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After motivating the need of a multiscale version of fractional calculus in quantum gravity,

we review current proposals and the program to be carried out in order to reach a

viable definition of scale-dependent fractional operators. We present different types of

multifractional Laplacians and comment on their known or expected properties.
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1. INTRODUCTION

A branch of theoretical physics which has been attracting considerable attention in the last years is
quantum gravity. Several independent theories, models and hypotheses are gathered under this
broad name, from string theory to asymptotic safety, from non-local to loop quantum gravity,
from causal dynamical triangulations to causal sets, and so on [1–4]. Most of these proposals aim
to conciliate classical general relativity with the laws of quantum mechanics, in order to unify all
forces of Nature under the same framework and to solve some problems left open in the traditional
paradigms (for instance, the big-bang and cosmological constant problems [3]).

A surprising feature emerging from this variegated landscape is that the properties of spacetime
geometry, such as the spectral or Hausdorff dimension and the way particles diffuse, change with
the probed scale in all quantum gravities [5–7]. This so-called dimensional flow seems to be a
manifestation of the impossibility to perform infinitely precise time and distance measurements
in geometries with intrinsic uncertainties of quantum or stochastic origin [8, 9]. Some of these
findings were made possible by assuming dimensional flow by default and treating spacetime
geometry as fundamentally scale dependent. This general method can be embodied in a class of
theories, calledmultifractional, where classical and quantum fields live on a spacetime characterized
by a scale hierarchy, anomalous transport and correlation properties, and a multifractal geometry
[10]. Surprisingly, all these features emerge automatically by assuming a slow dimensional flow at
large scales (dimension in the infrared almost constant) [10, 11].

One can encode a multiscale geometry in the dynamics of particles and fields in several ways.
The one followed by multifractional theories is a change in the integro-differential structure [12].
Integrals (such as dynamical actions) and derivatives (in kinetic terms) acquire a non-trivial scale
dependence that can be illustrated in the prototype example of the scalar field theory

S =
∫

d̺(x)

[

1

2
φKφ − V(φ)

]

, (1)

where ̺(x) is the spacetime measure, K is a kinetic operator, and V is the scalar potential. In
the standard case and in the absence of gravity (which will be ignored here), ̺(x) = dDx is the
usual Lebesgue measure in D topological dimensions and K = 2 = ∂µ∂µ is the second-order
Laplace–Beltrami operator. In the presence of dimensional flow, if the measure is factorizable in
the coordinates (an assumption to make the problem tractable) then it takes the unique form [11]

̺(x) =
∏

µ

dqµ(xµ) , qµ(xµ) = xµ +
+∞
∑

n=1

ℓ
µ
n

αµ,n
sgn(xµ)

∣

∣

∣

∣

xµ

ℓ
µ
n

∣

∣

∣

∣

αµ,n

Fn(x
µ) , (2)
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where

Fω(x
µ) = 1+ Aµ,n cos

(
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∣

∣

)

,

(3)

all indices µ are inert (there is no Einstein summation
convention), the first factor 1 in Equation (1) is optional [11] (it
can be set to zero in the stochastic version of the theory [9]), ℓ

µ
n

and ℓ
µ
∞,n are 2D length scales for each n, and αµ,n,Aµ,n, Bµ,n, and

ωµ,n are 4D real constants for each n.
Since the measure is factorized, in the following we can focus

the discussion on the one-dimensional model

S =
∫

dq(x)

[

1

2
φKφ − V(φ)

]

,

q(x) ≃ x+
ℓ∗
α
sgn(x)

∣

∣

∣

∣

x

ℓ∗

∣

∣

∣

∣

α

Fω(x) , (4)

where ℓ∗ = ℓ1, all µ indices are omitted and we can also ignore
terms subleading both in the infrared and in the ultraviolet; this
corresponds to consider only the n = 1 term in Equations (2) and
(3).

In this paper, we will study the properties of three versions
of the kinetic operator K, expanding on the proposals sketched
in Calcagni [10]. Since, in the context of quantum gravity, the
integration measure is uniquely defined independently of the
type of derivatives in the Lagrangian as in Equation (4) [11],
here we are not interested in the formal properties of “multiscale
integrals,” the inverse of multiscale derivatives. Some of these
operators are known, as is the case of Equations (5) and (35)
below [10], while in the case of Equations (28) and (29) they
are unknown and will require further work. On the other hand,
there is no inverse operator for a linear combination of operators
with different inverse, such as Equation (24). In all these cases, for
our purposes it is sufficient to study the properties of multiscale
derivatives with respect to the ordinary Lebesgue measure dx
while, at the same time, taking into account the measure weight
by inserting weight factors in the definitions of such derivatives
to make them self-adjoint with respect to the measure.

