tomography (SPECT), introduced in the early 1960s [7], followed be the first Positron Emission
Tomography (PET) system in 1972 [8] and the first MR system in 1977 [3].
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By combining anatomical and functional imaging within
a single, hybrid imaging system, complementary diagnostic
information can be obtained in order to gather a comprehensive
picture of the disease. First attempts for obtaining such “anato-
metabolic images” [9] were based on sophisticated software
techniques to co-register structural and functional information
[10, 11]. In the late 1990s, imaging systems that combine two
complementary imaging techniques within the same gantry (e.g.,
PET/CT, SPECT/CT) became available [12, 13]. This approach is
known as “hardware fusion”, in contrast to the software fusion
approaches mentioned above.

This review briefly describes the developmental paths of
hardware fusion systems and discusses their future in clinical
routine and research. In section Basic Concepts of Hybrid
Imaging we describe the basic concepts of clinical and preclinical
hybrid imaging systems. Section Hybrid Imaging Technology
highlights technological advances, such as novel detectors for
PET, SPECT, and CT, time-of-flight PET and organ-specific
or total-body PET systems. In section Data handling we
discuss the data handling in hybrid imaging systems, including
data acquisition, data storage, image reconstruction and data
correction techniques. Section Joint Data Exploration focuses
on the potential of joint data exploration, and section Multi-
Center Standardization summarizes ongoing efforts regarding
the standardization of hybrid imaging systems. Finally, a
summary of the state-of-art and an outlook on future trends
in hybrid imaging is presented in section Outlook and Future
Trends.

BASIC CONCEPTS OF HYBRID IMAGING

Among the range of existing functional imaging techniques
(functional magnetic resonance imaging—fMRI, perfusion
MR imaging, magnetic particle imaging—MPI, Near-infrared
spectroscopy—NIRS, etc.), PET and SPECT present as very
sensitive methods for the non-invasive and quantitative
investigation of physiological processes at a molecular level.
Nevertheless, PET and SPECT provide mostly functional
information that may not always be directly associated with
well-defined anatomical structures. The lack of high-contrast
anatomical information in either SPECT or PET image data
(independent of the radiotracer) is a major limitation of these
imaging techniques. In order to maximize the potential of
PET or SPECT, it has been recognized that either nuclear
medicine modality could be combined with a high-resolution
anatomical imaging modality. In that regard, PET/CT and
PET/MR were developed with the aim of aligning functional
and anatomical information to improve the clinical outcome
of these studies, while SPECT/CT was conceived primarily
for the purpose of providing routinely CT-based attenuation
and scatter correction of SPECT data [14–16]. Nonetheless,
the adoption of CT-based attenuation and scatter correction
has proven to yield similar benefits for SPECT and PET
alike; these include shorter transmission times as well as
higher-quality data for post-injection transmission imaging
[17].

Clinical SPECT/CT, PET/CT and PET/MR
Systems
Figure 1 shows representative designs for SPECT/CT, PET/CT,
and PET/MR systems available on the market today, and Table 1

summarizes their most important technical specifications.

SPECT/CT
The first combined SPECT/CT design was proposed by
Mirshanov in 1987 [31]; however, it took a decade until
SPECT/CT became commercially available following some key
contributions by Blankespoor et al. [12]. Since then, SPECT/CT
has advanced rapidly and several commercial system designs are
available today.

Two facets of the design of the integrated CT components
can be identified: first, SPECT/CT systems include fully-
diagnostic CT systems with fast-rotation detectors that permit
the simultaneous acquisition of 16 or 64 detector rows, while
the X-ray tubes provide sufficient tube voltages together with
high tube current and automatic exposure control (General
Electric Discovery NM/CT 670 and the Siemens Symbia [32]).
These systems also support advanced CT capabilities such as
cardiac gating, calcium scoring and iterative reconstruction [18,
33].

On the other hand, SPECT/CT systems include rotating
SPECT components that come with adapted rotation times
and dose-optimized acquisition modes, while employing CT-
type components with limited acquisition flexibility, such as
lower tube voltages and currents (General Electric Hawkeye,
Philips Brightview-XCT [32]). The Hungarian company Mediso,
for example, offers a triple-modality SPECT/CT/PET system
(Mediso AnyScan), which combines all three modalities within
a single device (Figure 1).

Most clinical SPECT systems are based on planar detectors
consisting of two-dimensional (2D) array of photomultiplier
tubes (PMTs) attached to the back of the scintillation crystal
with en-face collimators. The location of a photon interaction
site is computed as the center-of-gravity of the position-
dependent energy signals from the PMTs according to the so-
called Anger logic [34]. In recent years, alternatives to the Anger
logic have been proposed (see section Detector Technology
for CT, SPECT, and PET). However, the comparably high
costs involved, mainly from the use of solid state detectors,
restricts adoption in smaller systems designed for special
applications, such as cardiac [35], brain [36] or pre-clinical
imaging [37].

The benefit of SPECT/CT has been proven for a wide
range of clinical applications [38–41]. The main advantages
of SPECT/CT include improved attenuation correction and
accurate anatomical allocation of the SPECT/CT findings, both
resulting in better diagnostic performance. Moreover, combined
SPECT/CT imaging has demonstrated its value particularly in the
clinical management of patients with cardiovascular disease [35].

PET/CT
The very first PET/CT prototype was proposed in 1984 at Gunma
University in Japan [5]. The two tomographs were situated next
to each other with the patient table moving sideways between the
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FIGURE 1 | Images of commercially available hybrid imaging systems for clinical use. The figure shows three SPECT/CT, five PET/CT, three PET/MR and one triple

modality SPECT/PET/CT systems. Systems include the first CTM-PET(/CT) system (Siemens mCT Flow, see section Organ-Specific System Design and Total-Body

Systems); two SiPM-based PET systems (GE Signa, uMI 780), the first digital SiPM based PET system (Philips Vereos); a BGO-based system (GE Discovery IQ) and

the first commercially available fully-integrated PET/MR (Siemens mMR). Images taken from vendor’s web pages and published with the permission of the copyright

holders (the respective vendors).

two units. The first whole-body PET/CT prototype was proposed
by Townsend and colleagues in the late 1990’s [13, 42]. Over
the years, PET/CT designs from various medical imaging system

vendors have been presented following the advances in CT and
PET instrumentation. To date, several vendors worldwide offer a
broad range of PET/CT designs.
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The success of PET/CT imaging is based on several factors:
first, an anatomical and functional whole-body survey in a
single session is logistically efficient for both the patient
and the healthcare provider. Second, due to the interplay of
complementing data streams, the diagnostic information of a
PET/CT scan is superior to that of PET or CT alone [43, 44]. A
third advantage is the possibility to use CT information to correct
PET data for photon attenuation and scatter or utilize it to correct
for partial volume effects [16].

PET/MR
An interesting alternative to PET/CT is to combine PET with
Magnetic Resonance Imaging (MR), since the range of MR
examinations is complementary to that of PET. MR imaging
reveals structural, functional and metabolic information through
the interaction of three different magnetic fields (static, gradient,
dynamic) with the protons present in the tissues [2, 3]. The
wide variety of imaging sequences, along with better soft-tissue
contrast compared to CT, renders MR an efficient diagnostic tool.
The potential of reducing patient dose by employingMR in lieu of
CT can be also considered an advantage compared to CT, mainly
for pediatric examinations and cardiac imaging.

However, the physical combination of PET andMR represents
a major technological challenge [45–48]. Conventional PET
systems use PMTs to detect the scintillation light. These PMTs
are highly sensitive to magnetic fields and, therefore, cannot
be operated inside an MR magnet. One possible approach to
overcome this issue is to spatially separate the PET and the MR
system in combination with an active shielding of the PMTs
against themagnetic field from theMR. This design was proposed
in 2010 for the first whole-body PET/MR, the Philips Ingenuity
TF PET/MR system [29]. Alternative approaches make use of
the potential of solid state photo-detectors, such as APDs or
SiPMs [49–52], see section Detector Technology for CT, SPECT,
and PET for details. This technology enables the design of
fully integrated PET/MR systems that permit the simultaneous
acquisition of PET and MR data within the same axial field-of-
view (aka co-planar FOV). Today, two integrated systems are
available commercially: the Siemens Biograph mMR [28] and the
GE Signa PET/MR [30].

