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Both the shape of bone organs and the micro-architecture of bone tissue are significantly

influenced by the prevailing mechanical loading. In this context, several of the most

striking and hence also most debated issues relate to the question how bone is actually

able to sense and process its mechanical environment. Among other stimuli, it has been

hypothesized that the macroscopic mechanical loading induces pressure gradients in the

pore spaces of bone tissue, and that these pressure gradients lead to fluid flow exciting

the cells that are located in the pore spaces. Since in vitro tests confirmed that cells

subjected to the flow of the surrounding fluid indeed respond in form of altered expression

activities, the scientific community has in large part embraced the fluid flow-hypothesis.

However, direct experimental evidence as to the actual occurrence of sufficiently fast fluid

flow (in order to reach the cell responses observed in vitro) has not been attained so far. In

this paper, a multiscale modeling strategy is presented (inspired by the well-established

concept of continuum micromechanics), allowing for upscaling (or homogenization) of

the fluid flow contributions in the canalicular, lacunar, and vascular pores in terms of a

corresponding macroscopic permeability of bone tissue. The same model also allows for

proceeding the opposite way, namely for downscaling macroscopically acting pressure

gradients to the pore levels. Thus, physiologically relevant mechanical loading conditions

can be related straightforwardly to the correspondingly arising pore-scale pressure

gradients, and, through considering the resulting pressure gradients in suitable transport

laws, also to related fluid velocities. When comparing the such computed fluid velocities

with the fluid velocities that were shown to efficiently excite bone cells in vitro, it turns out

that pressure-driven fluid flow in the canalicular pores is probably not a potent mechanical

stimulus for osteocytes, whereas fluid flow in the vascular pores may indeed reach the

required fluid velocities and hence excite the therein residing osteoblasts, osteoclasts,

and bone lining cells. In conclusion, this paper provides important, unprecedented

insights as to the observation scale-specific cellular mechanosensation in bone.
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1. INTRODUCTION

Given that the pore spaces of bone are inhabited by biological
cells (as well as by hormones, growth factors, and numerous
further proteins) [1–3] bone is standardly considered to be a
living tissue. The cells, namely osteoclasts, osteoblasts, lining
cells, and osteocytes, all of which are often referred to as bone
cells, specifically respond to changes of both biochemical and
mechanical signals occurring in their immediate environments,
in form of decreasing or increasing cell (expression) activities.
This implies that bone cells must be equipped with some kind
of sensors which enable them to quantitatively measure the
aformentioned signals.

Here, we focus on the latter of the two above-introduced
types of regulatory signals sensed by bone cells, namely their
mechanical stimulation. In this context, one of the major
(yet still unresolved) scientific challenges concerns the exact
mechanisms by which bone cells are actually able to sense
their mechanical environment and process changes thereof.
In the late 1980s and early 1990s, respectively, findings
regarding the stimulation of different types of cells by fluid
flow-induced shear stresses, including endothelial cells [4, 5],
were hypothesized to be equally valid for the cells located in
bone. The works of Reich and colleagues can be regarded as
particularly seminal, confirming that fluid shear stress acting
onto osteoblasts can effectively increase the levels of intracellular
cyclic adenosine monophosphate (cAMP), prostaglandin E2, and
inosital triphosphate, altogether indicating increased osteoblast
activity [6, 7]. While fluid shear stress was initially thought to be
a potential mechanical stimulus sensed by osteoblasts, see also
[8, 9], it did not take long until the hypothesis was advocated
that osteocytes (which are considered to be the mechanosensors
in bone [10–12]) may be excited by fluid flow-induced shear
stresses as well [13]. Klein-Nulend and co-workers were among
the first to show the remarkable responsiveness of osteocytes
isolated from embryonic chicken and mouse calvariae when
subjected to fluid flow (in terms of expression of nitric oxide and
prostaglandin E2) [14, 15].

On the one hand, there is no reason to doubt, or even contest
these and similar experimental results [16–20] concerning the
responsiveness of osteoblasts and osteoctyes to fluid shear stress.
On the other hand, however, it seems to be of paramount
importance to tackle the question whether the fluid flow
conditions considered in the aforementioned in vitro studies also
occur in vivo–that is, in the pore spaces of bone in response
to physiologically reasonable loading conditions. Addressing
this issue experimentally is very challenging, and various
experimental modalities have been used for that purpose.
In order to study transport processes in the bone marrow
of cancellous bone, e.g., magnetic resonance imaging (MRI)
techniques have been used; such as diffusion-weighted MRI [21–
25], or perfusion-weighted MRI [21, 22]. Transport processes
in the network of lacunar and canalicular pores, on the other
hand, have been studied mainly based on injecting suitable tracer
molecules, and on visualizing, after a certain amount of time
(optionally involving mechanical loading), the distribution of
the tracer molecules, e.g., by means of fluorescence recovery

after photobleaching (FRAP) [26–28]. While the results of the
referenced and similar studies are indeed insightful, using them
for answering the previously posed question—Do the fluid flow
conditions prescribed in in vitro studies also occur in vivo,
under physiological loading conditions?—remains problematic.
On the one hand, to the best of the authors’s knowledge, the
aforementioned MRI-based experimental techniques have not
yet been applied to study transport processes in the lacunar-
canalicular network. And, on the other hand, it may be difficult to
clearly distinguish between diffusive and perfusive transport; e.g.,
the diffusion coefficient in the bone pore fluid may change upon
mechanical excitation, see the respective discussion in Scheiner
et al. [29] p. 22.

In this paper, an alternative strategy is proposed, based on
establishing mathematical relations between the macroscopic
mechanical loading (of arbitrary direction and magnitude) and
the correspondingly arising velocities of the fluid contained
in the various pore systems of bone tissue. For this purpose,
the concept of continuum micromechanics, which has already
proven remarkably reliable for estimating various properties
of bone tissue, including stiffness [30–33], strength [34, 35],
viscoelasticity [36], poroelasticity [37], and permeability [38], is
utilized. After reviewing the fundamentals of micromechanics,
see section 2.1, adaption of continuum micromechanical
homogenization for permeability upscaling and pressure gradient
downscaling is briefly described in section 2.2. Section 2.3 is then
devoted to the development of a multiscale model of bone tissue,
on the basis of which the equations presented in section 2.2
are correspondingly specified, see sections 2.4.1–2.4.5, followed
by a summary of the required input data, see section 2.5. As
regards numerical studies, the multiscale model is first validated
based on comparing model-predicted permeabilities to suitable
experimental data, see section 3.1. Furthermore, downscaling of
pressure gradients is performed, allowing for computation of
pore-scale fluid flow velocities, see section 3.2. These velocities
are then assessed in terms of their capability of stimulating bone
cells, see section 3.3. The paper is concluded by a discussion of
the key findings of this paper, of the strengths and limitations of
the proposed model, and of potential follow-up future research
directions, see section 4.

2. MATERIALS AND METHODS

2.1. Introduction of Representative Volume
Elements
In continuum micromechanics, a material is thought to be
macro-homogenous, but micro-heterogenous. Considering an
arbitrary volume element hosting such material, this volume
element is representative in terms of the physical behavior of
the contained material if its characteristic length, ℓRVE, is much
larger than the characteristic size of the micro-heterogeneities,
dRVE, within the RVE, i.e., ℓRVE ≫ dRVE [39–41]. In particular,
ℓRVE must be (at least) 2–3 times larger than dRVE in order to
comply with this requirement [42]. On the other hand, ℓRVE
must be considerably smaller than the characteristic length of the
geometry of a structure composed of the material defined on the
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RVE, L, as well as of the loading acting onto such a structure, P .
The requirement ℓRVE ≪ {L,P} is satisfyingly fulfilled as long as
L and P , respectively, are (at least) 5 to 10 times larger than ℓRVE
[43].

