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Through the past few million years large ice sheets have repeatedly grown and

disappeared on the Northern hemisphere. These are the Pleistocene glaciations. They

are related to the changing solar heating of the Earth due to changes in Earth’s orbit

and axis of rotation. The climate response to these changes is highly non-trivial and

non-linear, expressing the complex nature of the climate system. Many aspects of glacial

cycles still need a convincing explanation, one particular mystery being the change from

approximately 40 kyr (kilo year) glacial cycles to approximately 100 kyr cycles around

1 million years ago. This transition is called the middle Pleistocene transition (MPT).

Here we review some conceptual models to explain the dynamics of glacial cycles and

possible dynamical causes of the MPT. We especially focus on the well studied van del

Pol oscillator as a conceptual model for the glacial cycles and propose that the MPT is a

result of changes in frequency locking of the climate system to the astronomical forcing.

This is compared to a recently presented model that relates the MPT to a transcritical

bifurcation in the structure of a generic critical/slow manifold for a fast-slow dynamical

system.

Keywords: glacial dynamics, dynamical system, climate dynamics, synchronization theory, Arnold tongue,

bifurcation theory, ice ages

1. INTRODUCTION

The climate of the planet is governed by the radiative energy balance between heating by short wave
radiation from the Sun and cooling by the long wave radiation back to space. The heating changes
with latitude, thus “climate” is derived from the phrase “inclination,” alluding to the position
of the Sun in the sky. The geographic temperature variations result from the transport of heat
poleward by winds and ocean currents. These fluid motions are in turn governed by the differential
heating via buoyancy and the planetary rotation. Many internal dynamical factors play a role in
determining the climate: for example, the amount of snow and ice influences the fraction of sunlight
being reflected back into space without heating the planet, the interchange of CO2 between ocean
and atmosphere influences the greenhouse trapping of heat in the atmosphere and the Atlantic
overturning circulation influences the oceanic heat transport to the polar regions. The strength of
these factors depends in turn on the state of the system, thus constituting non-linear feedbacks for
determining the equilibrium state.
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State-of-the-art numerical climate models are based on
integrating the fluid equations of the atmosphere and oceans
and calculating the radiative balance and interactions between
atmosphere, oceans, cryosphere (ice masses), lithosphere (soils)
and biosphere (vegetation). These “Earth System Models”
arguably do a good job in reproducing the present state of the
climate, but they are so huge and computationally demanding
that it is unclear to what extend the full range of natural variability
is represented in the existing models [1]. The most spectacular
manifestation of natural climate variability is the glacial cycles,
which, since their discovery in the nineteenth century, have been
considered a major challenge in climate modeling and theory.
With the present day focus on global warming, it is perhaps not
fully appreciated that this is still a major challenge.

Large land ice sheets appeared in the northern hemisphere
around 3 Ma BP (million years before present). These ice sheets
have been waxing and waning with astronomical changes to
incoming solar radiation (insolation). The climatic response to
the astronomical forcing is, however, far from linear and depends
on internal dynamics and feedback mechanisms. Several climate
components have been proposed to influence the glacial cycles.
These include asymmetric ice sheet response to insolation in
buildup and collapse phases [2] and positive ice-albedo feedback
[3, 4] (more ice gives more reflection leading to less heating, thus
lower temperature, and hence more ice). The dominant factor
could be ice sheets [5] or sea ice [6]. It could also be an interplay
between ice volume, greenhouse gas warming, and interchange
of CO2 between the atmosphere and oceans depending on
ocean temperature [7], or coupling between greenhouse gas
concentration, ice volume and areal extend of the Antarctic ice
sheet [8].

In terms of the climate response to astronomical forcing, the
proposed models of glacial cycles vary between emphasizing the
dominance of internal stochastic variations [9], scaling properties
of climate variations [10, 11] and stochastic resonance [12] to
self-sustained non-linear oscillations [13] and forced non-linear
oscillations [14]. A comprehensive review of existing models of
ice ages is discussed in Crucifix [15] and we refer the reader there
for more details.

Here we shall focus on possible mechanisms for the climate
response to astronomical forcing assuming the climate system to
have internal dynamical oscillations. The astronomical forcing is
the change in seasonal and geographically distributed amount
of insolation. These variations are due to perturbation of
Earth’s orbit from the other planets, and is dominated by only
three parameters; the precession of Earth’s axis of rotation,
the obliquity, which is the variation in the tilt of the axis of
rotation with respect to the orbit and lastly, the change in the
eccentricity in the orbit. The periodicities of these variations
are approximately 20-, 41-, and 100 kyr respectively. The
frequencies are incommensurate, so the forcing is quasi-periodic.
The annually integrated insolation is dominated by the ∼ 41
kyr obliquity cycle. We will thus not be concerned with the
quasi-periodic nature of the forcing. Our focus is on possible
mechanisms for synchronization of the climate response to the
dominant periodic obliquity cycle, especially how the MPT can
be explained. As mentioned above, several oscillator models have

been proposed for the glacial cycles, here we chose the well
studied van der Pol oscillator as a generic example. We also
consider a somewhat more complex, recently proposed by us
[16] as an embedding of a switching model of Paillard [17]. For
the latter model, the MPT involves a transcritical bifurcation in
the structure of a generic critical/slow manifold for a fast-slow
dynamical system. In order for this paper to be self-contained for
non-expert readers, we also review a few theoretical aspects.

