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Mechanisms of the Flying Chain
Fountain
Eirik G. Flekkøy*, Marcel Moura and Knut J. Måløy

PoreLab, Department of Physics, Njord Center, University of Oslo, Oslo, Norway

When a chain is released by one end from a container, it forms a striking arch extending

well above the container. This phenomenon is caused by the famous Mould effect and is

explained by an anomalous supply of momentum from the container, causing an upwards

kick. Using simulations, experiments as well as theoretical arguments we explore the

underlying mechanism for this momentum transfer and find that it depends subtly on the

nature of the chain as well as on the container. Generally, it does not suffice to assume

a model of the chain as a sequence of rigid elements that, due to angular moment

conservation, kicks off from the container. Rather the structure of the underlying system

must be included, and we analyze how this structure along with the chain mechanics

may cause the required upwards force.
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1. INTRODUCTION

Dynamic ropes and chains in various forms are everywhere, both in daily life, biological systems
and technology. Our tenants, the DNA molecule, the tail of a cat, the line of a fly-caster, a whip, or
the chain of a falling anchor are but a few examples. Galileo explored hanging chains [1] and later
these were shown to be catenaries by Huygens, Leibniz and John Bernoulli. However, the fact that
the equations governing hanging and moving chains have been around for almost 400 years [1–3]
does not rule out the possibility that even the simplest systems may still exhibit surprising behavior
[4–6].

Recently, Mould [7] observed that when the end of a chain is dropped from a pile contained at
some height above the floor, gravity will set it in motion, and eventually the whole chain will have
flowed over the edge of the container. This is no surprise. What is a surprise, and what has caused
more than 3million views on YouTube, is the fact that the chain forms a rising, self-supporting arch
that extends a significant height above its container, as is illustrated by the simulation of Figure 1.
Since physics should also be fun to a general audience, a discussion of such a phenomenon is of real
importance.

Careful analysis of the process first carried out by Biggins [4] and Biggins and Warner [5], has
shown that this arch formation depends on the existence of an upwards acting force that literally
pushes the chain out of the container. They observed that the origin of this force is the key to
understanding the phenomenon. It was explained by modeling the links of the chain as rigid
segments that provided a kick against the underlying packing as they where lifted from it. This
kick-off effect relies on the assumption that, due to the limited flexibility of the chain, it actually
behaves as a sequence of rigid elements, and that these rotate sufficiently abruptly around their
centers of mass to provide the kick. This effect has also been taken as the underlying mechanism
for the fountain by other authors [8].
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FIGURE 1 | (A) A snapshot from a simulation of the chain fountain with (B) a

closeup. The tensions T1 = T2 are at the same height. Larger blue beads are

introduced for visualization purposes only and have the same properties as the

other beads.

In the present letter we show how simulations including
the proposed kick-off effect as the only active mechanism,
fail to produce a chain fountain. Only when a model of a
bumpy underlying packing is included, do the simulations
produce a fountain, and this fountain survives when the
rigidity of the links is removed in favor of a completely
flexible bead chain, which cannot support the kick-off effect.
The difference between these two chains is the existence of a
maximum bending angle between the links that connect the
beads.

2. MATERIALS AND METHODS

In order to explore the reasons for the fountain it is necessary to
express the momentum balance of the chain. Such descriptions
exists in several text books, such as that on chain dynamics
and shape [9] and the necessary equations of motion have been
worked out in great detail [10, 11], at least for the steady state
situations.

Following Briggs and Warner we shall assume such a steady
state where the chain with mass per unit length λ moves with
a constant shape at velocity v. The distance along the chain
from the first bead at the bottom of the container, to the last is
measured by the coordinate s. Then the tension T along the chain
at time t may be written T(s, t) = T(s, t)et , where et is the unit
tangent vector. In steady state there is a balance between gravity
g and the tension so that

dT = T′(s)etds+ T(s)det = λgds. (1)

Taking the tangential component yields T′(s) = λg · et , which
may be integrated along the chain to give

1T =
∫

dsT′(s) = λg ·
∫

dset = λg1h (2)

where 1h is the height difference between the end points. This
means in particular that T1 = T2, shown in Figure 1 since these
tensions are measured at equal heights.