The microstructure of the material contained within a
representative volume element (RVE) is typically too complex
to describe in its entirety. Instead, quasi-homogeneous material
phases are introduced. These material phases exhibit known
physical properties, such as volume fractions, mechanical
or transport properties, and a variety of different phase
morphologies can be established, thereby allowing the
introduction of different phase shapes, and interactions between
the considered material phases. Continuum micromechanics
enables the derivation of mathematical relations which reconcile
these conditions, for the eventual estimation of macroscopic
physical properties valid on the level of the RVE, based on the
corresponding phase properties. This mathematical method is
often referred to as homogenization, or upscaling.

Homogenization can be carried out in a sequential fashion if
a material phase itself exhibits a heterogeneous microstructure.
Then, an additional RVE can be introduced within the respective
material phase [32]; the characteristic length of this new RVE,
ℓRVE,2, must fulfill the requirement ℓRVE,2 ≤ dRVE, while the
principle of scale separation demands that the characteristic
length of the heterogeneities within the new RVE, dRVE, 2, are
again considerably smaller than ℓRVE,2, i.e., dRVE,2 ≪ ℓRVE,2. This
leads to a multi-step homogenization scheme.

2.2. Theoretical Foundations of
Permeability Upscaling and Pressure
Gradient Downscaling
In the following, the concept of continuummicromechanical up-
and downscaling, which was originally developed for studying
mechanical properties of materials [40, 44], is adapted in order
to derive permeability upscaling relations and pressure gradients
downscaling relations.

In particular, analogously to classical continuum
micromechanics [40, 44], an RVE is subjected to a homogeneous
macroscopic pressure gradient, GRAD pRVE, implying that at
the surface of the RVE, ∂VRVE, microscopic pressures p obey the
following boundary condition [45, 46]:

∀x ∈ ∂VRVE : p(x) = GRAD pRVE · x , (1)

where x is the position vector. It can be shown [38] that
Equation (1) leads to a pressure gradient averaging rule, reading
as

GRAD pRVE =
1

VRVE

∫

VRVE

grad p(x) dV , (2)

where VRVE denotes the volume of the RVE. Furthermore, it is
supposed that the RVE contains fluid which can move according
to potentially arising pressure gradients, thereby following a
transport law which can be considered to be the microscopic

counterpart to the well-known Darcy law [38, 45]. Hence, the
velocity of the fluid at position x, v(x), is defined as

v(x) = −K(x) · grad p(x) , (3)

withK(x) being the position-dependent permeability tensor. The
fluid is considered to be incompressible and required to fulfill,
throughout the entire RVE, mass conservation, implying

div v(x) = 0 . (4)

Equation (4) allows to derive the velocity averaging relation, see
Abdalrahman et al. [38] and Damrongwiriyanupap et al. [47] for
details, reading as

vRVE =
1

VRVE

∫

VRVE

v(x) dV . (5)

Combining Equations (2–5) allows to derive the Darcy law in its
classical, macroscopic format [38],

vRVE = −KRVE · GRAD pRVE , (6)

with the homogenized permeability of the RVE defined as

KRVE =
1

VRVE

∫

VRVE

K(x) · A(x) dV , (7)

with A(x) as the so-called localization or concentration tensor
(originally introduced in the context of linear elasticity [40, 48]),
allowing for linearly relating macro- and microscopic pressure
gradients,

grad p(x) = A(x) · GRAD pRVE . (8)

At this point, it is expedient to simplify the microstructure of the
RVE, in terms of introducing material phases and corresponding
volume fractions instead of considering the microstructure in
minute detail, see section 2.1. Then, the fields of permeability
and concentration tensors, K(x) and A(x), can be replaced by
corresponding phase-specific tensors, Ki and Ai, requiring to
accordingly rewrite Equations (8, 9), yielding

KRVE =
∑

i

fiKi · Ai , (9)

with fi as volume fraction of phase i, and

grad pi = Ai · GRAD pRVE . (10)

Finally, the phase-specific pressure gradient concentration tensor
Ai is defined based on adapting Eshelby’s matrix-inclusion or
inhomogeneity problem [49], see also [46],

Ai =
[

1+ Pmat
i · (Ki − Kmat)

]−1 ·






∑

j

fj

[

1+ Pmat
j ·

(

Kj − Kmat
)

]−1







−1

, (11)
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where 1 is the second-order unit tensor, and Pmat
i is the

inhomogeneity tensor relating to phase i. The inhomogeneity
tensor depends on the shape of the inhomogeneity, as well as
on the permeability of the matrix in which it is embedded,
Kmat. Detailed descriptions of how Pmat

i is derived can be found
elsewhere [38, 41, 44].

2.3. Multiscale Model of Bone Tissue
Bone is a hierarchically built-up material, made largely out of
collagen, hydroxyapatite matrix, and water, and also contains
bone marrow, cells, as well as non-collagenous proteins. Two
different types of bony structures can be identified in bone
organs: The dense and compact cortical bone often forming
the shell of bone organs, and the more loosely packed and
highly porous trabecular or cancellous bone [50]. A graphical
illustration of the hierarchical organization of bone can be found
in [29].

Cancellous bone lines the walls of the medullary cavity, where
the bone marrow is stored, and has a high surface area due to its
inter-trabecular porosity, ranging from 50 to 90% [51]. Cortical
bone, on the other hand, is less porous, with a vascular porosity
of a few (typically around 5%) percent in young adults [52–54];
in the course of aging, the vascular porosity in cortical bone may
increase significantly, up to 35% [55]. Vascular pores, as the name
already implies, host blood vessels in a branched structure, the
main larger branches being aligned along the bone axis called
Haversian canals and the smaller Volkmann canals, which are
often imagined to be oriented more or less perpendicular to the
Haversian canals [56]. The next smaller pores are the lacunae,
hosting the osteocytic cell bodies. The lacunar porosity lies within
a range of approximately 1.5 to 10% [57–60], and the diameter

of the lacunar pores amounts to a few microns [61, 62]. The
even smaller, cylindrically shaped canaliculi are a few hundred
nanometers in diameter [63–65], and exhibit a volume fraction
of approximately 1–3% [60, 66, 67]. Remarkably, the canaliculi
contain the cell processes of the osteocytes. As canaliculi occur
in form of a dense network embedded in the extracellular
bone matrix, they allow for effective communication between
osteocytes.

At even lower observation scales, further types of pore spaces
can be discerned, namely the space between the hydroxyapatite
crystals (together forming the so-called extrafibrillar space),
and the intramolecular pore space found between collagen
molecules, (see e.g., [32, 34, 68, 69]). Both intercrystalline
and intermolecular pore spaces are however irrelevant for
the work presented in this paper, and are hence neglected
subsequently.

Considering the hierarchical organization of bone with regard
to the principle of scale separation introduced in section 2.1,
it seems reasonable to represent bone tissue by means of three
RVEs, see Figure 1:

• The RVE of extralacunar bone matrix consists of canalicular
pores, represented as cylindrical, arbitrarily oriented
inclusions, which are interpenetrating, exhibiting a
characteristic length of dcan ≈ 100 × 10−9m, and of
the impermeable extracanalicular bone matrix phase,
sometimes referred to as extracellular bone matrix. For the
sake of simplicity, the extracanalicular phase is considered
to be of spherical shape. Together, these two material phases
form the polycrystalline extralacunar matrix which exhibits
a characteristic length of ℓexlac ≈ 0.5...2 × 10−6m, thereby
fulfilling ℓexlac ≫ dcan.

FIGURE 1 | Model representation based on which permeability upscaling and pressure gradient downscaling is performed, including the RVE of macroscopic bone

tissue (left), containing vascular pores (oriented arbitrarily or longitudinally) and extravascular matrix, the RVE of extravascular bone material (middle), containing

lacunar pores and the extralacunar bone matrix, and the RVE of extralacunar bone material (right), containing canalicular pores and extracanalicular bone matrix.
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• Together with the lacunar pores (which are approximated as
spherical material phase), the material defined on the first
RVE, extralacunar bone matrix, forms extravascular bone
matrix. The characteristic length of this RVE lies within the
range of ℓexvas ≈ 20...30 × 10−6m, while the characteristic
length of the lacunae is dlac ≈ 10× 10−6m [29, 32–34].