2. THE LAST GLACIAL PERIOD

The climate history in proxy records (notably isotope ratios in
sediment and ice cores) shows violent shifts between different
global temperature states, which seem not to be well captured
in most models. Sudden climate changes can occur if the
system reaches a threshold, a tipping point, where the internal
feedbacks lead to the climate irreversibly making a transition
from one state to another. These paleoclimatic records indicate
that the transition from the last glacial to the present warm
interglacial occurred as such a threshold crossing [18]. By
comparing the insolation with the temperature proxy obtained
from a Greenland ice core through the past 60 kyr (kilo years)
it is apparent that the relation between the insolation (forcing)
and the temperature (response) is not linear, see Figure 1. The
temperature changes are much more abrupt than the changes in
insolation, and the response seems to be much more dramatic
than the change in the forcing would suggest. The insolation
curve has been scaled and shifted in order to linearly fit the
climatic response in the present Holocene climate (10 kyr BP to
present). The fit clearly breaks down for the glacial period. For
this period the insolation curve needs to be shifted downward
with an amount that is almost a factor three larger than the
variation over time (blue curve). This strongly suggests that the
climate system jumps non-linearly from one equilibrium state to
another, and within such an equilibrium state the response to the
changing insolation is linear. Furthermore, the glacial climate is
characterized by a splitting into the stadial (cold state) and the
interstadial (intermediate) state. These jumps are the Dansgaard-
Oschger climate events [19]. The quasi-equilibrium ormean state
within each of the three climate states seems to be linearly related
to the insolation (green curve).

3. MULTIPLE CLIMATE STATES

Considering the global energy balance of the Earth, a minimal
climate model can be constructed. This was done independently
by Budyko [3] and Sellers [4]. The essence of the Budyko-Sellers
energy balance model is considering the surface temperature
as represented by a single (average) temperature, T. The
temperature is governed by the balance between the total
incoming solar radiation, Ri, and the total outgoing gray-body
radiation, Ro: namely cṪ = Ri−Ro, where c is the heat capacity of
the atmosphere and upper part of the oceans, which is in thermal
contact with the atmosphere. Part of the incoming radiation from
the Sun will be reflected back into space, thus not contributing
to the heating. The reflected part is governed by the planetary
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albedo, α(T), which in turn depends on temperature through the
amount of reflecting ice area. This positive feedback is balanced
by the negative black body feedback: lower temperatures give
less outgoing black body radiation which in turn decelerates the
temperature drop. The energy balance equation is:

cṪ = (1− α(T))S− g(T)σT4, (1)

where S is the solar constant, or rather the integrated insolation,
g(T) is the grayness factor of the planet, accounting for the
greenhouse effect of the atmosphere and σ is the Stefan-
Boltzmann constant.

In order to proceed, the functions α(T) and g(T) must be
specified. The planetary albedo can in the simplest way be
modeled as a sigmoidal function of temperature, observing the
asymptotic limits; for high temperatures the albedo is that of
the hot ice free planet, αH , while for low temperature the
albedo is that for the cold completely ice covered white planet,
αC. We model this using α(T) = (αH + αC)/2 + (αH −

αC) arctan((T − T0)/6)/2. The grayness factor can also be
modeled in different ways. An instructive way is to account for
the (natural) greenhouse warming 1T, by noting that the long
wave opacity of the atmosphere implies that the black body
radiation from the planet is governed by an effective radiation

temperature at the infrared optical depth from above of the
atmosphere, Teff = T −1T, Ro = σT4

eff
, thus expressed in terms

of surface temperature, we obtain g(T) = (1−1T/T)4. We may

define a “climate potential”U(T) =
∫ T

[Ri(S)−Ro(S)]dS, in order
to bring the model to the familiar form:

cṪ = −dU/dT.

This is a very simple model of the global energy balance,
illustrating the principles in multiple steady climate states. With
the insolation defined as Sµ(t) = S + µ(t), and a large enough
harmonic variation of the parameter µ0: µ(t) = µ0 cosωt,
the system will respond through the classical hysteresis loop
(Figure 3, top panel).

However, this is not a realistic model of glacial cycles for two
reasons. Firstly, the astronomical change in insolation through
a glacial cycle is not large enough to bring the climate through
the hysteresis loop of consecutive bifurcations between the cold
and the warm climates. This problem was the original inspiration
for the model of stochastic resonance [12]. Assuming that the
amplitude of the varying forcing is not large enough to cross the
bifurcation point, the transition could be assisted by noise,

c Ṫ = −dU/dT + ση, (2)

FIGURE 1 | The NGRIP isotope record [18] for the past 60 kyr is a proxy for temperature. The red, green and blue curves are the summer insolation at 65N fitted to

the climate record. The red curve is fitted to the present Holocene climate, the blue curve is shifted to fit the cold stadial state, while the green curve is shifted to fit the

interstadial states.

FIGURE 2 | The global energy balance model. The left panel shows incoming radiation, Ri (T ), in blue and the outgoing radiation Ro(T ) in red. There are three steady

state points; two stable separated by an unstable. The middle panel shows the equivalent “climate potential" as a double well potential. The right panel shows the

bifurcation diagram obtained by changing the insolation Sµ = S+ µ. The stable cold and warm states (solid lines) are connected at two saddle-node bifurcations via

an unstable steady state branch (dashed line).
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where η is a unit variance white noise (more precisely, we
consider the Itô SDE c dT = −U ′(T) dt + σ dWt where Wt

is a standard Wiener process). If the noise intensity σ is small
then the noise will only rarely trigger transitions, if the noise
intensity is high then the noise will trigger frequent transitions
regardless the periodic change of the forcing. If the noise intensity
is such that the mean stochastic escape time is comparable to
half a forcing period, it will trigger transitions in conjunction
with the forcing at the times when the system is close to the
bifurcation. At this noise intensity the periodicity of the forcing
is restored in the response, thus the term stochastic resonance
[12]. By considering the double-well potential in Figure 2, middle
panel, the resonance can be understood in terms of time scales:
The escape time from the deep well (a) to the shallow well (c)
is τa→c ∼ exp[(Ub − Ua)/σ

2], where Ub is the potential at the
barrier, thusUb−Ua is the height of the barrier from the left well,
the other way is τc→a ∼ exp[(Ub−Uc)/σ

2]. The periodic forcing,
with period T = 2π/ω, will cause the deep and shallow wells
to change positions, disregarding unimportant asymmetries, so
if τc→a ≪ T ≪ τa→c, the noise will cause the system to move
periodically between the two states. This is shown in Figure 3,
middle panel. The extreme case of no forcing and solely noise
induced transitions is shown in the bottom panel. This resembles
the interstadial states observed in the glacial period in the ice core
record (Figure 1).