We now introduce the net upwards force on all the beads
inside the container

1Fz = Fz − G, (3)

where G is gravity and Fz the force from the container bottom
or other beads. For the part of the chain still at rest this force
Fz keeps the chain from falling through the bottom of the
container. Clearly, the net force may be written as a sum over the
corresponding forces on individual beads, 1Fz =

∑

i 1fi where
1fi is the vertical net force on bead i. For beads at rest, there will
be a local balance between the gravity on a chain segment and the
force supporting it and 1fi = 0. But for beads that are set into
motion and collide with other beads 1fi ≥ 0. Now, assuming the
beads leave the container vertically at a velocity v they acquire a
momentum 1P = δmv = λds v = λv2dt, which is provided by
the total force on the container beads, that is

T1 + 1Fz = λv2. (4)

On the downward moving side of the chain, there must be a force
balance between gravity and tension, so that

T2 − TF = λgh1, (5)

where TF is the tension at the floor. It has been observed- at
least for different types of chains- that the interaction between
the falling chain and the floor may produce an added downwards
force, causing freely falling chains to accellerate slightly faster
than gravity [10]. However, for the sake of simplicity, we shall
in the following neglect this interesting effect and assume that
TF = 0. This implies that the effective position of the floor
is slightly different from the real floor, thus producing a small
correction to h1.

Using the same momentum argument as for the pick-up force
we then find that the upwards force from the floor on the falling
chain is simply λv2. The steady state assumption means that
the total momentum of the entire chain is unchanged, and for
this reason the downwards forces acting on it must balance the
upwards forces. The former is the gravity that acts on the chain
that has left the container, and the latter the floor and container
forces, that is

λg(h1 + 2h) = λv2 + 1Fz . (6)

By eliminating T1 = T2 from Equations (4) and (5) we get
λv2 = λgh1 + 1Fz , which when inserted in Equation (6) gives
the following expression for the fountain height

λgh = 1Fz . (7)
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FIGURE 2 | A time sequence of 7.5ms using a 50 m chain of 4.5mm beads. Individual chain beads are traced by different colors.

In other words, the weight of the upwards moving part of the
fountain is balanced by the net container force.

Equation (7) was in fact derived by Biggins and Warner
[5], albeit with an interpretation of 1Fz based on the kick-off
mechanism. Note that 1Fz may derive from any part of the
chain that is in motion, that is, upwards momentum may be
accumulated by a whole segment of the chain that is about to take
off.

2.1. Experiments
In order to to determine how themomentum transfer takes place,
experiments with a chain similar, or equal, to the one used by

Biggins and Warner are needed to look at the details of the
take-off process. They were carried out in the following way:
First, the way the chain is stacked in the container is crucial in
order to avoid entanglement. Initially, a circular, spiral packing
was attempted, but that turned out to lead to entanglement. A
more successful routine consists in piling up the chain at a given
location by the wall in the container, and then, after the pile has
grown large enough that its base is reaching the middle of the
container, we move to the opposite side of the container and
repeat the procedure. The third location is at the wall midway
between the two first ones, and the fourth and final location
opposite to the third one. After that, we move again to the first
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location and go on like this until the whole chain fits inside the
container.

Images were acquired with a Nikon J4 High-res camera is
used to obtain images of the whole chain and is placed on a
high tripod about 3 m away from the system, whereas high
resolution images were acquired at a temporal rate of 60 frames
per second. In Figure 2 it is seen that a typical moving chain
segment extends over a significant part of the container, thus
accumulating momentum over a series of collisions with the
underlying chain. We did not observe a frequent occurrence
of large bending angles, but often a formation of a stationary
spiral hitting the underlying packing at its bottom could be
observed. It would thus seem that the necessary momentum
transfer happens more in the way of a bumpy take-off than by
the kick-offmechanism.