2. Q-DERIVATIVES

While there is a unique parametric form of the measure q(x),
there is more freedom in the choice of kinetic operator K. It
turns out that there are three viable possibilities. One is a theory
with so-called weighted derivatives, but this can be reduced to a
system with ordinary derivatives and the spectral dimension of
spacetime is constant in that case [10]. Another possibility is the
second-order operator [13]

K = ∂2q , ∂q :=
∂

∂q(x)
=

1

v(x)

∂

∂x
, (5)

where v(x) = q′(x) := ∂xq(x) and q(x) is given by Equation (2).
This “q-derivative” has a number of highly desirable properties:

1. It is multiscale, since the scale hierarchy is already encoded in
the measure weight v(x).

2. Its composition law is very simple:

∂2q := ∂q∂q = (∂q)
2 −

v′

v3
∂x . (6)

3. It is linear. For any f and g in a suitably defined functional
space,

∂q(f + g) = ∂qf + ∂qg (7)

4. Its kernel is trivial and given by a constant:

∂q1 = 0 . (8)

5. The Leibniz rule is extremely simple. For any f and g in a
suitably defined functional space,

∂q(fg) =
1

v
(f ′g + fg′)

= (∂qf ) g + f (∂qg) . (9)

6. Integration by parts is straightforward. For any f and g in a
suitably defined functional space,

∫

dq f ∂qg
(9)=

∫ +∞

−∞
dx v

1

v
(fg)′ −

∫

dq (∂qf ) g

= −
∫

dq (∂qf ) g , (10)

where we threw away boundary terms. Consequently, K is
self-adjoint:

∫

dq f ∂2q g =
∫

dq (∂2q f ) g . (11)

Notice that, in principle, these rules hold for an arbitrary q(x),
although in our case this profile is fixed as in Equation (4).

3. FRACTIONAL DERIVATIVES

The third extant multifractional theory is the least explored, but
also the most interesting because it employs fractional calculus.
This is by far the most obvious tool to implement an anomalous
scaling in the geometry. The application of fractional derivatives
to multiscale theories is not an easy task. Before seeing why, let us
recall some basic aspects of fractional calculus.

There are different versions of fractional derivatives [14–16]1

and one must make a choice suitable for quantum gravity [12]. In
particular, we believe that one cannot renounce to have a trivial
kernel (Equation 8). Two fractional derivatives with this property
are the Liouville derivative

∞∂α f (x) :=
1

Ŵ(m− α)

∫ +∞

−∞
dx′

θ(x− x′)

(x− x′)α+1−m
∂mx′ f (x

′),

m− 1 6 α < m , (12)

1For bibliographic references, see [10, 12]. More recent applications and solving

methods can be found in Baleanu et al. [17], Yang et al. [18], Sun et al. [19], Baleanu

et al. [20, 21] and Inc et al. [22].
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and the Weyl derivative

∞∂̄α f (x) :=
1

Ŵ(m− α)

∫ +∞

−∞
dx′

θ(x′ − x)

(x′ − x)α+1−m
∂mx′ f (x

′)

m− 1 6 α < m , (13)

where θ is Heaviside’s step function. Obviously, these operators
act linearly on f and∞∂α

x 1 = 0 = ∞∂̄α1. One can also check that

∞∂α∞∂β = ∞∂α+β and ∞∂̄α∞∂̄β = ∞∂̄α+β (these fractional
derivatives commute) and that the Leibniz rule is

∞∂α(fg) =
+∞
∑

j=0

(

α

j

)

(∂ jf )(∞∂α−jg),

(

α

j

)

=
Ŵ(1+ α)

Ŵ(α − j+ 1)Ŵ(j+ 1)
, (14)

and the same expression for the Weyl derivative, where ∂α−j =
Ij−α are integrations for j > 1. Also, integration by parts with the
Liouville derivative generates the Weyl derivative, and vice versa:

∫ +∞

−∞
dx f ∞∂αg =

∫ +∞

−∞
dx (∞∂̄α f ) g . (15)

3.1. Complicated Leibniz Rule
The importance to have the standard Leibniz rule (Equation 9)
can be appreciated when trying to do physics with fractional
calculus. In the theory with q-derivatives, integration by
parts does not produce extra contributions and the kinetic
terms

∫

dqφ∂2qφ or −
∫

dq ∂qφ∂qφ are completely equivalent.