Preclinical Hybrid Imaging
Animal models of human disease are the basis of many
research efforts to understand disease processes and the
development of new pharmaceuticals [53]. Similar to human
imaging, the combination of molecular imaging techniques
and CT or MR has been proven beneficial for small-animal
imaging [54]. Therefore, a large variety of dedicated small-
animal hybrid systems, has been developed since the 1990s,
with all hybrid combinations (PET/CT, PET/MR, SPECT/CT,
SPECT/MR, and PET/SPECT/MR) commercially available.
Figure 2 shows a number of dual- and triple-modality systems
for small animal imaging that are available from several vendors.
Table 2 summarizes the main system specifications. A complete
description of all the available preclinical hybrid systems is
outside the focus of this review paper, please see [46, 61–65] for
details.

Quantification in PET and SPECT
One of the most important advantages of tomographic nuclear
imaging techniques is the ability to accurately quantify the
amount of radio-labeled biomolecules (radiotracers) in vivo. In
PET, this ability is based on the properties of the positron
emission coincidence detection, which allows for correction of
photon attenuation in the emission signal by using information
gained from a separate transmission measurement [66]. As a
result, emission images represent tracer concentration in units
of Bq/mL. However, for the assessment of functional processes,
the sole knowledge of tracer concentration is not sufficient. The
tracer concentration in, for example, an organ depends on the
amount of available radiotracer, which has led to the introduction
of the standardized uptake value (SUV) in the clinical reports.
The SUV is a semi-quantitative measure that normalizes the
measured tracer concentration in tissue to a surrogate of the
available tracer concentration in arterial blood / plasma. The
most commonly used surrogate is the ratio of injected radiotracer
to patient weight. The basic expression for SUV is [67]:

SUV =
AMeasured

AInjected/BW
(1)

where AMeasured is the measured activity decay corrected to the
time of injection (kBq/mL). AInjected is the activity injected into
the patient (kBq/mL) and BW is the body weight of the patient
(kg).

As of today, SUV remains a standard metric for PET-
based diagnosis and therapy response assessment in oncology
[68, 69]. However, the SUV represents only a simplified
measure to describe a physiological process. For absolute
quantification, i.e., the determination of physiological parameters
(such as metabolic rate of glucose consumption in mmol/g/min),
pharmaco-kinetic modeling is required [68]; this entails the
knowledge of the time course of tracer concentration in arterial
blood as well as in the tissue. From that, the pharmaco-kinetic
parameters can be derived from a temporal relationship between
these functions [70]. However, both the requirement of invasive
arterial blood sampling and the complexity of kinetic modeling
are significant limitations for the routine adoption of absolute
quantification in clinical routine so far [71].

In contrast to PET imaging, and given the more challenging
approaches toward attenuation and scatter correction, SPECT
has not been considered a quantitative modality until recently.
However, methodological advances have led to an increase in
the number of papers reporting high quantitative accuracy with
SPECT [18, 72].

HYBRID IMAGING TECHNOLOGY

This section reviews the basic constituent technologies for
hybrid imaging systems. We start with a discussion on radiation
detectors used in CT, SPECT, and PET systems (section
Detector Technology for CT, SPECT, and PET). Time-of-flight
and continuous table motion PET are discussed in sections
Time-of-Flight PET and Spiral PET, Continuous Table Motion,
respectively, while in section Organ-Specific System Design and
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FIGURE 2 | Selected commercially available, dual- and triple-modality preclinical systems. Images taken from vendor’s web pages and published with the permission

of the copyright holders (the respective vendors).

Total-Body Systems we discuss organ-specific and total body
hybrid imaging systems. Finally, in section MR Technology we
provide a brief overview of the technology used in MR systems.

Detector Technology for CT, SPECT, and
PET
Themost commonly used radiation detectors for CT, SPECT, and
PET imaging systems are based on scintillator crystals, because
they are fast, they provide a high stopping power for photons
across a range of emission energies and their cost-per-volume
rate is far superior to other detector materials. A scintillation
detector consist of a crystal that produces scintillation light after
the interaction with radiation and a photo-detector that converts
the scintillation light into an electrical signal [73], which is then
processed by the electronic system.

There are several scintillating materials that are currently
being used. They can be classified into organic or inorganic
scintillators that come in solid, liquid or gaseous state. For
medical imaging applications, solid inorganic scintillators are
preferred, due to their higher density (i.e., stopping power),
which is required for high sensitivity imaging systems. They are

also characterized by the highest light output (i.e., number of
photons emitted per unit of deposited energy), which is directly
related to the energy resolution. Most PET and SPECT systems
are composed of pixelated scintillators to assign the interaction
position of the gamma photon [74], although blocks made of
continuous crystal have been proposed as well [75, 76]. Table 3
lists some of the scintillators commonly used in CT, SPECT and
PET detector systems together with their key properties [77–
81]. New scintillator materials are being developed continuously.
Some examples include scintillators based on cerium doping
of lanthanide and transition metal elements, such as LuAP:Ce,
CeBr3, LuBO3:Ce, and others based on lead (Pb), tungsten (W),
and gadolinium (Gd) [82].

Photomultiplier tubes (PMTs) represent the most common
mean to measure and detect the scintillation light emitted by the
scintillator crystal. They consist of a vacuum enclosure within
a thin photocathode layer at the entrance window and several
electrodes, called dynodes, which amplify the electrical signal
created in the photocathode by means of secondary electron
emissions. A PMT produces an electric pulse with amplitude
proportional to the number of scintillation photons that reach
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TABLE 3 | Physical properties of some scintillators used in medical imaging applications (adapted from Lewellen [77]).

NaI BGO GSO LSO LYSO LaBr3 BaF2 LuAP

Composition NaI:Tl Bi4Ge3O12 Gd2SiO5:Ce Lu2SiO5:Ce (LuY)2SiO5:Ce LaBr3:Ce BaF2 LuAP:Ce

Density (g/cm3) 6.7 7.1 6.7 7.4 7.1 5.3 4.9 8.3

Effective atomic number 51 74 59 66 60 47 54 65

Attenuation coefficient (cm−1) 0.34 0.92 0.62 0.87 0.86 0.47 0.44 0.90

Refractive index 1.85 2.15 1.85 1.82 1.81 1.88 – 1.95

Light yield (%NaI) 100 15 41 75 80 160 5 16

Wavelenght for max. Emission (nm) 410 480 430 420 420 370 220 365

Decay constant (ns) 230 300 56 40 41 25 0.8 18

Hygroscopic Yes No No No No No Slight No

TABLE 4 | Characteristics of photo-detectors used in medical imaging

applications (adapted from Lecomte [79]).

PMT APD SiPM

Active area (mm2) 1–2,000 cm2 1–2,000 cm2 1–10 mm2

Gain 105–106 102 105-106

Dynamic range 106 104 103

Excess noise factor 0.1–0.2 >2 1.1–1.2

Rise time (ns) <1 2–3 1

Time jitter (ns FWHM) 0.3 >1 0.1

Dark current <0.1 nA/cm2 1–10 nA/mm2 0.1–1 MHz/mm2

Photon detection efficiency

@ 420nm

25 60–80 <40

Bias-voltage (V) 1,000–2,000 100–1,500 >100

Power consumption 100 mW/ch 10 µW/mm2 <50 µW/mm2

Gain dependence with

temperature

<1%/◦C 2–3%/◦C 3–5%/◦C

Gain dependence with

voltage

<1%/V 10%/V 100%/V

Magnetic susceptibility Very high (mT) No (up to 9.4 T) No (up to 15 T)

the photocathode, which, in turn, is proportional to the deposited
energy.