• On an even larger scale of observation, macroscopic
bone tissue can be identified at a characteristic length of
ℓmacro ≈ 100...200 × 10−6m. It is composed of vascular
pores, represented as cylindrical inhomogeneities with
a characteristic length of dvas ≈ 50 × 10−6 m, and the
extravascular bone matrix. In order to cover different types
of bone tissue, such as (osteonal) cortical and trabecular
bone, as well as the transition zone in-between, that is
endocortical bone, two morphologies are considered. Firstly,
the vascular pores are introduced with a preferred, namely
longitudinal orientation, and the extravascular bone material
acts as a matrix phase hosting the pores as inclusions. This
matrix-inclusion-type morphology reflects the situation in
cortical bone, if Haversian canals are the dominant type
of pore space, and Volkmann canals are negligibly scarce.
Secondly, it is considered that vascular pores may also form
an interpenetrating pore network of arbitrarily oriented
inclusions (which may reflect the situation in endocortical
or trabecular bone, but also in cortical bone with more
frequent occurrence of Volkmann canals). The extravascular
material are then modeled as spherical inclusions
in-between.

Notably, similar model representations were used previously
in the field of bone (fluid) mechanics, e.g., in order to
homogenize bone stiffness [32, 70], poroelasticity [29, 33, 37, 71],
viscoelasticity [36], strength [34], and the trabecular permeability
[38]. All these works included substantial experimental
validation, hence underpinning the soundness of the chosen
model representation.

2.4. Derivation of Scaling Relations
Specializing Equations (9–11) for the sequence of RVEs
introduced in section 2.3 yields a set of equations which allow,
on the one hand, for upscaling the permeability from the length
scales of single canaliculi, lacunae, and vascular pores to the
length scale of macroscopic bone tissue, and, on the other
hand, for downscaling pressure gradients from the length scale
of macroscopic bone to the length scales of single vascular
pores, lacunae, and canaliculi. The following sections 2.4.1–2.4.4
are devoted to explaining the aforementioned specializations,
while the (partly lengthy) equations defining the resulting
concentration and permeability tensors are provided in the
Supplementary Material of this article.

2.4.1. Extralacunar Bone Matrix
Considering the morphology of the RVE of extralacunar bone
matrix as defined in section 2.3, the concentration tensors related
to the RVE-defining material phases, canalicular pores and
extracanalicular bone matrix, follow from respective utilization

of Equation (11), and read as

Acan(ϑ ,ϕ) =
[

1+ Pexlaccan (ϑ ,ϕ) ·
(

Kcan(ϑ ,ϕ)− Kexlac
)

]−1
·

{

φexlac
can

2π
∫

ϕ=0

π
∫

ϑ=0

sinϑ

4π

[

1+ Pexlaccan (ϑ ,ϕ)·

(Kcan(ϑ ,ϕ)− Kexlac)
]−1

dϑ dϕ +
(

1− φexlac
can

) [

1− Pexlacexcan · Kexlac

]−1
}−1

, (12)

and

Aexcan =
[

1−Pexlacexcan·Kexlac

]−1
·

{

φexlac
can

2π
∫

ϕ=0

π
∫

ϑ=0

sinϑ

4π
·

[

1+ Pexlaccan (ϑ ,ϕ) ·
(

Kcan(ϑ ,ϕ)− Kexlac
)

]−1
dϑ dϕ +

(

1− φexlac
can

) [

1− Pexlacexcan · Kexlac

]−1
}−1

. (13)

In Equations (12, 13), φexlac
can denotes the volume fraction of

the canalicular pores quantified on the RVE of extralacunar
bone matrix. It should be noted that, in Equations (12, 13)
as well as subsequently, variable φ is chosen to represent pore
space volume fractions (or porosities) instead of f (which
was used in section 2.2), as is usually done in the field
of poromechanics. Furthermore, Pexlaccan and Pexlacexcan denote the
inhomogeneity tensors of the (cylindrical) canalicular pores and
the (spherical) extracanalicular bone matrix, both assumed to be
embedded in the polycrystal-type extralacunar matrix, whereby
the permeability of the latter is defined through tensor Kexlac =
Kexlac1. The inhomogeneity tensors are defined according to the
work of Abdalrahman et al. [38], reading as

Pexlaccan =
1

2Kexlac





0 0 0
0 1 0
0 0 1





es ,et ,eu

, (14)

with unit vectors es (oriented in direction of the cylindrical
canaliculus), as well as et and eu (oriented orthogonal both to
es and to each other) spanning the base frame of the cylindrical
pore, and

Pexlacexcan =
1

3Kexlac
1 . (15)

As for the permeability tensor Kcan, taking into account pressure
gradient-driven fluid flow in the canalicular pores, it is assumed
that this fluid flow is appropriately described by the famous law
postulated by Hagen [72] and Poiseuille [73], see also [74]. As
demonstrated in Abdalrahman et al. [38] and Dormieux and
Kondo [45], setting the velocity of the pore fluid equal to the
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velocity of a pore-scale, microscopic version of the Darcy law
gives access to

Kcan =
r2can
8η





1 0 0
0 0 0
0 0 0





es ,et ,eu

, (16)

where rcan is the radius of the canaliculus, and η is the
dynamic fluid viscosity (see section 2.5 for some considerations
concerning the numerical value of η). Note that Kcan is a
Darcy-type, viscosity-afflicted permeability, with m2/(Pa·s) as
standard unit, which should not be confused with the intrinsic
permeability, which is usually measured in m2. As pointed out
in section 2.3, the extracanalicular bone matrix is considered to
be impermeable, hence Kexcan = 0. Importantly, the arbitrary
orientation of the canalicular pores implies that all quantities
related to the canalicular pores (Pexlaccan , Kexlac, and Acan) are
defined as function of the pore orientation, considered via
Euler angles ϑ and ϕ. Furthermore, for summation over all
material phases, it is necessary to integrate over all possible pore
orientations, see, e.g., the double integrals in Equations (12, 13).
The thereby involved transformations of second-order tensors is
explained in detail in the Supplementary Material of this article.

Finally, insertion of Equations (12, 13), as well as of
Kexcan = 0 into Equation (9) gives access to the homogenized
permeability of extralacunar bone matrix,

Kexlac = φexlac
can

2π
∫

ϕ=0

π
∫

ϑ=0

sinϑ

4π
Kcan(ϑ ,ϕ) · Acan(ϑ ,ϕ) dϑ dϕ .

(17)
On the other hand, the concentration tensors defined through
Equations (12, 13) allow for downscaling of pressure gradients
from the length scale of extralacunar bone matrix to the
constituents of the latter, that is to the canalicular pores and the
extracanalicular bone matrix, through

grad pcan(ϑ ,ϕ) = Acan(ϑ ,ϕ) · grad pexlac , (18)

and

grad pexcan = Aexcan · grad pexlac , (19)

where grad pcan(ϑ ,ϕ) are the orientation-dependent pressure
gradients in the canalicular pores, grad pexcan is the pressure
gradient in the extracanalicular bone matrix, and grad pexlac is
the pressure gradient on the RVE of extralacunar bone matrix.
Note that, due to the multi-step nature of the homogenization
scheme presented in section 2.4, the RVE-scale pressure gradients
occurring in section 2.4.1, and also subsequently, are no longer
denoted by a gradient operator in capital letters, as introduced,
for the sake of clarity, in section 2.2.

