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Medical imaging has evolved from a pure visualization tool to representing a primary

source of analytic approaches toward in vivo disease characterization. Hybrid imaging

is an integral part of this approach, as it provides complementary visual and quantitative

information in the form of morphological and functional insights into the living body.

As such, non-invasive imaging modalities no longer provide images only, but data,

as stated recently by pioneers in the field. Today, such information, together with

other, non-imaging medical data creates highly heterogeneous data sets that underpin

the concept of medical big data. While the exponential growth of medical big

data challenges their processing, they inherently contain information that benefits a

patient-centric personalized healthcare. Novel machine learning approaches combined

with high-performance distributed cloud computing technologies help explore medical

big data. Such exploration and subsequent generation of knowledge require a profound

understanding of the technical challenges. These challenges increase in complexity when

employing hybrid, aka dual- or even multi-modality image data as input to big data

repositories. This paper provides a general insight into medical big data analysis in

light of the use of hybrid imaging information. First, hybrid imaging is introduced (see

further contributions to this special Research Topic), also in the context of medical big

data, then the technological background of machine learning as well as state-of-the-art

distributed cloud computing technologies are presented, followed by the discussion

of data preservation and data sharing trends. Joint data exploration endeavors in the

context of in vivo radiomics and hybrid imaging will be presented. Standardization

challenges of imaging protocol, delineation, feature engineering, and machine learning

evaluation will be detailed. Last, the paper will provide an outlook into the future role of

hybrid imaging in view of personalized medicine, whereby a focus will be given to the

derivation of prediction models as part of clinical decision support systems, to which

machine learning approaches and hybrid imaging can be anchored.
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INTRODUCTION

Hybrid Imaging
Patient management today entails the use of non-invasive
imaging methods. These fall into two categories: anatomical or
morphological imaging and molecular or functional imaging.
The first category includes imaging methods, such as X-
ray, Computed Tomography (CT), or Ultrasound imaging
(US) while the second category is the domain of nuclear
medicine imaging, employing techniques such as Single
Photon Emission Computer Tomography (SPECT) and
Positron Emission Tomography (PET). Magnetic Resonance
Imaging (MRI) is somewhat in between both categories for
it provides anatomical details with high visual contrast while
probing functional as well as insights into metabolic pathways
[1].

Standalone imaging methods have been used for decades in
patient diagnosis. Patients suffering from cancer, cardiovascular
diseases or neurodegenerative disease, however, have been
shown to benefit from the use of so-called combined, or
hybrid imaging methods. Hybrid imaging describes the physical
combination of complementary imaging systems, such as
SPECT/CT [2], PET/CT [3], and PET/MRI [4], all of which
provide “anato-metabolic” image information [5], that is
based on intrinsically aligned morphological and functional
data.

Routine diagnosis based on hybrid imaging employs mainly
visual data interpretation [6, 7]. There is, however, much more
information in these data that can be turned into knowledge
[8]. Extraction and analysis of simple to higher-order radiomic
features comprises a revolution in the field of in vivo disease
characterization [7]. This concept appears to be particularly
promising in the field of cancer research [8, 9], where diagnosis
of tumors is typically performed with ex vivo approaches,
such as biopsy. The drawback of biopsies—beyond being
invasive—is that they provide only information about a small
region of tumors from where the sample is taken (Figure 1).
Furthermore, the majority of tumors are heterogeneous across

FIGURE 1 | Tumor heterogeneity cannot be fully assessed with a core needle biopsy. Depending on the sampled region, histopathology results may differ, thus,

pointing to different tumor biomarkers that subsequently affect the choice of therapy.

all scales [10]. Hybrid imaging can help describe the overall
heterogeneity of tumors on both morphological and metabolic
levels [10, 11]. Therefore, hybrid imaging appears to be a key
technology to build accurate, in vivo tumor characterization
models [7].

Hybrid Imaging and Medical Big Data
Our civilization has been dealing with finding ways to handle
large-scale data sets for thousands of years [12, 13] (Figure 2).
Thanks to multiple technological advances, our approach
toward handling such data has continuously advanced, thus,
resulting in the birth of the term “Big Data” [14–16].
The so-called 4V model is one of the simplest ways to
characterize Big Data [17] through four major features: volume,
velocity, variety, and veracity (Figure 3), all of which help
describe key observations of big data during their evaluation
(Table 1).

For the past years, the volume of Big Data has grown
exponentially. Based on a 2013 estimation, 90% of the world’s
data was generated in the two prior years (2011–2013) [18]. The
Ponemon Institute estimated that 30% of all electronic data in
2012 was generated by healthcare alone [19]. According to a 2016
estimation from IBM researchers, 90% of all Medical Big Data is
imaging data [20].

Modern PET/CT and PET/MRI systems provide gigabytes
of datasets per study [21, 22]. Furthermore, hybrid imaging
combines different modalities representing different image sizes
and resolution levels, thus, it inherently results in datasets
with a high variety. Both dynamic and gated acquisitions are
subject to low sensitivity and longer acquisition times due
to velocity of events in the living body [23]. The veracity in
imaging patterns originating from varieties in imaging hardware,
acquisition protocols and image reconstructions across vendors
and system generations is understood, but remains a challenge
for a better understanding of disease and multi-center data
pooling alike [24]. All of these features eventually define
hybrid imaging data a major component of Medical Big
Data.
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FIGURE 2 | Data and Big data during the past eras of mankind [12, 13]. People were faced with the challenges of data storage from their beginning. In the modern

history of mankind big data is bound to digital data storage, distributed supercomputing as well as novel evaluation endeavors.