The main advantage of PMTs as scintillation light detector
is its high amplification capability (in the order to 106–107).
On the other hand, their most significant drawback of PMTs
is their sensitivity to magnetic fields, which makes them not
suitable for use in combined PET/MR or SPECT/MR systems
[83]. A valid alternative to PMTs are solid-state detectors such
as Avalanche Photodiodes (APDs) or Silicon Photomultipliers
(SiPMs). Solid-state detectors have several inherent advantages
over PMTs (Table 4), such as high quantum efficiency, compact
and flexible shape, ruggedness, demonstrated insensitivity to
magnetic fields up to 9.4 T and potentially inexpensive mass
production [49–51]. Solid-state detectors are semiconductor
devices with a low-field depleted region where visible or near-
UV photons can create electron-hole pairs by photoelectric effect.
APDs exist as small discrete devices or as monolithic arrays,
which can be used for individual or multiplexed crystal readouts.
Silicon Photomultipliers (SiPMs) consists of a densely packed

matrix of small APD cells biased to be operated above avalanche
breakdown in the so-called Geiger mode. Since the Geiger-mode
operation yields a high gain (105–106), a multi-cell structure
can provide a proportional output for moderate photon flux by
summing the signal of all cells that have been activated. In 2009,
Philips Healthcare introduced the digital SiPMs, also known as
Digital Photon Counter (DPC), which combines a conventional
array of Geiger-mode photodiodes with a fully-digital electronic
readout system, thus, allowing timing resolutions of up to 60 ps
Full Width Half Maximum (FWHM) [84–87].

Semiconductor detectors represent the main alternative
to scintillator-based detectors in CT and SPECT imaging
systems. In comparison to scintillators the main advantage of
semiconductor detectors is the direct conversion from radiation
to an electric pulse, which avoids the degrading effects associated
with scintillation light production, propagation and conversion
to an electrical signal in the photodetector. Their use in PET
systems is much less frequent, due to their lower stopping power
for the high-energy 511 keV annihilation photons and their
higher costs.

To date, the most widely investigated semiconductors for
nuclear medicine and CT imaging are CdTe and CdZnTe (CZT).
Both offer a relatively high stopping power (similar to the one
offered by NaI:Tl scintillator crystals) and they can be operated
at room temperature. Furthermore, with the use of highly
granulated detectors high spatial, energy and time resolution
can be achieved [88]. Table 5 summarizes important properties
of some semiconductor materials used for medical imaging
applications [80].

Time-of-Flight PET
Another important technological advance for PET systems,
referred to as Time-of-Flight (ToF) PET, was made possible
with the introduction of very fast detectors. The concept of ToF
assumes that the annihilation point of two photons originating
from a single positron annihilation can be calculated from their
travel time differences [89–91].

State-of-the-art PET systems achieve time resolutions of
about 500 ps FWHM (using photo multiplier tubes) [19,
29], down to about 300 ps FWHM (using SiPMs) [22,
30], which corresponds to an uncertainty of determining
the origin of the annihilation along the Line Of Response
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TABLE 5 | Physical properties of some semiconductor detectors used in medical

imaging applications (adapted from Peterson and Furenlid [80]).

Si Ge CdTe CdZnTe

Density (g cm−3) 2.33 5.32 5.85 5.82

Attenuation @ 140 keV (cm−1) 0.02 0.72 3.22 3.07

Energy e-h pair (eV) 3.61 2.98 4.43 5

Electron mobility lifetime (cm2 V−1) 0.42 0.72 0.003 0.003

Hole mobility lifetime (cm2 V−1) 0.22 0.84 0.0005 0.00005

(LOR) of about 15 and 9 cm, respectively. With this additional
information, the SNR in the reconstructed PET images can be
improved significantly [92]. Thanks to recent improvements in
detector technology, new scintillator materials and fast digital
SiPMs photodetectors [93], ToF resolution can be significantly
improved; the latest developments in PET detector technology
aim at timing resolutions of 100 ps FWHM, or less [92,
94].

Spiral PET, Continuous Table Motion
Commercially available whole-body PET systems offer fixed
axial FOVs between 15 cm and 25 cm. To cover larger axial
areas, multiple bed positions are acquired in a step-and-
shoot protocol [95]. An alternative to the traditional step-
and-shoot approach is a continuous table motion (CTM)
during the acquisition. This technique was first proposed
in 1992 by Dahlbom et al. [95] aiming to increase the
uniformity of the sensitivity across the examined axial area.
First attempts to implement CTM in a clinical PET only
system were made as early as 2001 [96] and followed by
several implementations of CTM techniques in PET/CT systems
a few years later [97, 98]. However, it took until 2013
to implement CTM into a commercially available system
[19].

CTM offers two main advantages in comparison to step-
and-shoot acquisitions: a uniform sensitivity across the entire
axial FOV and the possibility to customize the axial scan range.
While in step-and shoot acquisitions uniform sensitivity can
also be achieved by an appropriate selection of bed overlap,
the axial scan range is restricted to a discrete number of
bed positions. Another advantage of CTM acquisitions is the
possibility of new acquisition protocols that support whole-
body parametric imaging [99]. Given the above benefits, CTM
can be regarded a particular asset in combined PET/CT
imaging.

Organ-Specific System Design and
Total-Body Systems
The development of state-of-the-art detectors allows the design
of high-resolution organ-specific hybrid systems, as well as high-
sensitivity total body PET/CT with extended axial field-of-view
(aFOV).

Although most attempts toward organ-specific imaging were
based on stand-alone PET or SPECT systems [100–103],
significant efforts in fully-integrated, organ-specific imaging

technologies were made in recent years. For example, Siemens
Healthcare did propose a “Brain PET” system that was based on
a PET ring insert for a 3 T MR system [104]. More recently, a
SiPM-based PET insert has been developed for integration with
any MR scanner [105]. Alternative efforts aim at developing MR-
compatible PET inserts for breast imaging. Initial prototypes
have been proposed [106] with promising results, and a breast
hybrid PET/RF insert is being developed based on digital SiPMs
(dSiPMs) for enhanced diagnosis of breast cancer (HYPMED
2016: http://www.hypmed.eu/). Similar approaches have been
proposed for the diagnosis of prostate and pancreatic cancer,
whereby PET and Ultrasound (US) components are combined in
an endoscope device [107].

The concept of a large axial FOV (aFOV) whole-body PET
was introduced by Crosetto in the 1990’s [108]. Following the
introduction of this concept and after several simulation studies,
the EXPLORER (Extreme Performance Long Research scanner)
consortium was set up with the task of building the world’s first
total-body PET/CT system—the EXPLORER PET/CT [109, 110].
The EXPLORER has a 200 cm aFOV based on mainstream PET
detector technology. It will consist of a total of 400,000 crystals,
thus, yielding about 100 times more LORs than a state-of-the-art
whole-body PET(/CT) system.

The elongated axial coverage of the EXPLORER type system
is expected to yield a 30–40 times increase in sensitivity
over current generation PET systems. This translates to
detecting over 40% of the counts emitted from a point
source in air located at the center of the FOV [111]. This
impressive increase in sensitivity provides a number of key
advantages: imaging at very low radioactivity levels (∼10 MBq)
[112], increased throughput from shorter examination times
and whole-body imaging that can be performed within a
single breath hold. With the total-body coverage provided
by the EXPLORER, it is also possible to perform whole-
body dynamic PET imaging, thus, avoiding temporal gaps,
which are present in current multi-bed, multi-pass imaging
protocols [113, 114]. However, efficient image reconstruction
and data handling schemes are required for the EXPLORER
system. Zhang et al. [112] proposed a quantitative image
reconstruction method that demonstrated a 7-fold increase
in the signal-to-noise ratio in comparison to current PET
systems.

Independent to the EXPLORER, a high-resolution 100
cm-aFOV PET system, called “PET20.0,” is currently being
configured in cooperation between Ghent University and
Vrije Universiteit Brussels [115]. In comparison to the PET
EXPLORER, PET20.0 has a shorter aFOV of 100 cm. However,
with monolithic detector crystals and improved positioning
methods, the spatial resolution of PET20.0 (2.0mm) is expected
to be better than the spatial resolution of the EXPLORER
(3.5mm).

In contrast to the aforementioned PET systems, a lower-cost
alternative based on resistive plate chamber (RPC) detectors has
been proposed also. In addition to being economic and reliable,
RPC-PET detectors offer good spatial-temporal resolution, high
time-of-flight resolution and high energy sensitivity. Further,
the RPC detectors allow for the accurate measurement of
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Depth-of-interaction (DOI), which renders RPC-PET parallax-
error free. These properties make RPC-detectors an excellent
option for an extended aFOV PET system [116].