The second, and more important, reason why this is not
a realistic model is that the glacial climate state does not
correspond to a state of global ice cover, such that the planetary
albedo becomes insensitive to further cooling. However, though
the model was proposed as a model of glacial cycles, it turned
out to have even bigger merits: Very few predictions have been
obtained from climate theory, but considering the present climate
as the warm state, the model predicts a deep freeze climate state.
Such a state has now been identified, namely the Snowball Earth,
which occurred at least twice approximately 700 Myr ago [20].

4. GLACIAL CYCLES AND THE CHANGE IN
RESPONSE TO ASTRONOMICAL FORCING

Returning to glacial cycles earlier than the last glaciation, the ice
volume is recorded as a proxy in oxygen isotopic composition of
benthic foraminifera in ocean floor sediments. The concentration
of heavy water in the ocean increases when the ice sheets on
the continents grow. This is due to the isotopic fractionation in
evaporation and condensation, such that water falling as snow on
land is depleted from heavy isotopes. Thus the sediment record is
a direct proxy for the global ice volume, which in turn is related
to the temperature. Extending the insolation curve, red curve
in Figure 1, over two million years and comparing it with the
proxy temperature record, it is clear that the relation is far from
being simple linear (Figure 4). The insolation is a composite of
three astronomical many-body perturbations to the Keplerian
orbit: The eccentricity of the orbit changes with periods around
100 kyr, the inclination of Earth’s axis of rotation with respect
to the Ecliptic plane, the obliquity, changes with a period of 41
kyr and finally the precession of Earth’s axis, determining the

FIGURE 3 | The non-linear response of the energy balance model for the

climate (1) to harmonic variations in the insolation: µ(t) = µ0 cosωt when µ0 is

large enough for crossing the two bifurcation points.(top panel). With a noise

component with intensity σ (2) added, the response is at the frequency of the

forcing, even though the forcing itself does not cause crossing of the

bifurcation points. This is called stochastic resonance (middle panel). If the

noise intensity is large enough, even without periodic forcing, the system will

jump stochastically as a Poisson process with little sign of periodicity. This is

termed noise induced transitions (bottom panel).

seasonal distance to the Sun in the elliptic orbit, has a period of
approximately 20 kyr. The red curve in Figure 4. represents the
annually integrated insolation at 65N. This is the approximate
latitude of the southern rim of the glacial time ice sheets. The
insolation at this latitude is thus the forcing proposed to govern
the waxing and waning of the ice sheets [21]. This integrated
insolation curve is dominated by the 41 kyr obliquity cycle [22].

The approximate 100 kyr eccentricity cycle is barely visible
in the astronomical forcing curve [21], while the climate record
shows glacial cycles of approximately 100 kyr for the past million
years. Before that time the glacial cycles had a smaller amplitude
and a period close to the 41 kyr obliquity cycle. The transition
from the “40 kyr world” (or rather “41 kyr world”) to the “100 kyr
world” is termed the middle Pleistocene transition (MPT). For
visualization, each interglacial warm maximum is related to the
nearest maximum in the insolation curve (gray lines in Figure 4).
The dating uncertainty in the sediment record is such that these
can be considered synchronous [23]. A spectral analysis, where
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FIGURE 4 | The global stacked sediment isotope record from benthic foraminifera (black) along with the 65N insolation curve (red, arbitrary units) from Figure 1. The

gray lines show how each interglacial warm maximum is related to the nearest maximum of the insolation curve. The isotope record is a proxy for global ice volume

and thus temperature. Note that the scale is inverted, such that temperature increases along the y-axis. The ice-core record in Figure 1 corresponds to the very last

glacial cycle. The ocean record does not resolve the fast stadial-interstadial oscillations. In order to quantify the visual association a spectral analysis is shown in the

lower part. The contour plot shows the power spectrum of the record in a 400 kyr running window (indicated by the black bar). The center point of the window is on

the x-axis, while the frequency is on the y-axis. The upper contour corresponds to approximately 1/40 kyr−1, present in the full record. The lower contour

corresponds to approximately 1/100 kyr−1 only being predominant after the MPT.

the power spectrum is calculated for a running 400 kyr window
is shown in the lower part of Figure 4. It shows that the 40 kyr
oscillation persists through the record, while the spectral power
around 100 kyr increases from around 1.2 Myr BP to a strong
power after 800 kyr BP. Thus the MPT can be seen as a gradual
change of glacial duration in the period 1200 - 800 kyr BP [24].
Another way of interpreting the change at the MPT is that the
duration of the glacial periods increases and the interglacials
synchronize to every second insolation maximum from around
1 Myr and every third insolation cycle from around 500 kyr. This
complex climate response to astronomical forcing indicates that
the glacial cycles could be explained as a non-linear frequency
locking phenomenon.