FIGURE 3 | The 4V model of Big Data [17] referring to Volume (data size), Velocity (speed of change), Variety (different sources and formats of data), and Veracity

(uncertainty in data).

Machine Learning for Medical Big Data
Analysis
Medical Big Data cannot be dealt with by traditional data
processing applications [25], thus, novel data handling and
evaluation approaches are required that extend beyond
conventional software processing capabilities. Machine learning
is a promising approach to deal with large-scale medical data
[26]. In light of hybrid imaging, several groups have reported
promising results for disease characterization by applying
robust machine learning methods for combined in vivo analysis
[27–29].

Furthermore, holistic approaches that combine clinical and
imaging information become more popular [30–32]. Current
technological advances support the collection of large-scale,
heterogeneous information from living organisms, not only
by hybrid imaging, but also by genomics [31], proteomics

[33], or histopathology [34]. Such highly-heterogeneous
datasets are very challenging to match, given the different
time points and frequencies they have been acquired with.
Nevertheless, the exploration of Medical Big Data is linked to
a fully-personalized patient care [14, 35]. With the emergence
of Medical Internet of Things (MIoT), real-time remote
monitoring becomes feasible [36–38]. By collecting and
combining MIoT information with hybrid imaging data, the
accuracy of predictive analytics can be increased significantly
[38] and can result in automated, Clinical Decision Support
systems (CDSS) [39] (Figure 4). This leads to healthcare
approaches that help improve patient comfort and reduce
healthcare costs as part of a fully patient-centric, personalized
medicine [40] (Figure 5). Hybrid imaging data, as a major
constituent of this process, plays a central role in personalized
medicine [41].
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TECHNOLOGY

Machine Learning
Machine Learning refers to approaches that are able to identify
and learn from patterns of datasets [7, 42, 43]. Even though
ML algorithms can differ significantly, each of them can be
characterized by the same logical structure composed of amodel,
a fitnessmeasurement, and an optimizer (Figure 6).

The model predicts new information from the data and
it is the result of any ML training process. The optimizer
generates the model in a way that its fitness value is maximized.
Specific algorithms may interpret the relationship of the model,
the fitness measure and the optimizer in different ways. In
case of unsupervised machine learning, for example, the fitness
measure can be an internal step of the optimizer by measuring,
e.g., within-cluster variances [44]. In contrast, supervised ML
approaches may consider the fitness measure as an independent
component from the optimizer [45]. Furthermore, the optimizer
and model may not be independent but represent an integrative
structure [46, 47].

There are numerous ways to categorize ML algorithms.
One way of categorization relies on the nature of the data
to be analyzed, thus, leading to the categories of supervised,
unsupervised, and reinforcement methods (Figure 7). Supervised
machine learning is a classification or regression approach
that builds a predictive model based on labeled reference data

TABLE 1 | Four major features of Big Data according to the 4V model [17].

Feature Description Challenges

Volume Size of data Storage and preservation of increasing

amount of data

Velocity Speed of change Capture and evaluate data effectively

Variety Different data forms Integration and interpretation of the data

as a whole

Veracity Uncertainty of data Measurement errors and lack of

standardization jeopardize model

establishment and repeatability

[45]. Several research groups focusing on imaging analysis
apply supervised machine learning to retrospective datasets
[7, 10, 43].

Unsupervised machine learning operates with unlabeled data,
hence, it can be characterized as a clustering approach [44].
Research groups focusing on exploratory analysis of their
imaging dataset without a ground truth, utilize unsupervised
machine learning methodologies [46, 48–50].

Reinforcement learning mimics human learning, thus, it
considers that there is an environment with a certain state
that can be changed by an ML “agent” through certain actions
[46, 51]. Whenever, an action is taken and the environment
state changes, a reward or punishment is issued back to the
agent. The goal is to build a set of actions that maximize
the reward and minimize the punishment regardless of the
current environment stage. Reinforcement learning can be
utilized in case a given environment is very complex, prone
to changes, or—generally speaking—is of unknown nature
[51]. To date, reinforcement learning is underrepresented in
the field of medical imaging with only limited applications
[46, 52].

Another type of categorizing ML methods follows the nature
of the feature extraction and analysis of the data. In this
case two main groups can be identified, such as shallow
learning methods building on engineered (or handcrafted)
features [8, 53] and deep learning (DL) methods building on
automatically comprehended, multi-layer representation of the
data [54]. Several related works utilize machine learning built
on engineered features [55–59]. These approaches typically
employ feature selection [60] in the form of feature redundancy
reduction [61] or feature ranking [8].

Deep learning is reported to generally outperform shallow
learning ML approaches, as it is able to decompose and analyse
the data on different levels of information complexity [54,
62]. Nevertheless, the true potential of DL is seen only in
view of data having a complex, hierarchical structure. This
is a challenging requirement to fulfill, and, thus, DL to date
is underrepresented in the context of tumor characterization
and hybrid imaging [62, 63]. On the other hand, DL

FIGURE 4 | Representation of Medical Big Data as the result of various information capturing systems and examinations. The variety of Medical Big Data is

manifested not only in the different structural nature of the collected data, but also in the various frequencies the given data can be collected from living beings.

Machine Learning approaches can help in automatically exploring and analyzing this highly heterogeneous dataset, resulting in predictive models. These technological

approaches can result in a Clinical Decision Support system (CDSS) that can help physicians to shift diagnosis and treatment toward precision medicine.
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FIGURE 5 | Brief introduction to the evolution of medical image interpretation and its incorporation to other Medical Big Data. From the early 1900s medical imaging

data was interpreted manually by human based pattern recognition approaches. According to current trends, Medical Internet of Things [37] together with wearable

sensors will support a real-time health status tracking. This trend will help to combine and analyse heterogeneous Medical Big Data (Holomics), which will be driven by

expert AI systems operating in the cloud.