MR Technology
Currently over 60% of clinical MR systems operate at 1.5 Tesla
for cost and safety reasons [3, 117]. To date, the conventional
upper limit for the field strength of clinical MR is 3 Tesla. The
growing adoption of MR systems with 7 Tesla (over 80 units
installed worldwide) could be seen to represent the new frontier
of MR imaging1. Of note, singular testing of MR systems with
10.5 T (University of Minnesota, USA) and 11.7 T (CEA, Saclay,
France) is work-in-progress [3], but it is unlikely that these
ultra-high-field MR systems will soon be employed in hybrid
imaging.

For hybrid imaging of human subjects and patients, i.e.,
combined PET and MR, actively shielded 3 T magnets have been
chosen by all manufacturers. In addition to the wide boremagnet,
fast gradient coils (slew rate 200 mT/m/ms) and dedicated RF
coils (proton frequency at 128 MHz) are required [3, 118].
Recently, maximum gradient strength of up to 300 mT/m were
realized at 3 T [119], although state-of-the-art clinical systems
operate with a gradient strength of 70 mT/m, which is sufficient
for most routine pulse sequences prescribed. Dedicated RF-
coil arrays are being developed to further improve sensitivity
and speed and to avoid costly ultra-high field magnets, thus,
rendering a suitable option for combined PET/MR systems [120]
as well as for various parallel imaging techniques [121–123].
Parallel imaging enables more efficient data sampling to either
increase acquisition speed or the amount of information collected
per time interval.

DATA HANDLING

This section provides an overview of standard data acquisition
and image reconstruction techniques for functional (SPECT,
PET) and anatomical (MR, CT) imaging modalities (section
Image Acquisition and Reconstruction in CT, PET, and SPECT
to Quantitative Data Corrections in PET and SPECT). Advanced
data processing methods are described in sections Anatomically-
Driven PET/SPECT Image Reconstruction to Outlook and
Future Trends, which make use of the anatomical information
provided by the CT or MR images to improve the PET-SPECT
quantification).

Image Acquisition and Reconstruction in
CT, PET, and SPECT
A CT image represents the tissue-dependent attenuation of
X-rays of the investigated object, thereby making use of an
X-ray source of known source strength and an opposite detector
array, both of which rotate at a fixed speed around the center
of the FOV. Alternatively, SPECT and PET images represent
the distribution of activity concentrations (per voxel) of a single
photon (SPECT) or a positron (PET) emitter.

1Siemens Healthineers (Erlangen, Germany) obtained both, CE labeling and FDA
approval for their 7 T Terra system in 2017.

There are two main categories for Image Reconstruction (IR)
algorithms in CT, SPECT and PET: analytical reconstructions and
iterative reconstructions [124–126]. Analytical approaches are
based on a closed-form equation that directly yields one solution
based on the input (Figure 3A), while iterative techniques are
based on a more accurate description of the imaging process,
thereby resulting in a more complicated mathematical solution
that requires multiple steps to achieve an image. Iterative
methods model the data collection process in a tomographic
system and search for the image that is most consistent with the
measured data (Figure 3B).

Analytical IR
The filtered-backprojection (FBP) reconstruction [127] method
is the standard method for image reconstruction of CT data.
The FBP method combines a back-projection operation, which
describes the propagation of the measured projection data into
the image domain, with a filter component that compensates
for the low-pass blurring inherent to the back-projection
approach. With the advances in CT technology, different
adaptations of the FBP algorithm (interpolation methods, 3D-
reconstruction methods: Feldkamp algorithm, etc. [128–132])
have been proposed to compensate for fan-beam and cone-beam
geometries. Likewise, exact [128, 133] and approximate [134]
3D reconstruction methods have been proposed for helical cone
beam reconstruction, which are being used in most commercial
CT systems due to their flexibility and computational efficiency
[125].

Iterative IR
Iterative methods offer improvements over the analytical
approach because they allow the noise structure of the data to be
accounted for, thus, incorporating a more realistic model of the
system. All iterative reconstructionmethods consist of three steps
that are iterated until a convergence condition ismet (Figure 3B).
First, an estimated raw data set is created from an estimated initial
image using a realistic model of the tomographic system. Second,
the artificial raw data is compared with the real data acquired by
the system in order to obtain a correction term for each bin in the
projected data. Finally, these correction terms are back-projected
and used to update the image estimate.

Iterative reconstruction methods can be classified in
deterministic and statistical approaches [135]. The most
frequently used deterministic approaches are the Algebraic
Reconstruction Technique (ART) [136], the simultaneous ART
(SART) [137], and the ordered-subsets Simultaneous Iterative
Reconstruction technique (OS-SIRT) [138]. Statistical methods
incorporate counting statistics of the detected photons into
the reconstruction process. The most well-known methods are
the Maximum likelihood expectation-maximization (ML-EM)
[139], its accelerated version by means of the ordered-subsets
expectation-maximization (OSEM) [140], and the model-
based iterative reconstruction (MBIR) [141], which is used
predominantly in multi-slice helical CT.

Image reconstruction methods in SPECT and PET are similar
to the methods employed in CT although the physical nature of
the acquired data is different. These differences relate mainly to
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FIGURE 3 | (A) Simplified view of the direct FBP image reconstruction technique: the projected data is filtered using different filter kernels and back-projected into the

image domain. Multiple projections are required to obtain the final CT image. (B) Schematic view of the iterative reconstruction process: first, a forward projection of

the initial estimated image is used to create the estimated projected data; then the estimated data is compared to the acquired raw data and a set of correction

factors is derived. These correction factors are back-projected and used to update the initial estimated image. All three steps describe an iterative loop, which is

repeated until a predefined condition is satisfied and the final image is generated. Similar reconstruction processes apply for SPECT and PET data.
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the geometrical model (e.g., CT—fan-beam, cone-beam or helical
vs. PET—cylindrical rings of detectors vs. SPECT—rotating flat
detector panels plus collimators), and, thus, to the level of
mandatory a priori data corrections.

Statistical IRs have been used extensively in SPECT and
PET due to their benefits with regards to noise reduction and
improved accuracy in the reconstructed images [124]. However,
these approaches are not yet widely adopted in clinical CT. This is
due to the numerous pre-processing and calibration steps in CT,
which change the statistical properties of the measured data; the
high spatial resolution in CT, which requires the application of
edge-preserving regularization techniques; and the large amount
of data that requires long reconstruction times. Nonetheless,
the exponential growth of computer technology and the recent
introduction of IR methods that can be implemented on a
Graphic Processing Unit (GPU, [142]) render the use of iterative
reconstruction in CT more and more a clinical commodity.

Image Acquisition and Reconstruction in
MR
MR imaging is a non-invasive tomographic imaging technique
that acquires data from the inside of an object using
radio-frequency (RF) excitation of protons that subsequently
retransmit the absorbed energy, depending on the biological
environment. Nuclear induction of RFs is performed using coils
or coil arrays, with a wavelength larger or similar to the object
dimensions (at 3 T/128 MHz the proton wavelength in biological
tissue is about 30–50 cm). In order to allow spatial encoding of
RF emission from bulk tissue, gradient coils need to be used that
limit the resonance frequency to a small portion of image space.
This is commonly performed using three independent linear
gradient fields, although other approaches, using, e.g., radial or
spiral gradients, exist. Following a combination of excitations and
measurements, imaging and contrast modules can be selected
independently, thus, making MR a highly versatile and flexible
imaging technique with excellent soft tissue contrast [143]. The
imaging module defines the details (i.e., matrix size, 2D/3D) of
the data collection from an object of a given size in a given
time (i.e., measurement time). Anatomical MR data acquisition
is performed for the purpose of high-resolution imaging (i.e.,
matrix size 256 × 256 up to 512 × 512) in a matter of a
few minutes. For functional data, reduced spatial resolution is
acceptable (i.e., 64 × 64 up to 128 × 128) in view of acquiring
3D frames within 10–50ms and with short repetition times, TR,
of 100–2,000ms over the course of several minutes.