5. CONCEPTUAL MODELS FOR GLACIAL
CYCLES

Though glacial cycles may eventually be reproduced in the large
Earth system model simulations, this is not feasible with present
day computers. The Earth system models do in some sense
correspond to calculating the behavior of many-body systems
from first principles. However, a satisfactory theory of ice age
dynamics should involve some reduction of the complexity of the
full set of governing equations. The regularity of the paleoclimatic
record, and the low-dimensionality in the astronomical forcing
make it plausible that the dynamics of a low number of leading
modes can be captured by a few effective dynamical equations.
The fundamental conjecture in the following is that the system
has inertia in the sense that the regulating feedbacks can lead
to internal oscillatory behavior. Whether this is the case is
unknown, but several factors in the climate system could play the
role of such an inertia: The simplest heuristic climate oscillator is
obtained by considering the continental ice volume x. Its growth
is proportional to the precipitation p [25]:

ẋ ∼ p.

The precipitation increase with temperature,

p ∼ T,

but the temperature decrease with the ice volume, due to the ice
albedo feedback,

α ∼ x,

and from the energy balance (1) we get;

Ṫ ∼ −α ∼ −x.

Substituting for T and p, we obtain

ẍ ∼ −x,

as a schematic climate oscillator.
The climate variable of interest and observed in the sediment

record, is the global continental ice volume x. The waxing and
waning of the ice sheets are governed by the mass balance
between accumulation, proportional to the precipitation, and
the ablation or melt-off. Both terms depend on the atmospheric
temperature. With the anomaly y ∼ (accumulation − ablation),
we get

ẋ = y.

The temperature, and in turn y, depends through ice-albedo
feedback, changing atmosphere - and ocean circulation, ocean-
atmosphere exchange of CO2 etc. on the ice volume x itself;
ẏ ∼ −αx, where wemay just think this as the first term in a Taylor
expansion of the complicated non-linear dependence on x.

The internal stabilizing dynamics of the anomaly y can be
described as a Newtonian cooling or dissipation: g(x)y, where the
rate g(x) can depend on the ice volume x. Finally y depends on
the astronomical insolation anomaly F(t):

ẏ = −g(x)ẋ− αx+ F(t).
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We shall not attempt to argue for the physical realism of the
conceptual model, but focus on the dynamical effects of the
response to the astronomical forcing. The reason for choosing
this specific form for the model is that by substituting for ẏ, and
choosing g(x) = −γ (1−x2), this becomes the well studied forced
van der Pol equation [26] for the variable x:

ẍ = γ (1− x2)ẋ− αx+ F(t), (3)

The astronomical forcing is assumed to be a pure harmonic:
F(t) = A cos(ωFt), where ωF = (2π/41) kyr−1 corresponding
to the main obliquity cycle. Thus the multi-frequency, quasi-
periodic nature of the orbital forcing [27] is not the concern here.
The van der Pol equation has a surprisingly complex behavior
depending on the specific values of the parameters of the model.
We may reformulate the equation in terms of motion subject
to a conservative force −dU/dx, where the potential is given by
U(x) = 1

2αx
2.

The non-linearity enters through the dissipation term, which
can act both as a damping (for x2 < 1) and as a forcing (for
x2 > 1).

5.1. The Linear Damped and Forced
Harmonic Oscillator
The trivial case g(x) = γ is just the simple linear damped and
forced harmonic oscillator: The linear oscillator is not a very
realistic model of ice age cycles, but it can capture some aspects of
internal ice sheet dynamics [13]. The periodically forced damped
harmonic oscillator (α = ω2

0):

ẍ = −γ ẋ− ω2
0x+ A cosωFt (4)

will always oscillate with the forcing frequency ωF and an
amplitude given by the resonance curve:

A0 = A/

√

(ω2
0 − ω2

F)
2 + ω2

Fγ
2.

The response has maximum amplitude at the resonance
frequency ω0 = ωF . (Note that this is slightly different from
the textbook example of tuning ωF to the resonance with fixed

ω0 and γ , where we get ωF =

√

ω2
0 + γ 2/2). Only the transient

solution will have a natural frequency ωt =

√

ω2
0 + γ 2/4 ≈ ω0.

The oscillator will, after the transient has died out, always be in a
1:1 frequency relation to the forcing with an amplitude and phase
depending on the difference between the natural frequency and
the forcing frequency. The damping implies that the unforced
oscillator will die out, x = ẋ = 0 being a stable fixed point.
There are thus no self-sustained oscillations. In the Hamiltonian
case of no damping and forcing, the system will oscillate with
a periodic orbit in phase space depending on the (conserved)
energy 2E = (A0ω0)

2 = ẋ2 + ω2
0x

2. There are thus no isolated
orbits (limit cycles) in the Hamiltonian case. In the damped and
forced case x(t) = A0 cos(ωFt + θ) is the globally attracting
(stable) limit cycle.

The situation is different for the (non-linear) van der Pol
oscillator as we will see.

5.2. The Glacial Cycles as a Self-Sustained
Oscillation Synchronized to Astronomical
Forcing
Consider the forced van der Pol oscillator as a model of the
glacial cycles. This was proposed as a minimal model [15, 27],
with the distinct advantage of having well-understood dynamics
[26, 28].