FIGURE 6 | The general scheme of machine learning approaches. The data

serve as an input to explore and to build a decision-making model by the

optimizer. A fitness measurement characterizes the performance of the model.

This scheme can symbolize a one-step or iterative process, depending on the

given ML approach. Of note, the three modules may have different

relationships with regards to the actual ML approach.

appears to be a promising approach to synthetize artificial
CT from MRI for the attenuation correction of PET images
acquired by hybrid PET/MRI imaging systems [64]. In
addition, DL appears helpful for dealing with brain disease
characterization, such as AD/MCI based on PET/MRI data
[65, 66].

Despite the wide range of ML approaches available today,
there is no unique ML method which generally outperforms
all others [67]. Therefore, testing of multiple ML approaches
is encouraged to identify the most suitable for a particular
evaluation [68]. Table 2 provides an overview of the most
common ML algorithms applied in medical science.

High-Performance and Cloud Computing
Machine learning evaluation of Medical Big Data requires
high-performance computational resources [50]. As the
amount of data increases exponentially, progressively complex
computational architectures are needed for the storage,
processing, and analysis of the data [98].

Distributed systems, such as the Hadoop ecosystem are
potential solutions to deal with Medical Big Data [99, 100].
The foundation of the Hadoop ecosystem is Apache Hadoop
with two major functional components: the MapReduce model
for data processing and the Hadoop Distributed File System
(HDFS) for storage. MapReduce splits the input data set
into independent pieces processed in parallel by map tasks,
while the “reduce” component combines the outputs of the
map tasks afterwards [101]. The HDFS is a fault-tolerant
distributed file system designed to run on low-cost hardware,
which is suitable for medical image data applications [102].
Hadoop has been applied to address numerous tasks in
medical imaging, such as parameter optimization for lung
texture segmentation, content-based medical image indexing,
and 3D directional wavelet analysis for solid texture classification
[99, 103, 104].

Next to Apache Hadoop, several distributed high-
performance computing platforms are available as well [99, 100].
One example is the open-source Apache Spark [105, 106], which
has a better ability of computing compared to Hadoop [107, 108].
It has been shown that Spark is up to 20 times faster than Hadoop
for iterative applications, it accelerates a real-world data analytics
report by a factor of 40 and it can be used interactively to scan
a 1 TB dataset within a few seconds [109]. These characteristics
enable Spark to serve as an efficient tool for medical imaging
data analysis tasks, such as the computation of voxel-wise local
clustering coefficients of fMRI data [107].

To date, major industry leaders provide cloud storage with
the combination of cloud ML engines to address the need of
Big Data evaluation [15, 110]. These systems are potentially
ideal frameworks for large-scale hybrid imaging data evaluation
[111, 112]. An example service is the Google Cloud Platform
used by both academic research institutions and by a variety of
healthcare companies. Here, the Google CloudMachine Learning
Engine can be utilized to submit anonymized MRI scans to an
ML-enabled AI platform to help diagnose prostate cancer [113].
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FIGURE 7 | Three main types of machine learning based on the nature of the input data or environment: supervised, unsupervised and reinforcement learning and

their main properties by the means of data, fitness, and model.

Similar to the Google Cloud Platform, Amazon provides a
suite of services called the Amazon Web Services including
cloud computing and machine learning tools. The Amazon
Elastic Compute Cloud, for example, is an Infrastructure as a
Service which offers the possibility to rent virtual computers. It
is being used to develop a technology for supporting radiologists
to identify abnormalities in medical images across different
modalities as well as for providing a blood flow imaging solution
that enables doctors to render MRI scans in multi-dimensional
models and better diagnose patients for cardiovascular diseases
[114, 115]1.

Another package for cloud-based services is Azure provided
by Microsoft. Azure has been employed for medical image
classification using algorithms, such as support vector machines
and k-nearest neighbors [116, 117]. A few machine learning
examples for medical imaging analysis utilizing Azure are
covered in Criminisi [118].

DATA HANDLING

Data Preservation and Reproduction
Beyond technical considerations of evaluating large-scalemedical
data, persistent storage is a challenge for various medical
institutions. To date, hospitals that generate and collect medical
data are also responsible for archiving the data [119]. The
process is further defined in the triangle of legal obligations,
practical considerations as well as financial resources. The
time period a hospital needs to archive patient data varies
with the country, however, mandatory preservation periods
are generally between 10 and 100 years [120]. However, these
storage periods are much longer than the estimated storage

1AWS Case Study: Arterys. Available online at: https://aws.amazon.com/de/
solutions/case-studies/arterys/

durability of memory technologies available today (Table 3).
Medical imaging related research, particularly research involving
longitudinal and/or large-scale population analysis, maymandate
data sets that have been acquired over decades. In the context of
hybrid imaging, state-of-the-art PET/CT and PET/MRI systems
provide large datasets, as a raw PET list mode data may grow
over several gigabytes of storage space, while a multi-slice CT
may correspond to ∼2 gigabytes of data [21]. Furthermore,
a wide range of MRI sequences can be acquired as part
of a PET/MRI study [22], that further add to the issue of
dealing with large data. Since PET raw data (aka list mode
files) is considerably large, it is frequently not archived at all
[122]. This prevents scientists from retrospectively optimizing
image quality by new image reconstruction approaches and
eventually to standardize protocols for accurate, population-
wide evaluations. Since the required data preservation for both
routine and research purposes is not feasible by conventional
tools, there is an urgent need to shift focus toward more
persistent solutions. As an example, cloud storage and evaluation
approaches [111, 112] can support convenient data sharing
and repeatability of published results across various research
groups.