Given the variety of pulse sequences and sequence parameters
(e.g., TR, TE, MA, FOV, etc.) data processing and analysis
pipelines, particularly in research, can be rather complex. In
addition, differences in pulse sequences and processing software
can be observed between manufacturers [118], often depending
on hardware performance or Intellectual Property (IP) issues. By
combining short (ms) magnetic pulses produced by an RF-coil
with orthogonal magnetic gradients in x, y, z; voxel localization
in 2D or 3D is enabled and the voltage induced in the receive coil
can be detected. This voltage is converted into numbers (12-bit

to 16-bit digital resolution) and visualized on a computer screen
as gray scale values/images of tissue specific image contrast.

In a mathematical framework, a Fourier transformation of the
detected signal is stored in k-space (2D-space consisting of all
frequencies and phases detected in the measured RF signal) and
then transformed into image space (x,y) via the inverse Fourier
transformation. The result is a spatially resolved magnetization
vectorM(r).

Quantitative Data Corrections in PET and
SPECT
In order to obtain quantitative and artifact-free PET or SPECT
images, several corrections must be applied to the acquired data,
which include, for example: decay correction, photon attenuation
correction (AC), scatter correction, normalization, dead time
correction and randoms subtraction (only in PET). Here we
will discuss the most widely methods used for quantitative data
corrections in PET and SPECT images, and their application in
PET/CT and SPECT/CT systems. In PET/MR, as the MR image
information is not related to the attenuation properties of the
material, novel methodologies for AC need to be developed, and
are discussed in detail in section Novel MR-Based Attenuation
Correction (AC) Methods for PET/MR. For a general overview
on the quantitative correction methods for PET we refer the
reader to Zaidi [144], while for SPECT we suggest [72, 145].

Attenuation and Scatter Corrections in PET/CT
The emitted photons in PET and SPECT are subject to
attenuation as they travel through the patient. As consequence,
the number of detected photons in each LOR will be reduced.
The most widely used method for AC in PET/CT was proposed
by Kinahan et al. [17, 146] and it is known as “bilinear”
segmentation-scaling method. Here, the PET attenuation image
is estimated by first using a threshold to separate the bone
component from the soft tissues of the CT image, and then using
separate scaling factors for the bone and non-bone component.
Alternatively, the emitted photons may be scattered in the patient
body or in the detector itself, suffering a deviation of its trajectory.
As a consequence, the LOR of a scattered event will not be
longer alignedwith the emission point. Themost extensively used
method for scatter correction in PET/CT (and PET/MR) is the
Single Scatter Simulation (SSS) method [147, 148], where only a
single scatter event is considered and multiple or out of the FoV
scatter contributions are included as scaling factors.

Attenuation and Scatter Corrections in SPECT/CT
Similar to in PET/CT, the bilinearmethod proposed for CT-based
AC can be used in combined SPECT/CT systems [18, 149].
On the other hand, the most common approach for estimating
scatter events in SPECT/CT is the measure of counts in
additional energy windows adjacent to the photopeak window.
The most common examples are the Dual Energy Window
(DEW) approach that neglects upper scatter or the Triple Energy
Window (TEW) [150–152]. More complex solutions, based on
Monte Carlo estimations of the scattered events, have been also
proposed [153, 154] and are expected to be widely used in the
near future.
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Randoms Subtraction in PET
Random events occur when two uncorrelated photons, from two
different decays, are detected in coincidence within the timing
window. The randoms events can be estimated by using a delayed
coincidence window [155].

Normalization in PET and SPECT
Because of variations in the gain of PMTs, inaccuracies/tolerances
in detector block building, physical variation of scintillator
efficiency, etc., the detection sensitivity varies from detector
to detector. Information on these variations, often known as
normalization [145, 156], is required for the reconstruction of
quantitative and artifact-free images.

Anatomically-Driven PET/SPECT Image
Reconstruction
Iterative IR methods for PET and SPECT are challenged in
two ways. First, PET, and SPECT images have an inherently
limited spatial resolution due to the physical process that
leads to the image formation. And, second, noisy images are
obtained from over-iterated reconstructions, given the lack of
an objective stopping rule in the iterative reconstruction. The
latter problem is addressed in clinical routine by using a Gaussian
post-reconstruction filter, which further degrades the perceived
resolution and contrast of the images in return for lower noise
levels.

Bayesian methods attempt to improve the quality of the
reconstructed image by taking advantage of prior knowledge
[157], that can be obtained, for example, from a co-registered
anatomical image (CT or MR). This information is known a
priori and is often incorporated into a maximum a posteriori
(MAP) objective function [158]. These reconstruction methods
lead to improvements of contrast and noise properties of the
reconstructed SPECT and PET images [159–161]. This a-priori
known anatomical information can be introduced into the
reconstruction algorithm by using probabilistic image models
[162] or similarity measures between the anatomical and the
functional images [163].

Partial Volume Correction in PET and
SPECT
The partial volume effect (PVE) is related to the limited
spatial resolution of the nuclear imaging system and affects the
quantitative accuracy of the images, particularly for small lesions
and brain structures (Figure 4). PVEs are caused by two different
phenomena: the limited spatial resolution of the imaging system
(Figure 4A) and the discrete image sampling of a continuous 3D
activity distribution (Figure 4B). PVE results in smearing of the
reconstructed activity levels and, thus, has a significant impact on
their qualitative and quantitative assessment.

A wide variety of partial volume correction (PVC) methods
have been developed in the past, most of them employing high-
resolution anatomical information from a co-registered CT or
MR image as reference [164–167]. PVC methods can be grouped
into two main categories: post-reconstruction and during-
reconstruction methods. Post-reconstruction methods include
the region-based methods, such as the recovery-coefficient

correction [168] and the geometric transfer-matrix (GTM)
method [169]. Other post-reconstruction corrections consist of
voxel-based methods, such as the popular Mueller-Gaertner
method (MGM) [170], image deconvolution [171], and the
“region-based voxel-wise correction” (RBV) [172]. Alternative
approaches for PVC operate in sinogram space, where statistical
noise is spatially uncorrelated and easier to incorporate in
the PVC procedure [173–176]. Reconstruction-based methods
enhance the spatial resolution by using the implicit PVC
compensation through system-response modeling [177]. More
advanced PVCmethodsmake use of anatomical priors during the
reconstruction process [159, 161], as described in the previous
section.

Despite the large number of PVC methodologies proposed
in the literature, explicit corrections for PVE are still far from
being fully utilized in clinical routine [178]. This is due to several
challenges associated with their automated implementation.
First, the accurate delineation of the tissues of interest from the
morphological images is a challenging task, especially in cases
where the metabolic tissue boundaries do not correspond well to
the morphologic boundaries. Second, some of the PVC methods
require segmentation of tissues into different VOIs that span
the entire cross-sectional extent of the subject, which can be
computationally intensive.

Motion Compensation
The hybrid imaging protocols for SPECT/CT, PET/CT, and
PET/MR systems often span acquisition times of several minutes
and, thus, cover multiple breath-holds or cardiac contractions.
Therefore, these hybrid images are subject to involuntary patient
motion during the acquisition [179]. The induced respiratory
motion as well as cardiac contraction introduce motion blur in
the acquired images (Figure 5), which may affect the clinical
interpretation of the acquired images [182].
Patient motion has traditionally been detected through the use

of external markers, such as ECG-electrodes for cardiac motion
or respiratory belts [183] as well as infrared/optical systems [184]
for respiration-induced motion. Recently, the use of data-driven
methods has gained substantial interest for both stand-alone
and multi-modality imaging systems [185–188]. Continuous
motion tracking can be used for motion compensation of PET
and MR images [189, 190]. In thoracic PET imaging, several
motion detection techniques have been proposed, through built-
in readout of the respiratory position and special radial-self
gating sequences, respectively [186, 187, 191]. Cardiac motion is
most commonly estimated by using cine-MR imaging and tagged
MR imaging [192].

Approaches toward respiratory and/or cardiac gating are
commonly used to reduce motion-induced blurring in PET
and SPECT images, whereby the emission data is divided
into gates that correspond to different respiratory or cardiac
phases [185]. However, a more preferable solution is to
perform motion compensation (MoCo) using the full data-
acquisition, both to reduce acquisition times and to improve
the signal-to-noise ratios in the PET or SPECT images.
Therefore, different MoCo techniques have been proposed:
MoCo before image reconstruction (projection-based methods)
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FIGURE 4 | Illustration of the partial volume effect (PVE) in medical imaging. (A) A circular source of uniform activity in a warm background region yields a measured

image in which part of signal emanating from the source is observed outside (spill-out) while part of the background signal is observed within the lesion (spill-in).