In contrast to the damped linear oscillator, the van der Pol
oscillator has oscillations even in the autonomous unforced case
(A = 0). The dissipation term g(x) = −γ (1 − x2) grows the
oscillations when x2 < 1 and damps the oscillations when x2 > 1.
For γ ≫ 1, the van der Pol oscillator is a fast-slow system that
has relaxation oscillations: the stress accumulated during a slow
build up is relaxed during a fast discharge. This can be seen by
applying the Liénard transformation y ≡ x − x3/3 − ẋ/γ to (3).
By a straightforward substitution [28], we get:

ǫx′ = x− x3/3− y

y′ = αx− A cosωFt, (5)

where ǫ = 1/γ 2 and the time derivatives are with respect to a
slow time τ = t/γ . It is apparent that γ ≫ 1 defines a slowly
forced fast/slow (x/y) system for ǫ → 0. A good sense of the
behavior of the unforced system, A = 0, is obtained by observing
the nullclines ẋ = 0 ⇒ y = x − x3/3 and ẏ = 0 ⇒ x = 0,
see Figure 5. The fixed point (x, y) = (0, 0) is an unstable focus
(for γ > 0). The oscillator has a stable limit cycle, a slow-
fast system, with two slow branches (the critical/slow manifold:
ẋ = 0) connected by two fast branches. The existence of the limit
cycle in the unforced case implies that the van der Pol oscillator
has an internal natural frequency ω0 = 2π/T0, where T0 is the
period of the cycle.

In the forced case (3), the oscillator frequency can synchronize
to the forcing frequency in a rational relation between the
oscillator frequency ω and the forcing frequency ωF depending
on the amplitude of the forcing A and on the ratio of the
two frequencies. Note that there are now three frequencies at
play; ω0 = ω0(α, γ ) is the frequency of the unforced oscillator
for a given set of parameters, ωF is the (constant) forcing
frequency and finally ω = ω(α, γ ,A,ωF) is the frequency of the
forced oscillator for a given set of parameters, assuming that the
oscillator has a limit cycle.

The periodicity of the response can be identified in a
stroboscopic map, a special case of a Poincaré map were the
Poincaré section is defined by the period of the forcing: xn =

x(tn), tn = nTF + t0 with TF = 2π/ωF being the period of
the forcing. The number of limit points of the set {xn}

∞
n=1 is

the periodicity of the system in units of the forcing period. The
stroboscopic map {xn} and ω0 will depend on the parameters
(α, γ ,A,ωF). In Figure 6 the trajectory sampled as a stroboscopic
map {xn} is shown as a function of ω0(α, γ )/ωF , corresponding
to increasing the parameter α with fixed values of γ and A.
For ω0/ωF > 1.35, we observe a single branch, thus ω = ωF

while for 1.03 < ω0/ωF < 1.09 we observe two branches,
thus ω = ωF/2 (i.e., the period is T = 2TF), for ω0/ωF <

0.98 we obtain three branches, thus ω = ωF/3. In the three
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FIGURE 5 | The van der Pol oscillator (5): The left panel shows the phase plane. The black curves are the nullclines. A trajectory is shown in blue. The dots marking

the trajectory at equal time intervals indicate two slow branches near the x-nullcline. The right panel shows that this is a slow/fast dynamical system with the fast

variable x(t) (in blue) closely following the x-nullclines (critical/slow manifold) interrupted by fast jumps from one branch to the other. The slow variable y does not

change at the jumps. Parameters are (α, γ )=(1, 5).

FIGURE 6 | Bifurcation diagram showing the stroboscopic map for the van

der Pol oscillator (3) as a function of the ratio of the unforced internal frequency

to the forcing frequency, ω0/ωF , obtained by varying parameter α with A = 0.2

and γ = 5 fixed. The colored regions corresponds to synchronization: 1:1

(yellow), 2:1 (green) and 3:1 (red). Regions with disconnected dots correspond

to higher rational synchronization or quasiperiodic motions.

cases the system synchronizes to the forcing in ratios 1:1, 2:1
and 3:1 respectively. Between these locking regions there is
stable quasiperiodic motion intersected by windows with higher
rational ratios of synchronization.

In Figure 7, the synchronization is shown in a color coded plot
of the period of the van der Pol oscillator as a function of ω0/ωF

and the amplitude A of the forcing. For each value of (α,A) in
a fine grid, we solved (3) numerically and measured the period
of the limit cycle in units of the forcing period TF . A pattern
of tongues in the corresponding parameter (ω0/ωf ,A) plane is
found. In each uniformly colored tongue (called mode-locking
regions or Arnold tongues [29]), the oscillator synchronizes
onto the external periodic forcing. In the unlocked regions
(white areas), no periodic solutions are found. In this case,
the ratios between the internal frequency of the system and

FIGURE 7 | The response of the van der Pol oscillator (3) as a function of the

forcing amplitude A and the parameter α. The oscillator frequency ω

synchronizes in rational ratio to the forcing frequency ωF . The colored patches

of synchronization are called Arnold tongues. The ordinate is ω0(α)/ωF ,

obtained by calculating ω0 for A = 0 as a function of α. The parameter γ is

kept fixed at γ = 5. The arrow with time ticks indicates the change

corresponding to the change of α through the MPT shown in Figure 8.

the driving frequency passes through irrational values (quasi-
periodic motion).

If the glacial cycles are modeled by this forced oscillator, the
MPT could be caused by a slow drift of the internal parameter
α, which would change the synchronization to the external
astronomical forcing by bringing the system from a 1:1 tongue
through a 2:1 tongue to a 3:1 tongue as indicated by the arrow in
Figure 7. This scenario is shown in Figure 8. This climate curve is
quite robust with respect to how the slow change of the parameter
α happens around the MPT. For such a simple conceptual model
we cannot expect to associate α with a single slowly changing
physical parameter in the climate system. However, suggestions
have been that the ocean-atmosphere concentration of CO2 has
been slowly decreasing [30], with reduced greenhouse warming
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FIGURE 8 | By a slow change of the parameter α(t) the van der Pol oscillator (3) moves from a 1:1 synchronization tongue via a 2:1 to a 3:1 synchronization. The time

scale is adjusted to the paleoclimatic time scale in Figure 4. The forcing frequency is 41 kyr corresponding to the obliquity cycle.

making larger ice sheets sustainable. However, the atmospheric
CO2 concentration at the MPT is not well constrained, and
a gradual decrease in CO2 has been questioned [31]. Another
suggestion is that ice sheet stability depends on bottom sliding,
such that long term regolith erosion by the North American ice
sheets let to the possibility of larger stable ice sheets resting on
bedrock after the MPT [32].