Data Sharing
Clinical research is an essential building block for the concept
of efficient patient management. Research studies are generally
complex and the resulting data are valuable, not only to the
principal investigator but to society as a whole [123, 124].
Nonetheless, many researchers remain reluctant to share their
data with an expert audience [125, 126] beyond describing
them as part of peer-reviewed publications. In contrast, sharing
research data in a structured and tangible way has been shown
to yield benefits for both the principal investigators and other
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TABLE 2 | Overview of machine learning algorithms and example uses in medical imaging.

Algorithm name Learning type Feature extraction Application examples

Artificial neural network Initially supervised but can be unsupervised, or reinforcement Shallow/Deep [69–73]

Bayesian network Supervised or unsupervised Shallow/Deep [74, 75]

Boltzmann machine Supervised or unsupervised Shallow/Deep [76, 77]

Convolutional neural networks Initially supervised but can be unsupervised, or reinforcement Shallow/Deep [47, 70, 78]

Decision tree Supervised Shallow [79, 80]

Deep belief network Supervised or unsupervised Deep [81]

Dimensionality reduction Mainly unsupervised but can be supervised Shallow [82, 83]

Genetic algorithm Supervised/unsupervised/reinforcement Shallow [84–86]

Hidden Markov models Supervised or unsupervised or reinforcement Shallow [87, 88]

Hierarchical clustering Unsupervised Shallow [89, 90]

K-means clustering Mainly unsupervised but can be supervised Shallow [91]

K-nearest neighbors Supervised Shallow [71, 80]

Linear regression Supervised Shallow [80]

Logistic regression Supervised Shallow [71, 92, 93]

Markov decision process Reinforcement Shallow [94]

Markov random field Semi-supervised Shallow [88, 95, 96]

Naive Bayes Mainly supervised but can be unsupervised Shallow [71, 97]

Perceptron Supervised Shallow [78]

Random forest Mainly supervised but can be unsupervised Shallow [71, 72]

Self-organizing map Supervised or unsupervised or reinforcement Shallow [73, 86]

Support vector machine Mainly supervised but can be unsupervised or reinforcement Shallow [71, 72]

TABLE 3 | Estimated lifespan of some media storage technologies according to

Morgan [121].

Media Maximum estimated lifespan (years)

CD, DVD, Blu-Ray 2–5

Hard disk 3–5

Flash storage 5–10

Magnetic tape 10

M-Disc 1,000 (theoretical)

experts in the field who may re-use the data with alternative
evaluation approaches to extract new information that may
subsequently benefit patient management [124]. Journals, like
“Science” or “Nature” expect data to be made public and,
therefore, provide the necessary means [124]. However, the
quality of public supplementary material collections of published
studies is variable, and frequently the re-use of these data is not
possible [127]. The same holds true for the quality of alternative
public data archives that were shown to contain incomplete data
and data archived only partially in over 56% cases that prevented
re-use [126].

In the light of medical imaging and hybrid imaging in
particular, a wide range of imaging data from different fields is
already available for researchers worldwide (Table 4). Some of
these databases are dedicated to the collection and sharing of very
heterogeneous data from different modalities, various diseases,
and different body regions.

One such data source is The Cancer Imaging Archive (TCIA).
TCIA is an open-access repository, funded by the National
Cancer Institute, containing several million medical images from
various cancer types2. The data is partitioned into collections
based on characteristics, such as cancer type or affected region in
common. Apart from supplying users with massive amounts of
high quality data, it also provides an application programming
interface (API) for automated data access. EURORAD, which
is operated by the European Society of Radiology also includes
but is not limited to cancer images. Nevertheless, it mainly
focuses on the training of radiologists and provides no automated
data access3 Open-i is a service hosted by the National Library
of Medicine (NLM) [130]. It provides a search engine and
a download API for accessing images from PubMed Central
articles, NLM History of Medicine collection and other sources.
Nevertheless, not all images which can be retrieved using open-i
are free to use. Anothermajor source for in vivomedical images is
the National Biomedical Imaging Archive (NBIA) which includes
clinical and genetic data associated to the images [136].

In addition to these more general data repositories, there
are many specialized data sources for medical images. The
Open Access Series of Imaging Studies (OASIS) for example,
includes comparative data for patients with Alzheimer’s disease
and normal physiological conditions [132]. In addition to
neuroimaging data, it also includes clinical and biomarker

2Cancer Imaging Archive. Available online at: http://www.cancerimagingarchive.
net/.
3Eurorad: Radiological Case Database. Available online at: http://www.eurorad.
org/.
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TABLE 4 | Selection of online medical image sources.

Repository name Content Website

The cancer imaging archive (TCIA) [128] Multiple modalities; Cancer; Sometimes additional

non-imaging data; API

http://www.cancerimagingarchive.net/

EURORAD [129] Multiple modalities; Various pathological and

physiological states and regions

http://www.eurorad.org/

Open-I (search engine) [130, 131] Multiple modalities; Various pathological and

physiological states and regions; API

https://openi.nlm.nih.gov/

Open Access Series of Imaging Studies (OASIS) [132, 133] MRI and PET; Neuroimaging; Normal aging and cognitive

decline

http://www.oasis-brains.org/

Johns Hopkins Medical Institute repository [134, 135] MRI; Neuroimaging; Human, mouse and monkey http://lbam.med.jhmi.edu/

National Biomedical Imaging Archive (NBIA) [136] Multiple modalities; Various pathological and

physiological states and regions; API

https://imaging.nci.nih.gov/

SICAS Medical Image Repository (SMIR) [137] Multiple modalities; Various pathological and

physiological states and regions; API

https://demo.smir.ch/

Duke Center for in vivo Microscopy [138] Multiple modalities; Various pathological and

physiological states and regions

http://www.civm.duhs.duke.edu/

Spine Web [139] Multiple modalities; spinal imaging http://spineweb.digitalimaginggroup.ca/

OpenNEURO [140] fMRI; Neuroimaging https://openneuro.org/

Alzheimers Disease Neuroimaging Initiative (ADNI) [141] MRI and PET; Neuroimaging; Alzheimer’s disease http://adni.loni.usc.edu/

information. Another specialized data base is the medical image
repository of the Johns Hopkins Medical Institute [134]. It
includes MRI images of human, mouse and monkey brain
images. Further data sources for medical images can be found in
Table 4.