(B) The tracer distribution is sampled on a voxel grid and the contours of the voxels do not match the actual contours of the tracer distribution (Tissue-fraction).

FIGURE 5 | Effect of respiratory and cardiac motion on PET image quality. (A) Blurring effect due to cardiac motion in a patient scanned with 13N-NH3.

(B) Misalignment artifact between the PET-emission data and the corresponding MR-AC map. Misalignment artifacts like these are common in cardiac PET-imaging,

where they are known to cause false-positive findings in up to 40% of all studies [180]. Reprinted from Rausch et al. [181] with permission from Elsevier.

[193], during PET-image reconstruction—motion compensation
during image reconstruction (MCIR) [194], and after PET-
image reconstruction [195]—Reconstruction Transform Average

(RTA). Recent studies have been performed to evaluate the
performance of these three methodologies [196, 197]. More
advanced methods, that use the synergistic information derived
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from the simultaneous PET and MR data acquisition, have been
proposed to estimate [198] and to correct for motion in both
PET and MR images [189]. Other attempts focused on the
implementation of joint MoCo and PVC approaches to further
improve the PET quantification of small lesions in regions that
are susceptible to motion [199, 200].

In addition to respiratory and cardiac motion, non-periodic
and unpredictable motion can also occur during the scan.
Organ specific motion detection techniques have been developed
for head and neck examinations, through the use of frequent
3D-MR navigators, which can be employed to apply motion
compensation (MoCo) to the PET images [201].

While most of the aforementioned references were related to
PET/CT and PET/MR imaging, it is important to note that most
of these techniques are applicable also to SPECT [202], while
standard data-driven motion detection techniques for PET do
not work well for SPECT [203]. Nevertheless, the more advanced
Principal Component Analysis (PCA) and Laplacian Eigenmaps
(LE) methods for data-driven respiratory motion detection have
demonstrated good results for both PET and SPECT imaging
[203, 204].

Novel MR-Based Attenuation Correction
(AC) Methods for PET/MR
In PET/MR examinations the anatomical information used for
attenuation correction (AC) originates from the complementary
MR image information, which is not related to the attenuation
properties of thematerial [205].Moreover, the imaging of cortical
bone is a challenge in MR given the fast relaxation times of
solid materials [206]. As a consequence, it is not possible to
distinguish between cortical bone and air in most MR sequences
[207]. To address this issue, new AC methods had to be
developed, that can be categorized into three basic concepts [181]
(Figure 6): (i) segmentation-based methods, which are based on
a segmentation of MR images into different tissue classes; (ii)
atlas- or model-based approaches, which incorporate a-priory
knowledge of attenuation properties of the investigated subject
from data bases; and (iii) reconstruction-based methods, which
are based on a direct reconstruction of the attenuation and
activity values from the emission data.

At present, standard AC approaches for whole-body imaging
in clinical systems rely on segmentation-based methods [218,
219], recently also in combination with atlas-based approaches
incorporating the major bone structures into the AC [220, 221].
In general, these approaches perform reasonably well, although
for specific application their accuracy may not be sufficient
[222]. Thus, several advanced AC methods have been explored
in conjunction with various types of PET/MR examinations
[217, 223, 224]. Most of the developed AC methods are tailored
to brain examinations and provide acceptable accuracies (with
deviations below 5% respect to CT-based AC) [217]. A selection
of available MRI based AC methods for the head is given
in Figure 6. A detailed comparison of these methods can be
found in Ladefoged et al. [217]. However, for AC of body parts
other than the brain as well as for AC of non-rigid hardware
components (e.g., flexible surface coils), challenges still persist

[225, 226], such as body truncation, metal and respiratory
artifacts, MR coils attenuation, etc. Some promising solutions
for whole-body AC are currently under development, for further
details we refer the reader to Leynes et al. [223], Mehranian et al.
[225], Heußer et a. [227].

JOINT DATA EXPLORATION

This section describes main efforts toward a fully-synergistic
use of the anatomical and functional information available from
hybrid imaging examinations. In section Kinetic Modeling and
Image Derived Input Function (IDIF) we discuss the use of
image-derived input functions in the context of kinetic modeling,
in section Multi-Parametric Imaging (MPI) we provide an
overview of the multi-parametric imaging studies performed
using SPECT/CT, PET/CT, and PET/MR systems. Finally, in
sections In Vivo Disease Characterization and Image-Derived
Prediction Models we explore recent efforts in obtaining
in vivo disease characterization and image-derived prediction
models.

Kinetic Modeling and Image Derived Input
Function (IDIF)
As discussed in section Quantification in PET and SPECT,
absolute PET quantification requires the measurement
of an input function, which is typically done by means
of an arterial blood sampling. The measurement of an
arterial input function (AIF) is invasive, laborious and
stressful for the patient. Obtaining an image-derived input
function (IDIF) is a non-invasive alternative, whereby
the input function (IF) can be directly obtained by
defining a volume-of-interest (VOI) in the PET images
and using anatomical information from the MR or CT
images to segment the tissue of interest to obtain the IDIF
(Figure 7A).

The concept of an IDIF has been successfully implemented
in clinical routine examinations for cardiovascular studies, due
to the availability of large blood pools (i.e., left ventricle)
in the PET FOV [229, 230]. However in PET studies of
the brain, calculation of the IDIF is challenged by two factors:
PVE [231, 232] due to the small size of the blood pools,
and subject motion [232, 233]. Various approaches have been
proposed to extract an accurate IDIF that can be classified
into PET-only based methods [232, 234–244], stand-alone PET
and MR-based methods [228, 245, 246], and fully-integrated
PET/MR-based methods [247–249]. Combined PET/MR can
potentially allow researchers to address the aforementioned
challenges (PVE and subject motion) in an automatic way [228,
248, 249], in addition to bearing a logistic advantage. It should
be noted that various corrections (delay, dispersion, metabolite
correction) may be required to convert the measured blood IDIF
to plasma IDIF.

An IF can be employed together with a physiological model
in order to calculate physiological parameters, such as metabolic
rate of glucose (umol/100 g/min) or blood flow (ml/100 g/min)
[250]. The creation of such parametric images can be divided into

Frontiers in Physics | www.frontiersin.org 16 May 2018 | Volume 6 | Article 47

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Cal-Gonzalez et al. Hybrid Imaging: Instrumentation and Data Processing

FIGURE 6 | Illustration of popular MR-based AC methods using the same axial slice of AC maps of a patient processed with different AC methods: (A) Reference

CT-based AC; Standard methods: (B) standard DIXON-based MR-AC implemented in the Siemens mMR system (SW v. VB20), (C) UTE-based standard MR-AC for

brain examinations implemented in the Siemens mMR system (SW v. VB20); Template-based methods: (D) Koesters et al. [208], (E) Anazodo et al. [209],

(F) Izquierdo-Garcia et al. [210], (G) Burgos et al. [211], (H) Merida et al. [212]; MLAA-based methods: (I) Benoit et al. [213]; Segmentation-based methods: (J)

Cabello et al. [214], (K) Juttukonda et al [215], (L) Ladefoged et al. [216]. Figure adapted from Ladefoged et al. [217] (Courtesy of Claes N. Ladefoged, Rigshospitalet

Copenhagen, Denmark; Modified from the original image published under the creative commons license http://creativecommons.org/licenses/by-nc-nd/4.0/). Figure

published with the permission of the copyright holders (Claes N. Ladefoged).

three different methods: (i) graphical analysis, (ii) compartment
model, and (iii) reference tissue model. The first two methods
require information on the non-bound tracer-activity available in
the blood.