2.4.2. Extravascular Bone Matrix
Owing to the distinct matrix-inclusion morphology of the RVE
of extravascular bone matrix, the concentration tensors of the
lacunar pores and of the extralacunar bone matrix follow as

Alac =
[

1+ Pexlaclac · (Klac − Kexlac)
]−1

·

{

φexvas
lac

[

1+ Pexlaclac ·
(

Klac − Kexlac
)

]−1
+ (20)

(

1− φexvas
lac

)

1

}−1

,

and

Aexlac =
{

φexvas
lac

[

1+Pexlaclac ·
(

Klac−Kexlac
)

]−1
+
(

1−φexvas
lac

)

1

}−1

,

(21)
where φexvas

lac is the lacunar porosity, quantified on the RVE of
extravascular bone matrix, Klac is the permeability tensor related
to the lacunar pores, and Pexlaclac is the inhomogeneity tensor of
the spherical lacunar pores embedded in a matrix exhibiting a
permeability which is described by tensor Kexlac. While Kexlac is
the outcome of the first homogenization step, see Equation (17)
of this paper and Equation (S13) of the Supplementary Material,
Klac is chosen according to the work of Markov et al. [75].
They considered spherical inclusions embedded in a porous
domain, and analyzed the pressure gradient-driven fluid flow
across such a domain by means of a Stokes analysis. The such
computed fluid flow was then set equal to a quasi-Darcy law
analogous to the strategy proposed in Dormieux and Kondo [45]
and Abdalrahman et al. [38] and summarized in section 2.4.1,
allowing for back-analysis of a corresponding permeability
related to the lacunar pores. In particular, Markov et al. [75] chose
the boundary conditions concerning the continuity of the normal
pressure and the normal velocity components as suggested in
Beavers and Joseph [76] and Saffman [77]. Tying in with these
works, the permeability of the lacunar pores follows as

Klac =
r2lac
6η

(

1− 4
λ
√

ηKexlac

rlac

)

1 , (22)

where rlac is the radius of the (spherical) lacunar pores, and
λ is the dimensionless, semi-empirical slip coefficient typically
varying between 0 and 5, the latter range following from
the experiments described in [76]. However, considering the
numerical values forKexlac and rlac that are relevant in the context
of the present paper, it can be readily seen that 4λ

√
ηKexlac/rlac≪

1. Hence, it is reasonable to simplify the definition of Klac

accordingly, Klac ≈ r2lac/(6η)1. Finally, inhomogeneity tensor

Pexlaclac is equal to Pexlacexcan, P
exlac
lac = Pexlacexcan, see Equation (15).

Equations (10, 11) give access to the permeability tensor of
extravascular bone matrix, Kexvas = Kexvas1, via

Kexvas = φexvas
lac Klac · Alac + (1− φexvas

lac )Kexlac · Aexlac , (23)

and allow to evaluate the pressure gradient downscaling relations
on the RVE of extravascular bone matrix,

grad plac = Alac · grad pexvas , (24)

and

grad pexlac = Aexlac · grad pexvas , (25)
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where grad plac and grad pexlac, respectively, are the pressure
gradients in the lacunar pores and in the extralacunar bone
matrix, respectively, whereas grad pexvas is the pressure gradient
on the RVE of extravascular bone matrix.

2.4.3. Macroscopic Bone Tissue–Arbitrarily Oriented

Vascular Pores
At the macroscopic level, the case of arbitrarily oriented,
interpenetrating vascular pores, embedded in a matrix
representing the macroscopic bone tissue (with permeability
Karb
macro = Karb

macro1), is considered first.
For such an RVE morphology, the concentration tensors

related to the vascular pores and to the extravascular bone matrix
follow as

Aarb
vas(ϑ ,ϕ) =

[

1+ Pmacro
vas (ϑ ,ϕ) ·

(

Kvas(ϑ ,ϕ)− Karb
macro

)

]−1

·

{

φmacro
vas

2π
∫

ϕ=0

π
∫

ϑ=0

sinϑ

4π

[

1+ Pmacro
vas (ϑ ,ϕ) ·

(

Kvas(ϑ ,ϕ)− Karb
macro

)

]−1
dϑ dϕ +

(

1− φmacro
vas

)

·

[

1+ Pmacro
exvas

(

Kexvas − Karb
macro

)

]−1
}−1

, (26)

and

Aarb
exvas =

[

1+ Pmacro
exvas ·

(

Kexvas − Karb
macro

)

]−1

·

{

φmacro
vas

2π
∫

ϕ=0

π
∫

ϑ=0

sinϑ

4π

[

1+ Pmacro
vas (ϑ ,ϕ) ·

(

Kvas(ϑ ,ϕ)− Karb
macro

)

]−1
dϑ dϕ +

(

1− φmacro
vas

)

·

[

1+ Pmacro
exvas ·

(

Kexvas − Karb
macro

)

]−1
}−1

, (27)

with φmacro
vas as the vascular porosity, quantified on the RVE of

macroscopic bone tissue, Pmacro
vas (ϑ ,ϕ) and Pmacro

exvas , respectively,
as the inhomogeneity tensors related to the vascular pores and to
the extravascular bone matrix, respectively, and Kvas(ϑ ,ϕ) as the
permeability of the vascular pores; note that the components of
the inhomogeneity tensor and of the permeability tensor related
to the vascular pores depend on the orientation of the pores.
Analogously to the inhomogeneity tensors defined on the RVE
of extralacunar bone matrix, see section 2.4.1, Pmacro

vas (ϑ ,ϕ) and
Pmacro
exvas are defined as

Pmacro
vas =

1

2Karb
macro





0 0 0
0 1 0
0 0 1





es ,et ,eu

, (28)

and

Pmacro
exvas =

1

3Karb
macro

1 . (29)

Also, Kvas(ϑ ,ϕ) is defined analogously to Kcan(ϑ ,ϕ), see the
corresponding explanations in section 2.4.1, namely through

Kvas =
r2vas
8η





1 0 0
0 0 0
0 0 0





es ,et ,eu

, (30)

where rvas is the radius of the vascular pores. The permeability of
the extravascular bone matrix is known from the previous
homogenization step, Kexvas = Kexvas1, according to
Equation (23) of this paper, and Equation (S16) of the
Supplementary Material.

The concentration tensors according to Equations (29, 30)
are then inserted into Equations (10, 11), in order to derive
the permeability tensor of macroscopic bone tissue containing
arbitrarily oriented vascular pores,

Karb
macro = φmacro

vas

2π
∫

ϕ=0

π
∫

ϑ=0

sinϑ

4π
Kvas(ϑ ,ϕ) · Aarb

vas(ϑ ,ϕ) dϑ dϕ +

(

1− φmacro
vas

)

Kexvas · Aarb
exvas , (31)

as well as the pressure gradient downscaling relations allowing
to relate the macroscopic pressure gradient grad pmacro to the
orientation-dependent pressure gradients in the vascular pores,
grad parbvas(ϑ ,ϕ),

grad parbvas(ϑ ,ϕ) = Aarb
vas(ϑ ,ϕ) · grad pmacro , (32)

and to the pressure gradient in the extravascular bone matrix,
grad parbexvas,

grad parbexvas = Aarb
exvas · grad pmacro . (33)

2.4.4. Macroscopic Bone Tissue–Longitudinally

Oriented Vascular Pores
When considering that the vascular pores are oriented
longitudinally, as it can be expected for cortical bone in
long bones, a distinctive matrix-inclusion morphology emerges,
i.e., the vascular pores act as inclusions in a matrix consisting
of extravascular bone matrix (which exhibits the permeability
Kexvas = Kexvas1). Then, the concentrations tensors related to
the vascular pores and to the extravascular bone matrix read as

A
long
vas =

[

1+ Pexvasvas ·
(

Kvas − Kexvas
)

]−1
·

{

φmacro
vas

[

1+ Pexvasvas ·
(

Kvas − Kexvas
)

]−1
+

(

1− φmacro
vas )1

}−1

,

(34)

and

A
long
exvas =

{

φmacro
vas

[

1+ Pexvasvas ·
(

Kvas − Kexvas
)

]−1
+

(

1− φmacro
vas )1

}−1

.