Therefore, the equation of motion ∂2qφ − V,φ = 0 can
be determined easily by applying the variational principle on
Equation (4). On the other hand, suppose we choose another type
of multiscale derivative D such that K = D

2 and its Leibniz rule
is more complicated:

D(fg) = (Df ) g + f (Dg)+ X , (16)

where X = X(f , g; x) is a function of f , g, their ordinary
derivatives and the coordinate x. For consistency, if the kernel
of D is trivial (D1 = 0), then X(f , 1; x) = X(1, f ; x) = 0 for any
f . In particular, if g = Dh, then

fD2h = D(fDh)− X(f ,Dh; x)− (Df )Dh

= [D(fDh)−D(hDf )− X(f ,Dh; x)+ X(Df ,Dh; x)]
+ (D2f ) h = :Y(f , h; x)+ (D2f ) h . (17)

Therefore, when varying the action (Equation 4) with respect to
φ one gets

δS

δφ
=

∫

dq

(

1

2
δφD2φ +

1

2
φD2δφ − δφV,φ

)

(17)=
∫

dq

[

δφ(D2φ − V,φ)+
1

2
Y(φ, δφ; x)

]

. (18)

Assuming that one could repeatedly integrate Y by parts to write
it as Y = 2δφ Z(φ, x) up to some boundary term, we would end
up with a dynamical equation

D
2φ − V,φ + Z(φ, x) = 0 (19)

characterized by a term Z that can considerably hinder the study
of solutions.

This is the main obstacle that prevented so far to consider
multiscale theories with derivatives different from Equation
(5) (barring the mathematically trivializable case of weighted
derivatives). In fact, the only derivative with anomalous scaling
such that X = 0 in the Leibniz rule (Equation 16) is the q-
derivative [23]. Genuine fractional derivatives always have X 6=
0.

3.2. Self-Adjoint Laplacian
Although X 6= 0, one could still obtain a clean integration
by parts if, thanks to miraculous cancellations, Y were a total
derivative or Z were zero on shell. This possibility is suggested
by Equation (15), which implies that, for any combination

D̃
α
:= c∞∂α + c̄∞∂̄α , (20)

one has

∫

dx f (c∞∂α + c̄∞∂̄α)g =
∫

dx g(c̄∞∂α + c∞∂̄α)f .

For instance, if c = −c̄ = 1/22,

∫

dx f D̃αg = −
∫

dx (D̃α f ) g , D̃
α =

1

2
(∞∂α − ∞∂̄α) .

(21)
In the limit α → 1, ∞∂1 = ∂ and ∞∂̄1 = −∂ , so that
limα→1 D̃

α = ∂ . Therefore, we can define an operator self-
adjoint with respect to any measure weight v(x):

Kα = D
α
D

α , D
α
:=

1
√
v
D̃

α
(√

v ·
)

, (22)

so that

∫

dx v fKαg =
∫

dx (
√
vf )D̃α

D̃
α(
√
vg)

= −
∫

dx [D̃α(
√
vf )]D̃α(

√
vg)

=
∫

dx [D̃α
D̃

α(
√
vf )](

√
vg)

=
∫

dx v (Kα f ) g . (23)

Note that other, complex-valued choices of c = (c̄)∗ may be more
convenient when studying the spectrum of eigenvalues of these
operators [24].

4. MULTIFRACTIONAL DERIVATIVES:

THREE PROPOSALS

At this point, we can try to extend fractional calculus to a
multiscale setting. We have found three ways to do that.