Graphical analyses methods include the Gjedde-Patlak
equation [251, 252], which describes irreversibly bound tracers,
such as [18F]FDG and the Logan-plot, which can be used to
describe the reversibly bound tracers [253]. Tissue-compartment
models have been proposed by Kety and Smith in 1948 for the
calculation of the blood-flow in the brain using nitric oxide
[254, 255]. Figure 7B represents a 2-tissue compartment model,
which is the most appropriate to evaluate the tracer dynamics
of FDG. Here, K1 is the influx-constant (amount of tracer
moving from the blood to the tissue), k2 the efflux-rate (amount
of tracer that returns to blood), CP the blood activity and
CT the tissue concentration over time t. Compartment 1 (C1)
represents the un-metabolized tracer and compartment 2 (C2)
the metabolized tracer (where k3 represents phosphorylation
by hexokinase and k4 dephosphorylation) [256]. Reference
tissue models are primarily employed for neurological studies

where the cerebellum or the pons is often used as reference
tissues.

Multi-Parametric Imaging (MPI)
Multi-parametric imaging (MPI) has been of interest since
the adoption of standalone PET, CT, and MR imaging, but
gained further attention following the availability of combined
imaging systems [257]. Combined, or dual-modality imaging
systems facilitate multi-faceted and complex evaluations of
tumor phenotypes, thus, promising an improved characterization
of lesions and pathophysiology [258].

In addition to the anatomical information provided by CT-
images, quantitative assessment of physiological parameters
extracted from CT-images in combination with functional PET-
images increase the diagnostic value [259]. For example, texture
analyses (TA) of the tumor heterogeneity obtained from CT-
images is frequently used in combination with functional PET
data [259]. However, the TA varies significantly with the quality
of the underlying image data, thus, limiting the reproducibility
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FIGURE 7 | Schematic view of the IDIF concept. (A) 1- PET coronal view showing the carotid arteries, 2- T1-MPRAGE image, 3- TOF MR angiography image of neck

region used to segment the carotid arteries, 4- PET coronal view co-registered with the segmented carotid arteries. (B) Illustration of the 2-tissue compartment model

commonly used for FDG tracer kinetics. Here, CP represents the blood activity and C1, C2 the activity concentration of each tissue over time t. K1, k2, etc., are the rate

constants that define the rate of tracer movement between compartments. This figure was adapted from Sari et al. [228], with permission of SAGE Publications, Ltd.

of the procedure, particularly in the context of PET imaging
[260].

Fully-integrated PET/MR systems permit the quasi-
simultaneous acquisition and evaluation of functional and
structural information of patients, and, thus, support the
multi-parametric assessment of these subjects, as shown for
the patients with neurological disorders [261]. Specifically,
the use of parametric imaging [section Kinetic Modeling
and Image Derived Input Function (IDIF)] of data from

PET/MR systems can help to shed new light on the mechanisms
that underlie structural changes in the brain through the
use of targeted radio-labeled tracers in combination with
gadolinium-based contrast enhancement of MR [262]. Likewise,
the combination of PET and MR images has proven to add
prognostic value for assessments of myocardial examinations
[189, 263, 264], while the value of the multi-parametric images
obtained for oncological studies is still under evaluation
[265].
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In Vivo Disease Characterization
Hybrid imaging plays an important role in the characterization of
several diseases [4]. Thanks to hybrid imaging lesion detection,
tissue delineation and therapy monitoring have become more
accurate [266]. Hybrid imaging has been key to cancer patient
management [267], thanks also to its ability to depict tumor
heterogeneity in a morphological and functional context [260].
Given that conventional indices, such as standard uptake value
(SUV), maximum or metabolic tumor volume (MTV) are
insufficient to characterize malignancies [268], several groups
have started to investigate the feasibility of in vivo tumor
characterization in the context of textural evaluation [269].
As a result of this initiative, first reports have appeared that
point at promising results of a quantitative assessment of
tumor heterogeneity in light of therapy response prediction
[270, 271], disease-specific survival [272] as well as prognostic
stratification [273]. Meanwhile, challenges using textural features
remain, since such calculations are highly sensitive to acquisition,
reconstruction and sample size variations [274–276]. Overall, the
need of reproducibility evaluation as well as standardization of
textural features is being acknowledged in the field [274].

The approach that considers medical images as data mining
sources for large-scale in vivo feature evaluations is called
radiomics [277]. It is expected that with the introduction
of hybrid imaging, radiomics holds the potential to lead to
automated tumor characterization [278–280] and personalized
treatment regiments in the future [281]. For more details, we
refer to the companion review by Papp et al.2 in this journal issue.

Image-Derived Prediction Models
Machine learning (ML) algorithms have the ability to identify
key patterns and characteristics of large scale datasets [282].
While the concept of ML is not new, it has only recently
become popular thanks to recent advances in computational
power and capacities that made it feasible to handle large
datasets. ML holds also a great potential for dealing with “big
data” generated by hybrid imaging methods [280]. For example,
ML has been successfully applied in hybrid imaging to predict
survival [283], treatment outcome [284], and tumor grading
[285]. Furthermore, unsupervised ML allows the identification
of breast cancer subtypes [286]. For more details, we refer to the
companion review by Papp et al.4 in this journal issue.

MULTI-CENTRE STANDARDIZATION

The performance of a SPECT or PET system is related to factors
as detector type and geometry, the properties of the built in
electronics and the implemented data processing. To characterize
the system performance, standardized procedures are published
by the National Electrical Manufacturers Association (NEMA)
[287–289]. While these standards are a good example how to
set up a basic set of measurements for the purpose of system
characterization and comparison, their results are generally
not suitable to predict the quantitative accuracy of a clinical

2Papp et al. Personalizing medicine through hybrid imaging and medical big data
analysis.

examination. Quantification in nuclear medicine examinations
is not only a matter of proper imaging system performance.
The outcome of a study is influenced also by various factors
related to imaging technology, biology and imaging physics
[290]. In PET/CT operations, for example, a significant variability
of system performance, examination protocols, and quantitative
reporting across different centers has been described [291]. A
similar variability in workflow has been observed in SPECT/CT
operations [292]. Although in SPECT/CT most readings are
based on a qualitative assessment of the tracer distribution,
significant variation in quantitative evaluations of SPECT/CT
examination can be expected from the use of CT-AC.

This variability in quantification between systems and across
sites is a major barrier to the utilization of quantitative nuclear
medicine and hybrid imaging in larger cohort and multi-
center studies [293]. To gain reproducible and statistically
significant results, e.g., for the evaluation of a new drug
or the usability of an imaging modality to assess treatment
response, a sufficient number of examinations has to be collected.
Since this is usually not possible within a single institution,
data from several centers need to be pooled following the
harmonization of imaging protocols [293]. Several guidelines
have been put forward [294–296] and specific programs, namely
the accreditation programs of the EANM or the ACR, have been
launched to sensitize the imaging community and to help address
this challenge toward pooled data evaluation.

In general, most of the factors influencing simple quantitative
readings, as SUV, are understood and—in many cases—
corrections and workarounds exist [290]. However, with the
availability of more advanced image evaluation techniques,
such as ML-based approaches employing textural parameters,
new challenges for a standardized evaluation arise. Textural
parameters are strongly influenced by the choice of image
reconstruction, voxel size and post processing steps (e.g.,
Gaussian filtering). Furthermore, the choice and definitions of
the textural analysis metrics vary widely and the evaluation
techniques differ substantially, thus, rendering a comparison
between studies almost impossible [260, 297]. The need for
standardization efforts in the field of textural analyses has been
highlighted previously [260, 298, 299], and efforts are currently
under way to address this challenge [260, 300–302].

OUTLOOK AND FUTURE TRENDS

Open Research Data, Sharing Knowledge
Clinical research is an essential building block for the concept
of efficient patient management. Research studies are generally
complex and the resulting data are valuable, not only to the
principal investigator but to society as a whole [303]. Although
today’s ubiquitous multi-modality imaging protocols produce an
abundance of qualitatively diverse data sets, there is a lack of
genuinely integrative analysis schemes that could provide added
value to a pure additive analysis.

Moreover, many researchers remain reluctant to share their
data with an expert audience [304, 305] beyond describing
them as part of peer-reviewed publications. In contrast, sharing
research data in a structured and tangible way has been shown
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to yield benefits for both, the principal investigators of the study
who generated the data as well as other experts [306] in the field
who may re-use the data with alternative evaluation algorithms
to extract new information that may subsequently benefit patient
management [303]. Obviously, a reliable anonymization or even
pseudo-anonymization of the relevant data must precede any
type of data accrual and accessibility as part of public data
repositories. Frequently, the challenges associated with prior data
handling alone render such repositories a mighty wish rather
than a useful reality.