(35)
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Inhomogeneity tensor Pexvasvas is defined analogously to
Equation (28),

Pexvasvas =
1

2Kexvas





0 0 0
0 1 0
0 0 1





es ,et ,eu

, (36)

taking, however, into account that extravascular bone is now
acting as matrix phase hosting the vascular pores. Furthermore,
Kvas is defined as shown in Equation (30). Note that, in contrast
to Equations (26, 27), only one orientation of the vascular
pores is considered in Equations (34, 35); hence no coordinate
transformation is necessary when considering longitudinally
oriented vascular pores.

The above-defined concentration tensors A
long
vas and A

long
exvas

allow for deriving the upscaled permeability tensor K
long
macro,

K
long
macro = φmacro

vas Kvas ·A
long
vas +

(

1− φmacro
vas

)

Kexvas ·A
long
exvas , (37)

as well as the downscaled pressure gradients in the vascular pores,

grad p
long
vas ,

grad p
long
vas = A

long
vas · grad pmacro , (38)

and in the extravascular bone matrix, grad p
long
exvas,

grad p
long
exvas = A

long
exvas · grad pmacro . (39)

Notably, the longitudinal orientation of the vascular pores

implies a transversally isotropic permeability tensor K
long
macro.

Hence, the main diagonal of K
long
macro includes one longitudinal

component, K
long,l
macro, and two transversal components, K

long,t
macro,

withK
long,l
macro > K

long,t
macro due to Equation (30); all other components

(i.e., K
long
macro,ij with i 6= j) are zero.

2.4.5. Further Evaluation of the Permeability Up- and

Pressure Gradient Downscaling Relations
Inserting Equations (14–16) into Equations (12–13), and
the resulting expressions into Equation (17), gives access
to the upscaled permeability of extralacunar bone matrix,
Kexlac = Kexlac(φ

exlac
can , rcan, η), see Equation (S13) of the

Supplementary Material for details. Inserting Kexlac, Pexlaclac
according to Equation (15), and of Equation (22) into
Equations (20, 21), and the resulting expressions into
Equation (23), gives access to the upscaled permeability of
extravascular bone matrix, Kexvas, see Equation (S16) of the
Supplementary Material for details. Inserting Kexvas, as well as
Equations (28–30) into Equations (26, 27), and the resulting
expressions into Equation (31), gives access to the upscaled
permeability of macroscopic bone tissue containing arbitrarily
oriented vascular pores, Karb

macro, see Equation (S25) of the
Supplementary Material for details. And, finally, inserting
Kexvas, as well as Equations (30, 36) into Equations (34, 35),
and the resulting expressions into Equation (37), gives access
to the upscaled permeability of macroscopic bone tissue

containing longitudinally oriented vascular pores, K
long
macro, see

Equations (S28–S30) of the Supplementary Material for details.
The concentration tensors needed for estimating the pressure

gradients arising in the canalicular pores in response to pressure
gradients defined on the length scale of extralacunar bonematrix,
the pressure gradients in the lacunar pores in response to
pressure gradients defined on the length scale of extravascular
bone matrix, and the pressure gradients in the vascular pores
in response to pressure gradients defined on the length scale of
macroscopic bone tissue can be found in Equations (S5–S12),
(S14), (S15), and (S17–S24) of the Supplementary Material of
this paper. Furthermore, combination of Equations (33) or (39)
with Equation (24) gives access to the pressure gradients in the
lacunar pores in response to macroscopic pressure gradients,

grad p
arb/long
lac = Alac · A

arb/long
exvas · grad pmacro , (40)

whereas combination of Equations (33) or (39) with
Equations (25, 18) gives access to the pressure gradients in
the canalicular pores in response to macroscopic pressure
gradients,

grad p
arb/long
can (ϑ ,ϕ) = Acan(ϑ ,ϕ) · Aexlac · A

arb/long
exvas · grad pmacro .

(41)
In Equations (40, 41), superscript “arb/long” expresses that
either arbitrarily or longitudinally oriented vascular pores are
considered.

2.5. Model Input Parameters
Evaluation of the model elaborated in section 2.4 is based on
three categories of model parameters: (i) canalicular, lacunar, and
vascular porosities (φexlac

can , φexvas
lac , and φmacro

vas ); (ii) canalicular,
lacunar, and vascular pore radii (rcan, rlac, and rvas); and (iii) the
dynamic viscosities of the canalicular, lacunar, and vascular pore
fluids (ηcan, ηlac, and ηvas). Physiologically reasonable ranges for
the porosities and pore radii have already been defined in section
2.3.

Concerning the pore fluid viscosities, it is assumed that no
relevant differences between the considered types of pore spaces
occur, i.e., ηcan = ηlac = ηvas = η. This assumption has been
introduced tacitly in section 2.4, by not distinguishing between
the viscosities related to different pore spaces, compare, e.g.,
Equations (16), (22), and (30). Furthermore, it is well known
that the dynamic viscosity of bulk water amounts to 0.001 Pa s;
a value that has been used frequently in both experimental
and theoretical studies related to the movement of fluid in
the lacunar-canalicular pore system of bone [78–80]. However,
water is a polarized fluid. As such, it changes its transport
behavior when adjacent to electrically charged surfaces (such as
the hydroxyapatite crystals, building up extracanalicular bone
material). In fact, so-called structured, or ice-type water (of liquid
crystalline nature) forms, leading to a higher viscosity and a lower
diffusivity in the affected regions, referred to as surface zone [81],
or exclusion zone [82]. The thickness of this zone ranges from
some hundred micrometers up to a few millimeters [83, 84],
as evidenced by several different experimental modalities, see
[38] for a brief overview. Moreover, Ichikawa et al. [85] and
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Ichikawa et al. [83] quantified, by means of molecular dynamics
studies (on water molecules which are surrounded by clay-type
mineral surfaces), that the viscosity in structured water increases
on average by a factor of approximately 7. Hence, given that the
pore fluid in bone tissue is quite similar to water, it is assumed
that the dynamic viscosity of the fluid contained in all considered
pore spaces amounts to η = 0.007 Pa s.

3. RESULTS

3.1. Model Validation–Comparison of
Model-Predicted Permeabilities to
Experimental and Alternative Computer
Simulation Data
First, the model is experimentally validated, based on comparing
the model-predicted, upscaled permeabilities to experimentally
derived permeabilities of bone tissue on different observation
scales. In order to take into account the variability of the
model input data, in particular of the canalicular, lacunar, and
vascular porosities as well as of the pore radii, the effects of
varying these quantities is studied within the following ranges,
see also section 2.3: φexlac

can = [0.015, 0.03], φexvas
lac = [0.01, 0.10],

φmacro
vas = [0.20, 0.75] for arbitrarily oriented vascular pores,

φmacro
vas = [0.03, 0.20] for longitudinally oriented vascular pores,

rcan = [50, 150] × 10−9m, rlac = [2.5, 10] × 10−6m, and
rvas = [25, 300] × 10−6m. Entering these values, together
with η = 0.007 Pa s into the permeability upscaling relations
derived in section 2.4, gives access to the permeabilities of
extralacunar bone matrix, of extravascular bone matrix, and of
macroscopic bone tissue, see also the Supplementary Material of

FIGURE 2 | The model-predicted, non-zero components of the isotropic

permeability tensors of extralacunar bone matrix (Kexlac), extravascular bone

matrix (Kexvas), and macroscopic bone tissue when considering arbitrarily

oriented vascular pores (Karb
macro), and of the transversally isotropic permeability

tensor of macroscopic bone tissue when considering longitudinally oriented

vascular pores (K
long,l
macro and K

long,t
macro), see Section 2.4 and the

Supplementary Material for details; the ranges shown for each permeability

highlight the resulting upper and lower limits when varying the canalicular,

lacunar, and vascular porosities, and the corresponding pore radii within the

physiologically reasonable ranges.

this paper. The ranges of these permeabilities, stemming from the
aforementioned porosity and pore radii variations, are depicted
in Figure 2.