JOINT DATA EXPLORATION

To date, in vivo disease characterization with hybrid imaging
data—especially in the light of oncological applications—is
performed mainly by analyzing engineered features [63, 129].
This process is widely referred to as “Radiomics,” even though,
this kind of approach was originally applied to morphological
images only [8]. In an early publication “Radiomics” was
defined as “the high-throughput extraction of large amounts
of image features from radiographic images” [128]. For the
sake of consistency, we employ the term “radiomics” in the
context of in-vivo feature analysis, including those derived from
functional and hybrid imaging. However, we introduce a different
term, “Holomics,” to address combinations of imaging and non-
imaging data, and that we consider more appropriate than the
term “imiomics,” as suggested in Strand et al. [142] for the
combined analysis of imaging and—omics data.

Radiomics
In general, any radiomics-based exploration of imaging data
requires object delineation, followed by feature extraction and
evaluation [128, 143, 144]. Extracted features cover the range
of first to higher order, wavelet, Laplacian, and fractal features
[6, 8, 145, 146]. Some of these features—referred to as textural
features—characterize certain spatial patterns in images. The
concept of textural evaluation in medical images has been first
introduced by Haralick et al. [147] in the 1970s. At the time
neither the image quality nor the computational capacity was

sufficient to operate with textural features. Thanks to recent
advances in imaging and computational fields, several groups
have investigated the potential of textural features in light of
in vivo disease characterization [8, 28, 56, 148–150].

Routine clinical evaluation of PET images relies on the
statistical analysis of Standardized Uptake Values (SUV) [151].
In case of oncology imaging, semi-quantitative variants, such as
SUV max, SUV peak [152–154], total lesion glycolysis (TLG)
[155, 156], and metabolic tumor volume (MTV) [157, 158]
are used to differentiate non-/malignant lesions. However, these
values are insufficient to describe the stage of a tumors or to
account for tumor heterogeneity [6]. Instead, textural features
by their nature, appear to be ideal candidates for metabolic
tumor heterogeneity analysis [159, 160]. Accordingly, promising
results in the field of treatment outcome [161], therapy response
[156, 162], survival [163–166] as well prognostic stratification
[167] have been proposed. Several studies perform conventional
correlation analysis [156, 160, 165, 168, 169], as well as robust
machine learning evaluation [10, 170, 171] of textural features to
characterize tumors in vivo. An oncological review of PET-based
radiomic approaches concluded that it is a promising method
for personalized medicine as it can enhance cancer management
[172].

State-of-the-art ML approaches and hybrid imaging appear
to be synergistic partners [7, 63, 173]. There is increasing
evidence for in vivo tissue characterization with both PET/CT
and PET/MRI hybrid imaging [11, 146, 174, 175]. In one study,
PET, CT, and PET/CT features were used to predicting local
tumor control in head and neck cancer [129] by multivariate
cox regression with a confidence interval (CI) CICT and
CIPET/CT of 0.73, however, CT-based radiomics overestimated
the probability of tumor control in the poor prognostic groups.
Another study found a correlation of PET and CT features
using lymph node density [176] and concluded that CT density
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measurements together with PET uptake analysis increases the
differentiation between malignant and benign LN. Disease-free
survival prediction in non-small cell lung cancer patients can be
performed in PET/CT images with an area under the receiver
operator characteristic curve (AUC) of 0.68 when employing
combined PET/CT features [177]. Another group combined
PET uptake measures with CT textural features for radiation
pneumonitis diagnosis [178]. They reported an AUC increase of
0.04–0.08 in the combined model compared to single-modality
classifiers (AUC 0.71–0.81).

Outcome prediction of locally advanced cervical cancer based
on PET/CT and MRI is a topic of ongoing research [174].
The combined analysis of PET and ADC features resulted in
an accuracy of 94% for predicting recurrence and 100% for
predicting lack of loco-regional control compared to clinical
parameters (51–60% accuracy). Combined PET and CT analysis
was used to predict FMISO uptake in head-and-neck [179].
The group identified that the combined PET and CT features
provide the highest AUC (0.79) for the prediction of tumor
hypoxia as evaluated by FMISO PET. Joint fusion features can
also be used, for example, to predict lung metastasis in soft-
tissue sarcomas [57]. Here, the best performance was achieved
with a combined PET/T1 and PET/T2FS textural analysis
resulting AUC 0.984, which was significantly higher than that
for single modality approaches. A systematic review focusing on
oncological applications of radiomics approaches is presented in
Avanzo et al. [175].

Holomics
There are several studies that go beyond the utilization of
hybrid imaging and incorporate additional non-imaging data for
increased predictive accuracy [180–182]. This kind of approach
successfully increased risk assessment of head-and-neck cancer
built on in vivo and clinical variables with utilizing random
forest ML approaches [29]. Independent cross-cohort validation
revealed an AUC of 0.69 and a CI of 0.67 for predicting loco-
regional recurrences, while distant metastases were predicted
with an AUC of 0.86 and a CI of 0.88.