6. BIFURCATIONS AND THE MPT

In addition to the slow drift through synchronization regimes
discussed in the previous section, several other conceptual
models have been proposed for the glacial cycles in general
the MPT in particular. We refer to Crucifix [15] for a more
comprehensive review. Here we discuss two different proposals
for modeling the MPT in terms of bifurcations. The first of
these is a classical low dimensional model proposed for the
glacial cycles and the MPT as a Hopf bifurcation by Maasch and
Saltzman [33]. The second of these is an alternative model that
involves a bifurcation in the topology of the slow manifold [16].

6.1. The MPT as a Hopf Bifurcation
The model by Maasch and Saltzman [33] (in anomaly variables)
is a set of three coupled ODEs:

ẋ = −x− y− I(t)

ẏ = −px+ ry+ sz2 − yz2 (6)

ż = −q(x+ z)

Here x represents the global ice volume, y represents the
atmospheric CO2 (greenhouse gas) concentration and
z represents a deep ocean temperature. All variables are
rescaled to dimensionless form, p, q, r, s are parameters, while
I(t) = A cosωFt represents the astronomical forcing (insolation).
Heuristic arguments for the physical basis of the model are given
in [33]. These concentrate on the greenhouse effect, temperature
dependent interchange of CO2 between oceans and atmosphere
and the dependence of ice volume on the atmosphere. The model

has a rich structure in parameter space Maasch and Saltzman
[34]. By design, there is a fixed point of the autonomous model
(I(t) = 0) at x = y = z = 0 for all parameter values, while
for s2 > 4(p − r) there are two more non-trivial fixed points.
Concentrating on the fixed point (0, 0, 0), linear stability shows
that this is stable for small values of the parameter r (keeping all
other parameters fixed) and becomes unstable for some critical
value, r > rc, through a simple Hopf bifurcation.

The hypothesis in this model is that the MPT is this Hopf
bifurcation: Prior to the MPT the system is oscillating around the
stable fixed point with the external oscillation I(t) = A cosωFt,
after the Hopf bifurcation the 100 kyr glacial oscillations are
the internal oscillations. This is seen in the forced realization of
the model in the lower black curve in Figure 9. The top blue
curve shows a slow increase of the parameter r through the MPT,
similar to the change of the parameter α in Figure 8. With this
choice of parameters the bifurcation point is crossed around the
MPT, but the amplitude of the internal oscillations grows very
slowly in the autonomous case (A = 0).

In the non-autonomous case (A = 0.2) the oscillations of
the forcing can be seen as a linear response in the climate
variable x prior to the Hopf bifurcation. After the bifurcation
the internal 100 kyr oscillation dominates independently from
the forcing. However, prior to the bifurcation where the fixed
point is stable, if the system is perturbed away from the fixed
point by an additional small stochastic forcing the system will
respond with decaying oscillations with the internal period of
the limit cycle after the Hopf bifurcation see Figure 10. Thus
the external forcing period is not robustly imprinted on the
climatic response prior to the MPT. As a dissipative non-linear
oscillator with parameter dependent internal frequency after the
Hopf bifurcation, a scenario of synchronization analogous to that
of the van der Pol oscillator is possible.

6.2. The MPT as a Bifurcation of the Slow
Manifold
As the global energy balancemodel shows, the climate system can
be in one of a number of stable states under identical external
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FIGURE 9 | By a slow change of the parameter r (top blue curve) the system (6) passes through a Hopf bifurcation. The other parameters are fixed:

(p,q, s) = (1.0, 1.2, 0.8). The two lower black curves are the x variable in the autonomous case (A = 0) and in the forced case (A = 0.2). The autonomous system

reaches the Hopf bifurcation for r = 0.35. The red curve is the forcing.

FIGURE 10 | Same as Figure 9, but now keeping the parameter r = 0.25 constant at a value prior to the Hopf bifurcation, where the fixed point is stable. In this case

stochastic terms σηx , σηy and σηz are added to the right hand side of (6), ηx,y,z are unit variance Gaussian white noise and σ = 0.08, a corresponding noise curve is

shown for illustration, (top red curve). This is on same time scale as the astronomical forcing with A = 0.2. Even with astronomical forcing, the internal 100 kyr

oscillation dominates the climate signal x.

conditions. By a change of a control parameter, in this case the
insolation, the system can cross a saddle-node bifurcation point,
and jump from one stable branch to the other. This is typical
hysteresis behavior, similar to relaxation oscillation between the
two slow branches of the van der Pol oscillator. The scenario
could describe the glacial cycles prior to the MPT. After the MPT
the amplitude of the oscillation between the warm and the cold
state increases (Figure 4), in contrast to what is observed in the
van der Pol scenario above. Furthermore, the oscillations seem to
become more time asymmetric with rapid warming and gradual
cooling through the cold climate state experienced prior to the
MPT and to an even colder state with more extended land ice
cover.