While open literature does not provide experimentally derived
permeability data relating to extralacunar bone matrix, respective
numerically computed values can be found in Sansalone
et al. [86], or deduced from Kaiser et al. [87], agreeing
reasonably well with the extralacunar permeabilities predicted
by the here presented model. As for extravascular bone matrix,
most studies report intrinsic permeabilities ranging from 10−22

to 6.7 × 10−18m2 [78, 79, 88, 89], while optionally, intrinsic
permeabilities between 5 × 10−25 to 2.8 × 10−23m2 [80, 90]
are reported. Given these substantial variations, and considering
a viscosity of η = 0.007 Pa s for converting the Darcy-type
permeabilities shown in Figure 2 into intrinsic ones, allows to
conclude that the model-predicted extravascular permeabilities
agree reasonably well with independent data found in literature.
On the macroscopic scale, the model has already successfully
undergone comprehensive experimental validation in a previous
work [38], thereby considering arbitrarily oriented vascular

pores. Furthermore, as can be seen in Figure 2, K
long,l
macro is very

similar to Karb
macro, whereas K

long,t
macro is, as expected, by orders of

magnitude smaller.

3.2. Sensitivities of Downscaled Pressure
Gradients and Pore Fluid Velocities
In order to study howmacroscopically applied pressure gradients
are transferred to the considered material phases, a macroscopic
pressure gradient of grad pmacro = [0, 0, 1 kPa/mm]T is inserted
into the downscaling relations described in section 2.4.5. In

FIGURE 3 | Pressure gradient gradpmacro = [0, 0, 1]T kPa/mm applied on the

level of macroscopic bone tissue, and the corresponding maximum pressure

gradients in all considered material phases, for both arbitrarily and

longitudinally oriented vascular pores; in the cylindrical (vascular and

canalicular) pore phases, the respective maximum pressure gradients in pore

direction are shown, thereby considering all possible pore orientations.
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Figure 3, the resultingmaterial phase-scale pressure gradients are
shown. It should be noted that in the arbitrarily oriented vascular
and canalicular pores the magnitudes of the pressure gradients
depend on the pore orientation, and in Figure 3 the respective
maximum pressure gradients are shown. When considering, on
the one hand, arbitrarily oriented vascular pores, themacroscopic
pressure gradient is transferred to the extravascular bone matrix
with almost no attenuation, while the pressure gradient in
the vascular pores amounts to 0.66 kPa/mm. The pressure
gradient arriving in the lacunar pores is virtually zero, while the
pressure gradient in the extralacunar bone matrix is amplified
as compared to the macroscopic one, to 1.11 kPa/mm. In the
canalicular pores, in turn, the pressure gradient amounts to
0.74 kPa/mm, while, analogously to the RVE ofmacroscopic bone
tissue, the pressure gradient in the extracanalicular bone matrix
is only marginally smaller than the one in the extralacunar bone
matrix. On the other hand, for longitudinally oriented vascular

pores, all pressure gradients are slightly reduced as compared
to arbitrarily oriented vascular pores, except for the pressure
gradient in the vascular pores; the latter is exactly zero, due to the
fact that for such morphology the prescribed pressure gradient is
oriented perpendicular to the vascular pores.

It is now interesting to study how the pore-scale pressure
gradients translate into corresponding fluid velocities, as well as
the sensitivities of these velocities to changes of the canalicular,
lacunar, and vascular porosities as well as pore radii. To
that end, the porosities and pore radii are varied within the
ranges introduced in section 3.1, and pore fluid velocities
are calculated by inserting the downscaled canalicular and
vascular pressure gradients into v = −[r2/(8η)]dp/ds [38],
with s being the longitudinal pore direction; the results of
this study are shown in Figure 4. Notably, the downscaled
pressure gradients in the lacunar pores are negligibly small,
hence presentation and further discussion of the velocities in

FIGURE 4 | Sensitivities of model-predicted maximum canalicular and vascular pore fluid velocities, in response to the macroscopic pressure gradient

gradpmacro = [0, 0, 1]T kPa/mm, considering the following variations of porosities and pore radii: φexlac
can = [0.015, 0.03] and rcan = [50, 150]× 10−9 m, see (A–C);

φexvas
lac = [0.01, 0.1] and rlac = [5, 10]× 10−6 m, see (D–F); φmacro

vas = [0.2, 0.8] and rvas = [25, 125]× 10−6 m, see (G–I).
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the lacunar pores is omitted in this paper. The fluid velocities
in the canalicular pores increase significantly with increasing
radius of the canaliculi (regardless how the vascular pores
are oriented), and with increasing vascular porosity (if the
vascular pores are oriented longitudinally). Furthermore, they
increase slightly with increasing lacunar porosity (regardless
how the vascular pores are oriented), and with increasing
vascular porosity (if the vascular pores are oriented arbitrarily).
Variations of the canalicular porosity, as well as of the lacunar
and vascular radii (within physiologically reasonable ranges)
do not have noteworthy effects on the related canalicular
fluid velocities. The fluid velocity in the arbitrarily oriented
vascular pores is effectively influenced only by the vascular
pore radius.

3.3. Computation of Pore Fluid Velocities
Relating to Physiological Mechanical
Loading
In order to check the magnitude of the canalicular and
vascular pore fluid velocities provoked by macroscopic loading
of physiological magnitude, the latter has to be defined. Based
on gait analysis [91], strain gauge measurements [92], and
mathematical modeling [93], a (compressive) normal force of
N = 700N, together with a bending moment of M = 50Nm
can be considered as typical loading to which a human femur
is subjected [94]. Let us consider that in the long, median part
of a femur the organ structure resembles an annular beam, with
inner radius ri = 5.5mm and outer radius ro = 14.2mm
[95]. To this beam, a base system (ex,ey,ez) is attached, with
ex coinciding with the longitudinal axis of the beam. Then,
it is assumed that the stress distribution related to the above-
mentioned loading can be reasonably calculated by the classical
Euler-Bernoulli beam theory [96, 97]. In the framework of this
theory, the normal stress in direction of the beam axis is defined
as σxx = N/A + (My/Iy)z + (Mz/Iz)y, My and Mz being the
bending moments with respect to the y- and z-axes, whereas
Iy and Iz are the respective moments of inertia, Iy = Iz =
π/4(r4o − r4i ). Hence, assuming that the aforementioned bending
moment acts with respect to the z-axis, the stress gradient in
the cross section results to dσxx/dy = −1.59 × 109N/m3 =
−1.59× 106 kPa/m. The corresponding pressure gradient, acting
onto macroscopic bone tissue, follows from the hydrostatic part
of the stress tensor gradient, dpmacro/dy = −tr (dσ/dy)/3 =
−(dσxx/dy)/3 = 530.75× 103 kPa/m, and, hence, grad pmacro =
[0, 0, 530.75]T kPa/mm.

Utilizing then the downscaling relations established in
section 2.4, and evaluating the resulting pore-scale pressure
gradients in terms of the corresponding pore fluid velocities,
as described in section 3.2, yields the maximum and mean
canalicular and vascular pore fluid velocities (considering all
possible orientations of the pores): max(varbcan) = 69.66µm/s,

max(v
long
can ) = 66.71µm/s, max(varbvas) = 5.66m/s, mean(varbcan) =

44.47µm/s, mean(v
long
can ) = 42.59µm/s, and mean(varbvas) =

3.61m/s. Notably, previous studies report similar canalicular
fluid velocities [28, 98, 99].

4. DISCUSSION

4.1. Interpretation of Results and Key
Findings
It has been shown that the model presented in this paper
allows for reliable upscaling of the permeability, from the scale
of canalicular, lacunar, and vascular pores, to the scale of
macroscopic bone tissue, see section 3.1. In particular, the model
validity has been corroborated based on comparing model-
predicted permeabilities on the extravascular and macroscopic
scales to corresponding experimental data, as well as on
comparing model-predicted permeabilities on the extralacunar
scale to corresponding numerical results.