2A sign error in a similar expression in Calcagni [10] is corrected here.
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4.1. Explicit Multiscaling
The most direct mean to induce a hierarchy of scales and
a variable anomalous scaling is to consider a superposition
of fractional derivatives of different order α [24]. In the
mathematical literature, several authors [25–32] did propose
a continuous superposition, the distributed-order fractional

derivatives D : =
∫ 1
0 dαm(α) ∂α , where m(α) is a distribution

on the interval [0, 1]. However, from previous experience in
quantum gravity it may be more convenient, or just sufficient,
to take a sum instead of an integral:

K = D
2 , D :=

∑

n

gnD
αn , (24)

where gn = gn(ℓn) are some constant coefficients and D
αn is

defined in Equations (22) and (21). A non-trivial dimensional
flow is generated by just one scale, i.e., a sum of two terms:
D = ∂+g∗Dα . The equation ofmotion from the action (Equation
4) with kinetic operator (Equation 24) is

D
2φ − V,φ = 0 . (25)

This formulation of a multiscale theory with fractional
derivatives is not exempt from problems. The operator D

2

consists of many terms, even in the simplest case of only one
scale where D2 is made of seven pieces (ignoring weight factors),
∂2 + 2g∗D̃α+1 + g2∗D̃

α
D̃

α = ∂2 + g∗(∞∂α+1 − ∞∂̄α) +
(g2∗/4)(∞∂2α − ∞∂α∞∂̄α − ∞∂̄α∞∂α + ∞∂̄2α). Therefore, the
dynamics (Equation 25) is deceptively clean and hides a rather
messy multiorder fractional differential structure which may be
very difficult to solve analytically. This eminently practical issue
could be very important, or even fatal, at the time of studying the
dynamics. To bypass it, one could consider another version of the
kinetic operator [24]:

K =
∑

gnD̄
2αn , D̄

2αn
:=

1

2

1
√
v
(∞∂2αn + ∞∂̄2αn )

(√
v ·

)

,

(26)
wherem = 2 in Equations (12) and (13):

(∞∂2α + ∞∂̄2α)f (x) =
1

Ŵ(2− 2α)

∫ +∞

−∞
dx′

[

θ(x− x′)

(x− x′)2α−1
+

θ(x′ − x)

(x′ − x)2α−1

]

∂2x′ f (x
′)

=
1

Ŵ(2− 2α)

∫ +∞

−∞

dx′

|x− x′|2α−1
∂2x′ f (x

′) . (27)

At the classical level, the great advantage of Equation (26) is
that, in the single-scale case, it consists of just three terms
∂2 + (g∗/2)(∞∂2α + ∞∂̄2α) (again, weight factors are ignored)
instead of seven. However, this K is not quadratic, since D̄2α 6=
D̄

α
D̄

α , which can lead to problems when quantizing the theory
in Hamiltonian formalism: the kinetic term is not the square of a
momentum operator.

At present, it is not clear which definition between Equations
(24) and (26) will be more viable in the long run. They differ
only in transient terms that can be dropped both at large

and small scales, so that classically they give rise to the same
physics. However, both have the added inconvenience of leading
to a virtually symmetryless dynamics [10], a further point of
concern if we want to do field theory and gravity with this
formalism.

4.2. Implicit Multiscaling
The multiscaling characterizing Equation (24) is of a twofold
nature, an explicit one in the sum over αn and an implicit one
in the measure weight v(x). These two structures have been
combined independently and we imposed that the sum over αn

in the combination of fractional derivatives is the same sum over
αn inside v(x). There is nothing wrong with this construction,
but there may be a more elegant formulation where the scale
hierarchy is all included within the measure q(x) [10]. Noting
that the denominator (x − x′)α in Equations (12) and (13) for
m = 1 (0 < α < 1) is the ultraviolet part of the profile in
Equation (4), we can generalize those definitions as a left and
right multifractional q-derivative:

qD :=
∫ +∞

−∞
dx′

θ(x− x′)

q(x− x′)

∂

∂x′
, (28)

qD̄ :=
∫ +∞

−∞
dx′

θ(x′ − x)

q(x− x′)

∂

∂x′
, (29)

where, again, the profile q(x) is uniquely given by Equation
(2). These expressions are similar to the so-called variable-order
fractional derivatives proposed by Lorenzo and Hartley [30],
although in our case q(x− x′) is completely fixed.