From these observations an empirical model was proposed by
Paillard [17]. Assume that the glacial cycles prior to the MPT was
an oscillation between two stable states or branches i, interglacial,
and g, a mild glacial state: i → g → i. At the MPT a third
deep glacial stateG became “accessible.” The 100 kyr glacial cycles

thus involve a series of transitions: i → g → G → i. The
time asymmetry thus reflects the difference between the gradual
inception (entering the glacial state) i → g → G and the
abrupt termination (of the glacial state) G → i. This dynamical
behavior, where transitions i → G and G → g are “forbidden”
is generically described through a sequence of bifurcations with
a generalized hysteresis behavior [35]. In order to describe the
scenario a model was proposed [16] where the slow dynamics
of the ice volume v(t), as observed in the paleoclimatic record is
coupled to a fast unobserved temperature variable x(t), through
an effective set of coupled ordinary differential equations (ODEs):

v̇ = G(x, v)− I(t)

ẋ = H(x, v, λ). (7)

The term I(t) represents the time dependent astronomical forcing
(insolation), where the minus reflects that the ice volume shrinks
with higher insolation. The parameter λ(t) represents some
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independent slowly varying forcing which changes the structure
of the critical/slow manifold, i.e., of the zero set of H(x, v, λ).

In the autonomous case (I(t) = I0 and λ(t) = λ0) the (2D)
dynamics is limited to stable or unstable fixed points, limit cycles

or homoclinic (heteroclinic) orbits connecting fixed point(s). As
with the van der Pol oscillator we shall assume this to be a fast-
slow system, with the dynamics of the climate variable x being
much faster than the dynamics of the global ice volume v; τx≪τv.

FIGURE 11 | The parameter λ determines the bifurcation structure of the model (7). For λ = 0.1 the deep glacial state G is separated from the interglacial state i and

the mild glacial state g (left panel). The red curve is the trajectory with the insolation I(t) = A cosωF t, A = 0.016 and ωF = 2π/41. The fast-slow hysteresis loop is

i → g → i. As λ decreases the system goes through a transcritical bifurcation for λ = 0 (middle panel). There is also a cusp bifurcation of the slow manifold (not

shown) on reducing λ further. For λ < 0 the state G becomes accessible and the fast-slow system moves through the hysteresis loop i → g → G → i.

FIGURE 12 | By a slow change of the parameter λ (top blue curve) the system moves from 1:1 synchronization with the forcing through a 2:1 to a 3:1

synchronization. The system crosses the transcritical bifurcation for λ = 0 around t = −1000 kyr. The fast (unobserved) variable x(t) is shown in blue. Compare with

the case of the van der Pol oscillator (Figure 8).

FIGURE 13 | The critical/slow manifold {(−λ, v, x)|H(x, v, λ) = 0} is shown in all three panels. The left panel shows the intersections with the plane λ = 0.1

corresponding to the bifurcation diagram in the left panel in Figure 11, the middle panel shows the intersections with the plane λ = −0.05 corresponding to the

bifurcation diagram in the right panel in Figure 11. The right panel shows the trajectory of a few glacial cycles as the period of the cycle increases abruptly at the MPT

with a slow change of λ.
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The dynamics will thus be close to the stable branches of the
critical/slow manifold determined by ẋ = H(x(v, λ), v, λ0) = 0.
This is similar to the dynamics of the van der Pol oscillator,
where the critical/slowmanifold is the x-nullcline (Figure 5). The
dynamics of v can be chosen to be a simple slow relaxation to
an equilibrium volume ve(x) depending on the fast temperature
variable x:

G(x, v) = −(v− ve(x))/τv(x) (8)

The equilibrium volume ve(x) is a linearly decreasing function
of temperature, the large relaxation time scale τv(x) is likewise
a decreasing function of x, reflecting that in the cold glacial

climate both melting and accumulation are small giving a slower
adjustment to equilibrium. For more details see [16] and the
Appendix.

6.3. Geometry of the Bifurcation on the
Slow Manifold
The x-nullcline, or critical manifold, is determined by the surface
H(x(v, λ), v, λ) = 0 in the (x, v, λ) space. Now, since the
function H(x, v, λ) is determined empirically from the observed
climate record, i.e., not at the present level determined from first
principles, the bifurcation structuremust be as generic as possible
given the observations. This means that it must be constructed

FIGURE 14 | In the autonomous case of no external forcing (I(t) = 0, λ = constant), the system (7) shows internal oscillations both before (λ > 0) and after (λ < 0) the

transcritical bifurcation at MPT . The period of the internal oscillation is longer than the period of the forcing (41 kyr): Right top panel shows an internal oscillation of 46

kyr for λ = 0.01, while the left top panel shows an internal oscillation of 110 kyr for λ = −0.05. The middle panels shows the bifurcation diagrams similar to Figure 11.

The straight line is the x-nullcline, which crosses the v-nullcline at an unstable branch, thus the fixed point is unstable. By changing β (see Appendix), the x-nullcline

moves such that it crosses at a stable branch and the fixed point becomes stable and the limit cycle disappears. This is shown in the bottom panels, with the

(multiple) fixed points marked in red.
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with a structure that is robust with respect to small perturbations.
In 1 dimension the only generic bifurcation is the saddle node,
while in 2 dimensions cusp and Hopf bifurcations are generic
[36]. Moreover, if we consider the bifurcations of the critical
manifold on varying a parameter λ independent of both fast
and slow dynamics, two saddle nodes may generically meet at a
transcritical bifurcation.

We postulate that prior to the MPT, for a fixed value of λ(=
0.1), the x-nullclines are as shown in the left panel in Figure 11.
At the MPT, as λ changes, the system goes through a transcritical
bifurcation (middle panel). After the MPT the x-nullclines are
as in Figure 11, right panel. In all cases the stable branches are
shown in black, while the unstable branches are shown in gray.
Figure 12 shows the dynamics (7) for I(t) = A cosωFt, where
the transcritical bifurcation is crossed for λ = 0. Sections of
the trajectory around the corresponding value of λ are shown
in Figure 11 left and right panels. This fast-slow dynamics is
analogous to the van der Pol oscillator (Figure 5).