However, the main focus of this paper is to assess the role
of fluid shear stresses in the mechanobiology of bone. For that
purpose, it is expedient to compare the canalicular and vascular
pore fluid velocities predicted by the model in response to
physiological macroscopic loading, see section 3.2, to the fluid
velocities which have been shown to excite bone cells in vitro.
As can be seen in Table 1, the fluid velocities used in vitro
vary substantially between the different studies. Nevertheless,
it can be concluded that typically fluid velocities of several
tens to hundreds of mm/s are needed to excite osteoblasts.
Only one study [103] reports flow velocities in the range of
several tens to hundreds µm/s, however in form of a long-term
fluid perfusion of a tissue engineering scaffold–physiologically
reasonable characteristic loading times of bone [29] suggest that
such long-term exposure to constant fluid flow does hardly or
not at all occur in vivo. Unfortunately, the papers involving
studies on osteocytes neither provide fluid velocities, nor enough
information to back-calculate them. However, the provided
specifications of the used test set-ups (such as flow rates) suggest
that the fluid velocities arising in these studies are also in the
aforementioned range.

Remarkably, the computed canalicular pore fluid velocities
are separated from the experimentally used ones by orders of
magnitude. This suggests that the flow velocities that were shown
in vitro to be necessary to provoke some cellular response are
not reached in vivo. Hence, it turns out that, according to the
model predictions, it is unlikely that osteocytes are effectively
stimulated by fluid shear stresses. In this context, it should be
mentioned that the model input parameters are subjected to
(partly) significant variations. However, the sensitivity studies
discussed in section 3.2 and highlight in Figure 4 clearly highlight
that varying the canalicular, lacunar, and vascular porosities,
as well as the corresponding pore radii, within physiologically
reasonable ranges does not lead to the required increase of
the canalicular pore fluid velocities. The only remaining input
parameter that could differ significantly from the one used in
the computation described in section 3.3 is the macroscopic
pressure gradient. The one used in this paper, grad pmacro =
[0, 0, 530.75]T kPa/mm, is clearly a considerable simplification
of the real situation in bone. In vivo, pressure gradients are
certainly influenced by the exact (non-circular) geometry of
the organ, local variations of the microstructure, or the fact
that pressure gradients occur anisotropically in all three space
directions. Considering these and further (so far neglected)
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TABLE 1 | In vitro tests showing stimulation of bone cells by fluid flow; studies involving osteocytes neither provide fluid velocities nor provide enough information to

back-calculate them.

References Type of experimental protocol v [10−6m/s] Observed effects

[15] Pulsating fluid flow acting on chicken and mouse osteocytes (at a

frequency of 5Hz)

– Increased PGE2 production

[9] Osteoblasts in flow channel subjected to varying steady flow rates also

using fluids with increased viscosity

132–660× 103 Increased NO and PGE2 production,

especially high for higher viscosity

[100] Osteoblasts in parallel flow chamber subjected to constant, oscillating,

and pulsed flow

107 · 103 Increased intracellular Ca2+ concentration

[101] Pulsating fluid flow in flow chamber acting on osteoblasts 27.8–87.5× 103 Increased NO and PGE2 production

[102] Osteocytes in flow channel subjected to steady and pulsating flow – Promoted gap junction-mediated

communication between osteocytes

[103] Long-term fluid perfusion of 3D scaffold seeded with marrow stromal

osteoblasts

18.5–185 Enhanced matrix deposition

[104] Oscillating fluid flow exerted onto osteoblasts, using different fluid

viscosities, flow rates and peak shear stresses

26.8–107× 103 Increased intracellular Ca2+ concentration

and increased production of PGE2

[105] Pulsating fluid flow acting on human and mouse osteocytes and

osteoblasts (at a frequency of 5Hz)

– Increased PGE2 production

[106] Pulsating fluid stimulation of osteocytes (at frequencies of 5 and 9Hz) – Linear relation between NO production

and shear stress rate

[107] Steady laminar flow exerted onto bone marrow stromal cells 7.5 · 103 Osteoblastic cell differentiation

[108] Steady laminar fluid flow exerted onto osteoblasts in flow channel for 5

minutes

44× 103 Increase of ATP production in first minute

of stimulation

[109] hBMSCs in perfusion bioreactor subjected to different flow rates and

varying shear stresses by adapting fluid viscosity; fluid dynamics

simulation for shear stress

0.43–1.30× 103 Increased osteoblast differentiation

[110] Steady flow on osteocytes, shear stress constant for different flow

rates by adjusting channel height

– Increased PGE2 production

[111] Perfusion bioreactor with osteoblast precursor cells, subjected to 30 or

60 min steady flow

0.43–2.17× 103 Increased osteogenic differentiation

effects could eventually lead to increased canalicular fluid flow
velocities – however hardly by the required extent (i.e., by
factor ≈ 103). Furthermore, the model-predicted vascular fluid
velocities (in response to macroscopically applied, physiological
loading conditions) are indeed high enough to stimulate the bone
remodeling-relevant cells which can be found in the vascular
pore space (such as osteoblasts, osteoclasts, or bone lining cells).
In fact, the model presented in this paper delivers vascular
fluid velocities which are by orders of magnitude higher than
the ones used in the in vitro studies summarized in Table 1,
and also than vascular fluid velocities occurring in vivo, as
well as those suggested by numerical studies [112]. A reason
for this significant overestimation could be that the chosen
morphology on the RVE of macroscopic bone tissue overly
facilitates fluid flow, whereas it is nevertheless appropriate in
order to accurately predict the macroscopic permeability of bone
tissue, see section 3.1. Furthermore, it may be necessary to take
into account the actual distribution of the bone microstructure
across the studied cross section, from low-porosity cortical
bone to high-porosity trabecular bone, in order to obtain a
more realistic estimate of the local pressure gradients, and, in
further consequence, of the vascular pore fluid velocities. On
the other hand, the pressure gradient used in this study does
not take into account that in vivo mechanical loading may
increase continuously from zero to the peak level (rather than

being applied in step-wise fashion) which leads to gradual pore
drainage. Despite these limitations, it seems valid to conclude
that in the vascular pores, fluid shear stresses are much more
likely to excite the therein residing cells than in the canalicular
pores.

4.2. Computational Aspects
It should be noted that the homogenization schemes derived
on the RVEs of extralacunar bone matrix, see section 2.4.1,
and of macroscopic bone tissue considering arbitrarily oriented
vascular pores, see section 2.4.3, are of self-consistent nature.
Hence, the homogenized permeabilities Kexlac and Karb

macro are
defined implicitly, and numerically evaluating the underlying
homogenization schemes require, in the general case, a
numerical approach. However, specializing the two implicit
homogenization schemes, for the respective RVE morphologies
and for the assumed fluid flow conditions in the canalicular
and vascular spaces, eventually yields explicit definitions of the
homogenized permeabilities of extralacunar bone matrix and
macroscopic bone tissue considering arbitrarily oriented vascular
pores, see Equations (S13, S25) of the Supplementary Material.
Hence, the multiscale model presented in this paper is,
from a computational point of view, highly efficient –
iterative, potentially time-consuming approaches are not needed
at all.
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4.3. Model Assumptions and Limitations
The remarkable computational efficiency of the concept of
continuum micromechanical homogenization comes at a price
– as stated in section 2.1, the modeling strategy pursued in this
paper does not consider the real microstructure of the studied
material in minute detail. Instead, an assembly of so-called
material phases is defined. These material phases are assumed
to be homogeneous and must represent the real microstructure
in the best possible way. In this paper, canalicular and vascular
pores are chosen to be represented by long cylinders, while
lacunar pores are chosen to be represented by spheres. The
bone matrix on the lowest observation scale considered in this
model representation, extracanalicular (or, extracellular) bone
matrix is assumed to be impermeable. We believe that this
approach is a reasonably good compromise between keeping
the model representation as simple as possible (in terms of
eventually arriving at a mathematical framework which is
straightforward to handle), but as complex as necessary (in terms
of taking into account the relevant microstructural features).
Notably, this view is supported by permeability-based model
validation, see section 4.1. Nevertheless, the here presented
model does include some limitations (as it is the nature of
mathematical models in general). In order to put the results of
this paper in better perspective, we discuss these limitations in
the following.