Associations between tumor vascularity, VEGF expression
and PET/MRI features in primary clear-cell-renal-cell-carcinoma
have been discussed in Yin et al. [32]. The authors reported
the highest correlation of tumor microvascular density and
PET/MRI features compared to PET or MRI features alone.
Correlation of [18F]FDG PET textural features with gene
expression in pharyngeal cancer was performed in Chen et al.
[183]. The study demonstrated that the overexpression status
of vascular endothelial growth factor (VEGF) together with
PET features was prognostic, thus, allowing to better stratify
treatment response compared to PET-only parameters. Late
life depression classification and response prediction with ML
based on clinical and imaging features was presented in
Patel et al. [30]. The study revealed an accuracy (ACC) of
87% for the classification of late-life depression and ACC of
89% to predict treatment response. Combined ML analysis
of in vivo, ex vivo, and patient demographics features to
predict 36-months glioma survival was presented in Papp et al.
[184]. Comparison of the combined model (M36IEP) with the

ex vivo and patient (M36EP), imaging and patient (M36IP),
and imaging-only (M36I) models revealed an AUC of 0.9, 0.87,
0.77, and 0.72, respectively in a Monte Carlo cross-validation
scheme.

Holomics also introduces several technological challenges.
The “curse of dimensionality” refers to the phenomenon that
by increasing the dimension of a data, the volume of feature
space increases, hence the data becomes sparse [185]. Therefore,
it is suggested that the number of data points shall increase
exponentially in order to derive accurate models from high
dimensional data. To overcome this issue, several dimensionality
reduction methods are applied to the combined analysis of
imaging and non-imaging data [186]. Similarly, feature selection
methods, such as pre-filtering [8, 61] or wrapper and embedded
approaches [187–189] can be utilized.

STANDARDIZATION

Machine learning approaches operating over medical big data
require a large amount of standardized data to generate accurate
predictive models [10, 63]. Nevertheless, access to standardized
multi-center data in the field of hybrid imaging is a challenge [54,
63] which necessitates multi-center standardization efforts [7].
Standardization of hybrid imaging techniques through patient
preparation, imaging protocols as well as data evaluation is
already of general interest in the field of medical imaging [22, 28,
55, 190–193].

Imaging Protocol
Functional imaging through SPECT and PET aim at the
assessment of physiological parameters, as metabolic activity or
perfusion. However, these parameters depend on various factors,
and, thus, are unstable. For example, the uptake of glucose—
and concomitantly—[18F]FDG in brown fat is dependent on
its activation, which seems to be triggered by the surrounding
temperature [194]. The uptake of glucose in the myocardium
depends on the current metabolic pathway of the heart. The
heart gains its energy almost exclusively from carbohydrates
(primarily glucose) or from metabolizing fatty acids, whereas the
pathway used depends on the availability of these substances,
and, therefore, on the diet the patient followed prior to the
examination [195]. As a consequence of these variabilities,
standardized procedures in functional imaging demand the
standardization of the entire workflow, including appropriate
patient preparation [196].

International organizations, such as the IAEA, EANM, SNM,
or ACR have proposed guidelines for patient preparation,
imaging and evaluation approaches [197–199]. Accreditation
programmes have been set up, such as EARL or the accreditation
programs of the ACR, to reach at least a minimum of
comparability of imaging data between different centers.
However, despite such standardization efforts, site and system
specific configurations still result in highly heterogeneous
imaging patterns [24]. The reasons are manifold; as explained
above, the patient preparation affects the outcome of a functional
study. The physiological mechanisms behind this are in general
understood and can be handled using appropriate protocols
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[196]. However, in clinical practice it is often difficult to adhere
to these protocols in all details. For example, for outpatients it
is almost impossible to check to what extent a required diet was
followed.

Another source of variability are differences in the imaging
systems and image processing chains. Different imaging system
come with different detectors, detector arrangements, and
electronics leading to differences in sensitivity and resolution
[200]. Further, differences in image reconstruction algorithms,
data correction techniques as scatter- and attenuation correction,
used imagematrices and voxel size as well as applied post filtering
processing steps can substantially influence image appearance,
quantitative readings, and noise properties of the image data
[201]. All of these issues broaden the variability of data quality
between different systems and imaging centers, and, therefore,
contribute to a limited comparability of image-based ML studies
[10, 28, 202, 203].

Delineation
Feature engineering requires the object of interest to be
delineated first [8, 145, 204–206] with reproducibility [28].
Lesion segmentation can be performed manually, or semi-
/automatically [151, 207]. Manual delineation employs slice-by-
slice contouring tools to delineate objects in medical images,
which is subject to inter-observer variability depending on the
level of expertise of the operator [158, 208].

Semi-automated delineation with fixed thresholds is a popular
approach when delineating objects in functional images [151].
These approaches either determine the threshold level by a
certain SUV level [209] or by a percentage of the maximum
SUV value in a given lesion [210]. Unfortunately, fixed thresholds
are prone to the presence of different noise patterns originated
from differences in the acquisition and reconstruction protocols
[207, 211]. Therefore, different research groups that dichotomize
PET tracer avid lesions by fixed thresholds reported contradicting
results [212–214]. Inter-observer variabilities can be reduced by
training programmes [215] or by collecting and pre-selecting
many observer’s contouring about the same lesion to achieve an
average or consensus contour [151].