The critical manifold {(−λ, v, x)|H(x, v, λ) = 0} is shown in
Figure 13. The left panel shows the intersections with the plane
λ = 0.1 corresponding to the bifurcation diagram in the left panel
in Figure 11, the middle panel shows the intersections with the
plane λ = −0.05 corresponding to the bifurcation diagram in
the right panel in Figure 11. The right panel shows the trajectory
of a few glacial cycles as the period of the cycle change from 41
kyr to 82 kyr at the MPT and further to a 123 kyr period with a
slow change of λ (top blue curve in Figure 12).

This is similar to the scenario moving from a 1:1 through a 2:1
to a 3:1 synchronization for the van der Pol oscillator (Figure 8).
Here the system will stay on the lower branch, the glacial state G
through an extra oscillation of the forcing, thus the period of the
response moves from a 2:1 to a 3:1 resonance (see Figure 12).
The dynamics of the 2:1 case are apparent on observing the
oscillations of the trajectory on the lower stable manifold in the
right panel of Figure 13.

Two dynamical effects are at play in the MPT transition in
this model. Firstly, the crossing of the transcritical bifurcation
changes the structure of the critical (slow)manifold, secondly, the
system has a changing internal oscillation with a period longer
than the period of the forcing. The internal oscillation is seen in
the autonomous case I(t) = 0 for Figure 14. By changing the
parameter β (see Appendix) the model transitions from having
stable fixed points to having a stable limit cycle.

The synchronization to the forcing frequency in the non-
autonomous case has a sharp transition around the transcritical
bifurcation λ = 0. Figure 15 shows the synchronization as
a function of the forcing amplitude A and the parameter
λ. The frequency of the oscillator synchronizes in rational
ratio to the forcing frequency ωF . The colored patches of
synchronization are similar to Figure 7. The arrow indicates the
change corresponding to the change of α through the MPT
shown in Figure 12. The effect of an additional stochastic noise
in this model, is to increase variability in the phase of the
synchronization, corresponding to jumping between more than
one pullback attractor [27] in the 2:1 and 3:1 synchronization
situations. For further details we refer the reader to Ashwin and
Ditlevsen [16].

FIGURE 15 | As a function of the forcing amplitude A and the parameter λ the

frequency of the oscillator (7) synchronizes in rational ratio to the forcing

frequency ωF . The colored patches of synchronization correspond to the

frequency locking shown in Figure 7. The arrow indicates the change

corresponding to the change of α through the MPT shown in Figure 12.

7. SUMMARY AND OUTLOOK

We have presented some simple nonlinear models of the
Pleistocene glacial cycles and the transition at the MPT from a
41 kyr to a 100 kyr response to the astronomical forcing. The
apparent 100 kyr cycle after the MPT can be explained without
imposing a 100 kyr component (such as the eccentricity cycle)
in the forcing. In other words, the MPT is described by an
internal reorganization of the response to the forcing, as there
is no noticeable difference in the forcing across the MPT. We
hypothesize, in accordance with the suggestion by Paillard [17],
that the Pleistocene climate can be modeled as a fast-slow system
where the slow manifold contains three stable branches, and a
generic transcritical transition changes the bifurcation structure
on the slow manifold at the MPT.

Understanding the Pleistocene glacial cycles and the MPT is a
major challenge in climate science, and progress on this problem
may well contribute a large step forward in understanding
present day climate change and foreseeing critical transitions
in the future Anthropocene climate. The challenge is twofold
in the sense that we need to understand both the importance
and the coupling between physical components of the climate
system and understand the dynamical mechanisms governing the
complex interactions between external forcing, internal processes
and the different components leading to different timescales in
the variability in the climate system.

Phrased a little differently; it might be that by identifying
robust dynamical features, such as a bifurcation structure on
an effective critical/slow manifold, transitions could be triggered
(say, stochastically) by a variety of physical components. Even
though the conceptual climate models presented here are very
simplistic from a physical point of view, they do show strikingly
complex structure in parameter space of possible responses to
the astronomical forcing. We have not even considered the
quasiperiodic nature of the forcing [27] or chaotic responses to
the forcing [37], which add further levels of complexity to the
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problem. Likewise, we do not consider stochastic modeling of fast
chaotic components [38, 39].

The observed Pleistocene climate evolution is currently
more or less synonymous with the ocean sediment record
(Figure 4), thus the state of the oceanic currents, geographic
distribution of vegetation, sea- and land ice, etc. is sparsely
known. It is thus often stated that discriminating between
alternative models based on reproduction of the one climatic
time series is difficult. That is, if the models presented in
Figures 8, 10, 12 were forced by a Milankovitch forcing
curve and some stochastic forcing, and parameters were
tuned to an optimal fit to observations, they might all give
a fair reproduction of the record. However, as we have
demonstrated, the models presented here do behave differently,
and we believe that the higher merits of our model inspires

as a benchmark for developing the physical basis for the
dynamics.
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APPENDIX

The model for the middle Pleistocene transition from Ashwin
and Ditlevsen [16] in (7) is specified by

G(x, v) = −(v− ve(x))/τv(x)

H(x, v, λ) = h0 tanh
−1(x)+ h1x+ h2v+ h3 +

h4
x+ h6e

−h5v

1+ h7(x+ h8)2
+ λ

where τv(x) = (τi−τG) tanh(µ(x−xp))+τG and ve(x) = β(a−x).
The parameter values used are (h0, ..., h8) =(6.9, 7, −2.80847,
−50, 5, 0.1, 80, 0.2, −4), a = 0.82, b = 0.51, µ = 3, τi = 20,
τG = 130, and xp = −0.5.
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