As stressed in the preceding paragraph, the permeability
of extracanalicular bone is considered to be negligibly small.
Strictly speaking, additional pore spaces can be found on smaller
observation scales, such as the pore space between hydroxyapatite
crystals or even between collagen molecules (see, e.g., [32])
and references therein. It has been argued, e.g., by Lemaire
and co-workers [113, 114], that the contribution of the fluid
flow in these nanopores may actually be not as negligible as
commonly believed. Introducing this additional contribution to
the permeability of bone tissue in the here presented model
is straightforward, and may be considered in the future, once
insights concerning the permeability of the extracanalicular
matrix have consolidated.

Considering now the RVE of macroscopic bone tissue, it
should be noted that the model presented in this paper does
not explicitly distinguish between Haversian and Volkmann
canals. Instead, two morphological scenarios are considered on
the RVE of macroscopic bone tissue, see Figure 1, which are
thought to represent limit cases of the vascular permeability.
The first scenario, involving arbitrarily oriented, interpenetrating
vascular pores represents, depending on the volume fraction
of the vascular pores, trabecular bone, endocortical bone, or
cortical bone exhibiting somewhat disordered Haversian and
Volkmann canals. The latter representation of vascular pores in
cortical bone in a way resemble results from micro-computed
tomography (see e.g., [56]), which confirm that it may be
difficult to clearly distinguish between Haversian and Volkmann
canals. The second scenario, considering that the vascular pores
are oriented longitudinally, represents cortical bone tissue with
Haversian canals being clearly the dominant kind of vascular
pore space, whereas Volkmann canals occur to an negligible
extent. Such case hence resembles a (theoretical) extreme

example of the multiply reported situation that Volkmann
canals are the, by far, secondary kind of vascular pore space
[115, 116]. Hence, although just one kind of vascular pore
space is considered, the model introduced here covers the
whole spectrum of vascular permeability, spanned through
physiologically conceivable arrangements of Haversian and
Volkmann canals.

Furthermore, in vivo, pores are not solely filled with pore
fluid. Lacunar pores contain osteocytes, with the cell processes
of the latter stretching into the canalicular pores. Vascular
pores, in turn, contain cells, various biochemical factors, the
vasculature, and, when considering trabecular (also referred to
as cancellous, or spongy bone) bone, the bone marrow, as well
as the endosteum. Thus, the physical space which is available
for fluid flow is actually (much) smaller than the volume of the
pores. One way to take this into account could be to replace
the currently considered homogeneous pore spaces by shell-like
structures composed of two (or more) layers, with each layer
exhibiting different fluid flow characteristics – a similar approach
has been successfully applied in in the contexts of stiffness
homogenization [117, 118] and strength homogenization [119].
When considering the cell body and the cell processes as
completely impermeable, and assuming that pore walls and cell
components exhibit the same behavior in terms of friction and
slip, solutions for Poiseuille-type flow profiles can be analytically
derived [120]. On the other hand, the fluid flow velocities
presented in this paper can be regarded as upper bounds,
occurring only when the pores contain only pore fluid. The latter
observation implies two further conclusions: Firstly, it provides
a reasonable explanation for the high fluid flow velocities the
model has predicted to occur in the vascular pores; and, secondly,
it significantly strengthens the key finding of this paper, namely
that osteocytes are unlikely to be sufficiently excited by fluid flow
in response to physiological macroscopic loading (considering
that in a more physiological canalicular pore milieu fluid flow
velocities are probably even lower than the model-predicted
ones).

When comparing bulk water to the bone pore fluid, the latter
features increased salinity. One of the thereof arising effects is,
similar to layered water, an increased fluid viscosity, as compared
to bulk water [86]. Hence, considering this effect would further
compromise the predicted pore fluid flow velocities. Due to the
fact that quantitative information on the effect of fluid salinity
on the corresponding viscosity is, to the best of the authors’
knowledge, quite diverse and more or less vague—in particular,
the combined effect of layered water and pore fluid salinity is
unclear and probably remains to be investigated—the respective
viscosity increase has not been introduced.

Finally, there are also pore fluid flow-related aspects that
have been neglected in this work which have been hypothesized
to magnify the effect of pore fluid flow in terms of osteocyte
excitation. This concerns, e.g., the pericellular space around
the cell processes of osteocytes, for which significant strain
amplification effects were predicted by means of theoretical
approaches [121]. Furthermore, the network of fibers tethering
the cell processes to the canalicular pore walls were suggested
to significantly change the fluid flow behavior in the canalicular
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pores [86, 113]. In another theoretical study, based on fluid flow
simulations by means of the Finite Volume method [122], it
was concluded that an idealized (i.e., smooth) canalicular pore
shape implies, when compared to a more realistic pore shape
(gained from transmission electron micrographs) higher fluid
velocity but up to 33% lower shear stresses acting onto the pore
walls. Also, electrochemical effects were not taken into account.
Sansalone and co-workers [86, 87] performed insightful studies
as to the fluid flow- and shear stress-related implications of
electrical double layers at the pore walls, as well as of biochemical
and electrical gradients, highlighting that these effects could
provide significant contributions to the overall wall shear stress
(while the fluid flow velocity is largely governed by pressure
gradients).

4.4. Outlook
Several future research directions are conceivable, aiming at
confirming the insights presented in this paper, or at generating
even improved insights, by extending and improving the
underlying model:

• An optional strategy to compute pore-scale pressure gradients
from macroscopically applied mechanical loading could be
based on recently published work on poromicromechanical
pressure downscaling [29].

• Consideration of more realistic stress distribution on the
scale of macroscopic bone tissue would give access to
(three-dimensional) distributions of pore-scale fluid flow
conditions, thereby improving the significance of the model
predictions. The same is true when envisioning amore realistic
consideration of the shapes, properties, and internal structure
of the pores.

• An extremely insightful addition to the model presented in
this paper would be the calculation of the fluid flow-equivalent
shear stresses. The classical law of Hagen [72] and Poiseuille
[73] actually provides a respective definition of the shear stress
acting onto the pore walls. However, since mechanical cell
excitation does not occur on the pore walls but rather on
the cell itself, using this definition does not seem correct.
Some kind of explicit consideration of the cell body and
of its processes is deemed essential to that end. The key
challenge in such an endeavor would be the translation of the
geometrical information available from sufficiently accurate

imaging techniques, such as confocal microscopy [123], into
corresponding microstructural entities usable in continuum
micromechanics-type homogenization.

• It would be highly interesting to use the model for
simulating perfusion tests. This could be achieved based
on considering the microstructure of a bone specimen
according to suitable imaging (such as micro-computed
tomography), prescribing suitable macroscopic loading
boundary conditions, and simulating the fluid flow behavior
in the relevant pore spaces. Comparing the such obtained
results to corresponding experimental data, collected, e.g.,
from perfusion-weighted MRI, would allow for experimental
validation of the model. Notably, using a model which is
conceptually similar to the one presented in this paper
[47], even diffusion tests could be simulated, allowing for
further validation of the model representation of bone
tissue.

• Eventually, the model presented in this paper could be
straightforwardly implemented in modeling approaches
dealing with simulation of the bone remodeling process (see,
e.g., [124–127]), enabling the latter class of models to consider
the mechanobiological process regulation in a more refined,
physiologically more meaningful way.
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