Automated delineation methods, such as the Fuzzy Local
Adaptive Bayesian (FLAB) were reported to be robust for
various, even heterogeneous object delineation tasks in PET
[151, 205, 211]. This approach has been also successfully applied
to hybrid imaging data, such as PET/CT and PET/MRI [216].
Similarly, random walk approaches have been proven to be
effective delineation tools especially over noisy images [216–
218]. A comparative study of 13 PET segmentation methods
over 157 simulated, phantom and clinical PET images was
presented in Hatt et al. [207]; here, a method built on a
convolutional neural network (CNN) was found to be the most
accurate.

Despite the known drawbacks of manual and semi-automated
approaches and the emerging success of automated contouring,
to date, the latter solution is still underrepresented in clinical
routine [151, 219–221]. This indicates the necessity to extend
the evaluation and cross-validation of popular delineation
approaches in a large-scale multi-center environment.

Feature Engineering
Given the popularity of textural features in functional and
hybrid imaging, their variability with respect to noise, acquisition
protocols, and sample size is reasonably well understood [222,
223]. However, technical parameters, such as textural matrix
bin size as well as value range intervals appear to greatly affect
textural feature repeatability as well [55, 224]. Some in vivo
features are not yet unified with regards to a common naming
convention and the underlying equation itself [10]. Discussions
are ongoing as to the impact of variations in imaging protocols,
reconstruction parameters and choice of delineation on textural
parameters [10, 160, 225–227]. As an example, while numerous
studies utilized a fixed number of bins for textural analysis,
recent studies suggested that a fixed bin size with variable
number of bins per lesion provides better comparability and
reproducibility of textural features [10, 55, 184]. Furthermore,
image resolution normalization [228], or normalization of
already extracted radiomic features in the feature space [229]
have been proposed. In addition, guidelines are available focusing
on imaging, feature extraction, analysis and cross-validation
standardization of radiomic studies [230–232]. Even though
these initiatives point toward a repeatable radiomic research, to
date, there are still no standardized, widely accepted and followed
radiomics protocols established in the field [232].

Machine Learning Performance Evaluation
Machine learning methods can establish highly accurate
predictive models [42, 184, 233]. Nevertheless, inaccurate
representation of performance values may lead to
misinterpretation of results. Even though this issue is not
exclusive to ML approaches [234], predictive models established
by ML are prone to such misrepresentations. The training
phase of each ML approach optimizes a predictive model over
a training dataset. This implicates that the established model
may become over-fitted to the training data resulting in a poor
performance with independent data. Striking a balance between
the training and validation errors is a challenge and referred to
as bias-variance trade-off [235].

To estimate the performance of the model in single-center
studies, cross-validation approaches shall be utilized [236], such
as the leave-one-out method [188, 237], k-fold and stratified k-
fold cross-validation techniques [233, 238] as well asMonte Carlo
approaches [184, 239]. Likewise, multi-center validation schemes
[69, 128, 170] shall be preferred over single-center schemes when
estimating the reproducibility of reported results.

Robust machine learning approaches that intend to properly
estimate the performance of its predictive models generally split
the data into three subsets [240]. Initially, a part of the whole data
set is taken out and categorized as test set, the remaining samples
are categorized as training set. Test and training set are supposed
to follow the same distribution, so they correctly represent the
same underlying sample population [241, 242] Splitting is usually
conducted to obtain approximate set sizes of 70 and 30% of the
original data set for training and test set, respectively [243, 244].
The training set is partitioned using different techniques listed in
Table 5. Using these methods, the training set is further divided
into an actual training set and a validation set. Training and

Frontiers in Physics | www.frontiersin.org 10 June 2018 | Volume 6 | Article 51

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Papp et al. Hybrid Imaging and Personalized Medicine

TABLE 5 | List of cross-validation techniques as discussed in Upadhaya et al. [164], Mi et al. [188], Beleites et al. [238], Xu and Liang [239], and Ross et al. [245].

Technique Mechanics Advantages Disadvantages

Resubstitution validation The training set is used as validation set Simple Overfitting

Hold-out set validation Random partitioning into training and validation

set with specified percentage split

Simple; Avoids overfitting by dividing

training and test data

High variance; Number of training and test

samples is reduced compared to

resubstitution validation

k-fold cross-validation The data is split into k folds, each of which is

used as a validation set corresponding to a

training set consisting of the remaining k-1 folds

Lower variance than hold-out-set

validation; All samples are used for training

as well as testing

Possible sample combinations in training and

test sets are left out; Overlapping of training

data

Repeated k-fold

cross-validation

Multiple executions of k-fold cross-validation,

each with a random combination of samples

per fold

Large number of performance estimates Overlapping of training and validation data;

Computationally slow when using many

repetitions

Monte Carlo

cross-validation

Multiple executions of Hold-out set validation

each with a random combination of samples

per fold

Lower variance as the number of folds

increase; Many possible sample

combinations in training and test sets can

be evaluated

Slower computation as fold number

increases

Leave-one-out

cross-validation

A number of folds equal to the number of

samples is created while each sample is the

validation set once and the remaining samples

the corresponding training set

Unbiased performance estimation High variance, Computation is slow when

using high numbers of samples

Leave-p-out

cross-validation

Same as Leave-one-out cross-validation while

p samples are used instead of one for the

validation sets

Approximately unbiased performance

estimation when using a small value for p;

Faster computation compared to

Leave-one-out cross-validation

High variance when using a small value for p

validation set are again supposed to follow the same distribution.
The resulting training-validation pairs can be used to train
and tune the ML-established models, respectively, while the
remaining test set can be utilized to estimate the performance
of the models over an independent dataset. For most of the
listed techniques, this procedure occurs several times on each of
these training-validation set pairs. A common approach when
partitioning the data into training and validation set is the use
of stratification [246]. In stratified validation, the sets have the
same fraction of labels as the data of origin. This is particularly
important when dealing with data sets where the number of
samples corresponding to the different labels are imbalanced.