Still, after data are properly anonymized and made available
under an open data policy, the quality of such public
Supplementary Material collections of published studies, at least,
is frequently variable, and many times the re-use of these data
is not possible [307]. The same holds true for the quality of
alternative public data archives that were shown to contain
incomplete data and data archived only partially in over 56%
cases that prevented re-use [305].

Nevertheless, future trends in multi-modality imaging point
toward the emergence of advanced database structures that
include interactive 3D visualization tools and powerful data
mining applications. The leading candidate for generating
such flexible database structures is the XML (eXtensible
Markup Language) model [308] due to its flexibility and
scalability. The flexibility of XML database structures allows
the combination of patient data with similar disease within a
common reference frame, allowingmeta-analysis of data patterns
distributed over many modalities. An example of such an
overarching effort is the National Database for Autism Research
(NDAR, http://data-archive.nimh.nih.gov/#NDAR-anchor), an
NIH-funded data repository that aims to accelerate progress in
autism spectrum disorder (ASD) research through data sharing,
data harmonization, and the reporting of research results.

Multi-Tracer PET and SPECT Imaging
Another interesting application is the multi-tracer SPECT or
PET imaging, which aims to image two or more tracers in a
single scan, simultaneously characterizing multiple aspects of
physiology and function without the need for repeat imaging
visits [309]. Tracer separation in multi-tracer SPECT takes
advantage of the differences in the spectro-temporal properties
(differences in the gamma emission energies and dynamic
behavior) of the radionuclides to identify the tracer distributions
[310, 311].

Multi-tracer PET must rely on differences in the kinetics
and/or spatial distributions of the tracers, because the energy
of annihilation photons of all tracers is 511 keV. The different
techniques to separate multiple-tracer PET may be based
on the analysis of the different radioactive half-lives of the
radionuclides [312, 313], multi-tracer compartmentmodels [314]
or generalized methods that make use of PCA to separate the
tracers [315]. A recent development in multi-tracer PET is the
combination of a pure and a non-pure positron emitter [316].
This technique relies upon detecting the auxiliary prompt gamma
in coincidence with an annihilation event in order to measure
triple-coincidence events originating from only one of the tracers,
and use the spatial distribution of the triple coincidences to

disentangle the coincidences originating from each tracer [317,
318].

Dual-Modality Tracers/Contrasts
Contrast-enhanced CT data as part of a combined PET/CT
examination provides additional, helpful information in
comparison to non-enhanced PET/CT studies [319–321]. Here,
the main benefit relates to a more precise anatomical localization
of pathologies by differentiating lesions from surrounding
structures. On the other hand, MR provides highly-detailed
non-invasive anatomical image information and excellent soft
tissue contrast [322], even in comparison to contrast-enhanced
CT.

Efforts are under way to develop dual-modality contrast in
PET/MR based on nanoparticle-based probes. Currently, super
paramagnetic iron oxide nanoparticles (SPIONs) are used that
incorporate positron emitters (e.g., 52-Mn, 59-Fe, and 124-I) and
contain small surface molecules (peptides, organic molecules)
that bind to tumor tissue [323, 324]. Although the physiological
functionality of the PET probe is limited by its attachment
to a large nanoparticle, the combination provides high spatial
resolution (MR) with high sensitivity (PET).

With the advent of hybrid microPET/SPECT/CT systems,
efforts to develop multi-tracer PET-SPECT studies have been
made. Although the scattered photons from PET preclude to
obtain useful information in SPECTwith simultaneously injected
PET/SPECT tracers [325, 326], sequential studies where the
SPECT radiotracer is injected and imaged first and the PET
radiotracer is injected and imaged in the presence of the SPECT
tracer have shown promising results [326].

Hybrid Imaging and Therapy (Planning,
Follow-Up)
One of the major developments in radiotherapy in the coming
years is the use of hybrid imaging for individualized biology-
guided radiation therapy (RT) [327]. Given the information
on the tumors provided by PET/CT and PET/MR imaging,
dual-modality PET-based imaging represents an optimal
basis for RT individualization, especially in the context of
intensity-modulated radiotherapy (IMRT). The combination of
IMRT and hybrid imaging enables the modulation of radiation
dose distribution according to local phenotypic or micro-
environmental variations in an individual tumor (aka “dose
painting”) [328, 329]. The goal of the dose painting process is to
select and delineate target volumes (and organs at risk) on the
basis of complementary diagnostic information, thus, aiding in
heterogeneous delivery of radiation within the tumor volume
by targeting radio-resistant areas. This approach is particularly
promising in treatment monitoring, by taking into account
the individual patient response and dynamically adjusting the
treatment plan based on current outcome. Given the broad
selection of established PET tracers, hybrid imaging provides
RT planning with patho-physiological information pertaining to
various molecular pathways of the tumor, including metabolism,
proliferation, oxygen delivery and consumption as well as
receptor or gene expression. Examples are [18F]FDG [330] and
[18F]/[11C]choline [331–333] as surrogates for tumor burden,
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[18F]FLT as a surrogate for proliferation (or cellular growth
fraction) [334], and hypoxia sensitive tracers such as [18F]FMISO
[335] and [64Cu]ATSM [336] as surrogates of cellular
hypoxia.

On other hand, PET monitoring is a popular method for
range verification of particle therapy: proton or hadron therapy
[337]. Positron emitters are generated inside the patient during
treatment, and therefore, by using PET imaging the delivered
dose can be indirectly measured [338, 339]. This can be done
during the irradiation (on-line or in-beam PET), which is
beneficial when imaging short-lived emitters [340], or after the
treatment in an off-site system (off-line), which can provide
better counting statistics for relatively long-lived radionuclides
[341]. In on-line systems, the integration of PET imaging
into the treatment environment poses geometric constraints,
conditioning the imaging performance. In off-line imaging, full-
ring scanners are used, offering higher detection efficiency.
However, transferring the patient to a separate system may cause
alignment errors or isotope washout [337].

Future Trends
In our opinion, future trends in the field of hybrid imaging relate
to:

1. The development of new advanced imaging technologies that
allow for more precise and accurate information, such as the
use of faster ToF detectors, the design of total-body systems
with very high sensitivity, the introduction of organ-specific
systems with very high spatial resolution and new probes for
contrast-enhanced PET/CT and PET/MR.

2. The development of advanced quantitative corrections for
hybrid imaging data. This encloses accurate techniques for
attenuation and scatter correction of PET and SPECT data in
hybrid systems, more efficient multi-modality techniques for
patient motion correction, as well as advanced and efficient
methodologies for PVC of the lower resolution functional
images.

3. The development of efficient and clinically viable multi-
modality protocols and computational frameworks that
can handle various large data cohorts. An essential feature
of such integration efforts is the quantitative description
of data properties, so that relationships in anatomical and
functional domains between complementing modalities
can be expressed in a mathematically concise way. Thus,
taking advantage of high-level integration schemes,
quantitative results are combined into data structures
that provide a consistent framework for the application
of both machine learning and advanced data mining
techniques.

CONCLUSION

Hybrid imaging is the physical combination of complementary
anato-metabolic imaging modalities, and, to date, relates mainly
to combined SPECT/CT, PET/CT, and PET/MR imaging,
which are available for clinical use and small-animal research.

Hybrid imaging is supported by continuous cross-specialty
efforts on integrating hardware components and leveraging
complementary signals for improved image quality and
quantitative accuracy of non-invasive assessments of the patients
and subjects.

To date, multiple evidence exists for the benefits of hybrid
imaging that extend from increased diagnostic accuracy, faster
examinations to cross-fertilization of know-how from formerly
distinct professional groups.

Hybrid imaging is able to provide unique information on
diseases that—when pooled in larger-scale studies—can be
utilized in a “big data” approach to design automated, computer-
based models for disease and therapy response prediction,
both of which benefit also from ongoing technological and
methodological improvements of hybrid imaging systems.

Hybrid imaging invites stakeholders from a variety of
scientific disciplines in an effort to provide diagnostic means that
help us understand the complex biological processes involved in
a disease better and, thus, help patients today and in the years to
come.
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