The kinetic operator in Equation (4) is then

K =
1
√
v

[

1

2
(qD − qD̄)

]2
(√

v ·
)

. (30)

To understand the dynamics, we first need to spell out the
properties of these derivatives. At short scales, q(x−x′) ∼ |x−x′|α
and Equations (28) and (29) reduce to the Liouville and Weyl
derivatives, respectively:

small scales (ℓ ≪ ℓ∗): qD ∼ ∞∂α , qD̄ ∼ ∞∂̄α , (31)

while at large scales q(x − x′) ∼ x − x′ and Equations (28) and
(29) give

large scales (ℓ ≫ ℓ∗): qD ≃ ∂ , qD̄ ≃ −∂ . (32)

We have not made a formal proof of these statements, but
it should not be difficult. The Leibniz and integration-by-
parts rules are also unknown but they should coincide with
those of Weyl and Liouville fractional derivatives in the limit
of small scales or in any plateau region of dimensional flow
(q ∼ xαn ).

Therefore, we expect a complicated Leibniz and integration-
by-parts rules everywhere at all scales of dimensional flow,
except in plateau regions where a clean integration by parts of
the type (Equation 15) emerges. For this reason, a variational
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principle valid at all scales may be ill defined in this case
and an exact form of the equations of motion may be
out of reach, although their asymptotic form at plateaux
is obviously given by the limit of Equation (25) for one
exponent α.

These considerations could eventually select the
multifractional derivatives with explicit multiscaling as a
simpler tool in quantum gravity, since they yield exact equations
of motion.

4.3. Multiscale Differentials
A third alternative is to introduce a multiscale differential based
on the geometric coordinate (Equation 2) or its simplified version
in Equation (4) [10]:

dq(x) = q(dx) , (33)

which is a linear combination of the usual and fractional [12]
differentials, dq ∼ dx + d|x|α + . . . = dx + |dx|α + . . . . [In D
dimensions, this differential generates the line element dq(s) =
√

gµνdqµ(xµ)⊗ dqν(xν) = q(ds) =
√

gµνqµ(dxµ)⊗ qν(dxν),
where gµν is the metric.] The operator D is a superposition of
ordinary and fractional derivatives of the form (to be taken as
indicative; coefficients are ignored)

d = dqD ∼ dx ∂ + |dx|α∂α + . . . . (34)

The following multiscale derivative and Laplacian are then
defined implicitly:

D : =
d

dq
, K = D

2 . (35)

These operators are invariant under translations, since Dx−x̄ =
Dx, while K is invariant also by “q-boosts” [10]. Therefore,
this theory has more symmetries than the theories with
multifractional derivatives with explicit or implicit multiscaling.

In any plateau of dimensional flow, dq ≃ (dx)αn and D ≃
d

(dx)αn
= D̃

αn . Notice that D ≃ ∂q in the near-infrared limit d →
d where the non-linear part of q is subdominant. Therefore, the
theory with q-derivatives can be regarded as an approximation
of the theory with multiscale derivatives (and, presumably, also
of the other two theories with fractional derivatives) when the
anomalous scaling effects are weak. The experimental constraints
on the scales and parameters of the theory with q-derivatives

might thus miss some important effects present in the fractional
versions of the multiscale paradigm.

To determine the Leibniz and integration-by-parts rules, one
should first define the operator D appearing in the differential
d = dqD. Again, we expect these rules to reduce to the usual
ones in the infrared and to those of fractional derivatives in
the ultraviolet. Since the operator (Equation 24) with explicit
multiscaling is already a well-defined linear combination of
fractional derivatives, we reach the same conclusion of the
previous section, namely, that the operator (Equation 24) may be
the best candidate for the concrete realization of multifractional
theories with fractional derivatives. However, the main problem
of the definitions (33) and (35) is that they are too abstract, which
is the reason why we used qualitative expressions marked by “∼.”
Understanding their actual properties will require more work.

5. CONCLUSIONS

In this paper, we have further analyzed the proposals of Calcagni
[10] for a multifractional calculus with viable applications
to field theory and gravity. Without the pretense of being
rigorous, we have considered some properties of scale-dependent
derivative operators which, in physical applications to quantum
gravity, are interpreted to encode the multiscaling of the
underlying anomalous geometry. The conclusion is that the
most promising multifractional theory possibly is the one with
explicit multiscaling in fractional derivatives. However, only a
full systematic study of the properties of all these operators
will be able to confirm which is the most viable Laplacian
from a theoretical and practical point of view. The value of the
complex coefficients in Equation (20) will be especially important
to determine a well-defined calculus and spectral theory [24].
We will analyze the associated dynamics in detail in a future
publication.
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