In summary, ML performance shall never be reported over
training sets, as the performance values over this set are
overestimated, especially in case of overfitting. If a validation set
is used to guide model selection or optimization, its performance
shall not be reported either, as it becomes the part of the ML
optimization process. To properly estimate the performance of
the models, independent test sets shall be utilized, that had
not been part of any ML decision making process in the given
cross-validation fold.

OUTLOOK

Images are data [8] and data is knowledge; this statement applies
to all types of data, not only in medicine. It is our task to turn
this knowledge into a patient benefit. One option is to build
clinical decision support systems that are trained and validated
on these data, and, therefore, embrace non-invasive imaging and
non-imaging data potentially linked throughmachine learning as
described here.

Nonetheless, restricted data access and variable data formats
challenge the build-up of knowledge databases and the adoption
of CDSS in modern healthcare. Across all disciplines and
specialties data come in different formats. In medicine alone,
available data come in the form of 2D and 3D images, they may
entail serial information, additional raw (measured) data may
be attached, data further include clinical tests, blood samples,
genomic analysis, and so on. From a patient’s perspective, these
information is scattered across multiple systems, including the
electronic medical record (EMR) system, laboratories, picture
archiving systems (PACS), and alike. These data must be made
available, accessible and tangible in order to apply any type of
knowledge generation.

The sourcing of knowledge, to help an individual patient now,
or to derive new therapeutics for more patients in the future,
is inherently linked to the concept of “big data.” Big data, in
combination with ML, can help uncover associations between
various types of data (assuming that data silos can be torn
down and data can be accessed) and it can help build prediction
models for diagnosis and disease progression as well as therapy
response assessment [247]. The use of big data requires a so
called end-to-end strategy in which “IT departments or groups
are the technical enablers; but key executives, business groups,
and other stakeholders help set objectives, identify critical success
factors, and make relevant decisions” [247]. Such strategy entails
multiple milestones, including the validation of ML algorithms,
the standardization of features and the general accessibility (and
willingness to share) of data.

Novel Heterogeneity Phantoms
In view of the rapid growth of ML and hybrid imaging,
the importance of image quality naturally shifts from visual

Frontiers in Physics | www.frontiersin.org 11 June 2018 | Volume 6 | Article 51

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Papp et al. Hybrid Imaging and Personalized Medicine

interpretation toward quantitative, automated evaluation. This
trend requires a change of focus toward standardization efforts
across all scales of hybrid imaging. To date, there are no
standardized, commercially available physical “heterogeneity”
phantoms that allow us to validate and optimize hybrid imaging
procedures for ML evaluation on-site or across multiple sites. We
believe, such efforts are required to support the adoption of ML
in the context of hybrid imaging.

Open Data, Open Cloud
The combination of open science and cloud computing is in
the focus of several public initiatives. In 2016, the European
Commission announced the creation of the European Open
Science Cloud in order to promote scientific data access and
evaluation with high-performance cloud computing technologies
[248]. According to their report, all scientific data created under
the umbrella of the Horizon 2020 research and innovation
programme will be open data to support the scientific
community. In addition, acceleration of quantum computing
technology will be initiated by 2018 to support the construction
of the next generation of supercomputers. By 2020 a large
scale European high performance computing data storage and
network infrastructure will be deployed to establish the base of
future research and innovation in Europe [248]. Such efforts, in
combination with existing open source date can help synchronize
hypothesis-driven data cohorts for an efficient application of ML
approaches with the purpose to generate knowledge from image
data. To date, hybrid image data are not yet widely dispersed
in such data initiatives, but increased awareness and ease-of-use
of data repositories may facilitate a growth in accessible hybrid
image data.

Doctor in Pocket
Machine Learning together with widely-accessible medical Big
Data promises an era, where computer-aided diagnosis (CAD)
and clinical decision support systems (CDSS) will contribute
to routine decision making [39]. Artificial Intelligence (AI)
assistants [249] will be able to process and provide personalized,
real-time feedback to individuals over their Medical Big Data
through their smartphones. These AI assistants could follow our
physiological and mental wellness. While they could have access
to massive population-wide medical information to learn from,
they could dynamically change their model of ours to end up with
fully-personalized predictive models (Figure 5).

CONCLUSIONS

Medical imaging originated from technological progress and
innovation proposed by cross-specialists, including physicists,
engineers, medical doctors, biologists, mathematicians, chemists,
and alike. Medical imaging research has always been a data-
driven science. Lately, medical practice, and healthcare in
general, has moved into big data, as a modernist’s view on
data-driven science.

Medical Big data offers the ability to source unique knowledge
from the available data, which, however, are spread across various
formats and information contents and which may not be equally
well accessible and assessable. Joint efforts are needed to turn
medical big data into useful medical big data, for example by
harmonizing data access and by moving from single site to
multi-centric data cohorts and repositories.

While we have access to computer algorithms that can
deduce higher-order information from available data, their
validation hinges on the availability of large scale, high-
quality, and standardized reference data. Only recently we
have seen a growing awareness for the need for standardized
imaging and data collection procedures, as pre-requisites for
the use of machine learning and the construction of clinical
decision support systems that can be employed in routine
practice.

In this context, hybrid imaging contains a multitude of
valuable information that, if combined with complementary non-
imaging data, has been shown to yield surprisingly accurate
insights into the causes of disease. If adopted carefully in the
context of CDSS, hybrid imaging may contribute to an improved
diagnosis of patients, and, in turn, to a more efficient therapy
planning.
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