2.2. Simulation Method
To gain further insight in the momentum transfer process, the
following simulation method was used. They essentially integrate
Newtons 2. law for the individual beads of the chain using
a Velocity-Verlet scheme of 4th order accuracy in time. The
beads are taken to interact through a harmonic potential with
an equilibrium separation a0, i.e., if the separation between
two neighboring beads is 1r = r1 − r2 then V(r1 − r2) =
(k/2)(|1r| − a0)

2. Also, we employ an interbead dissipative force
−β1v, where 1v is the relative velocity between neighboring
beads. This force dampens longitudinal fluctuations, which is
certainly realistic. However, no corresponding angular friction
is included, which means that transverse waves may tend to
die out more slowly than in the experiments. The container is
implemented both by conservative and dissipative forces: The
side walls and top rim of the container is implemented by a
conservative potential like that of of the interbead potential, but
with a force that always pushes the bead away from the walls and
top rim. At the bottom, however, a horizontal dissipative force,
or sliding friction, −βcv‖, where v‖ is the horizontal velocity
component, is included. This force dampens the motion inside
the container that would otherwise remain for a long time. Each
bead interacts only with its two nearest neighbors, so tomodel the
underlying bead packing the bottom of the container is equipped
with bumps: The perturbation a sin(2π(x + y)/a0), where a is
an amplitude, x and y are the horizontal coordinates, is added to
the local height of the container bottom. In this way beads on
the bottom will encounter bumps at a separation equal to the
bead diameter. The distance b between the bead center and the
bottom at which the interaction sets in, is normally equal to half
the interbead distance, i.e., b = a0/2, but may also be taken to be
smaller, thus simulating smaller beads.

The chain is kept from bending more than the maximum
bending angle 2max by the introduction of an internal force
FS, that counteracts the bending once this angle is exceeded.
It may be considered two internal pairwise interactions, each
with a force ±FS/2 between two nearest neighbors. The value of
2max = 63◦ is the value of the chain used in the experiments
and apparently also the value in the chain used by Biggins and
Warner.

FIGURE 3 | The force FS implementing the stiffness interactions.

FIGURE 4 | The various simulated chains with differing internal stiffness

interactions. The chain used in the experiments has 2max = 63◦.

The internal stiffness force, which is illustrated in Figure 3

only kicks in when the angle 2 between the unit vecors along
th elinks, e2 and e1, exceeds a maximum value 2max. This force
takes the form

Fs =
k1r

2
(e2− e1)







(

1−
√

1−cos2max
1−cos2

)

when 2 ≥ 2max

0 when 2 < 2max
(8)

and is applied to every ball. If 2max is zero this would result
in a long rigid chain, so we choose it in stead to the measured
value 2max = 63◦. It is possible to use this force to simulate
a piecewise rigid chain by setting 2max = 0 for ever third
bead, and 2max = π in between, as is illustrated in Figure 4.
As experiments with the piecewise rigid chain may be carried
out using pieces of pasta, the corresponding model used in the
simulations will henceforth be termed the pasta model. The floor,
which is located at z = 0 is implemented by a adding a strong
vertical damping in the form of another frictional force−βFvz .

3. RESULTS

By setting 2max = 63◦, we model the realistic chain, but by
setting 2max = 180◦ a fully flexible chain with no support for
the kick-off mechanism is modeled. Simulations of these chains
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FIGURE 5 | The time-averaged force 1fi from the container on the realistic

and flexible chain as a function of bead number. Here i = 1 labels the last bead

to interact with the bottom, i = 2 labels the second last bead to interact with

the bottom etc. The i = 1, values are 1f1 = 64 and 72 mN for the flexible and

realistic chains respectively and are way outside the range of the i ≥ 2 values

which are shown for here.

show two key features: First1Fz is non-zero for both chains, and,
second, they indicate that the time averaged force 1fi is largely
non-zero only for the last bead to interact with the bottom. This
is shown in Figure 5 where i = 1 labels the last bead to interact
with the undulating container bottom and i > 1 labels beads that
have not yet taken off. Although the main momentum transfer
happens on the last bead, Figure 5 still shows a gradual decay of
the net force up to around i = 10. So, the fountain-producing
force is positive for both the realistic chain and the flexible chain
that has no bending rigidity and thus no possibility to support the
kick-off mechanism.

The simplest possible model for the 1Fz-force is based on
the idea of collisions between the beads that are accelerated
along the bottom as they are lifted off, and the beads that are
still stationary. The 1Fz-force may be calculated as the added
upwards momentum from the collisions per unit time. This
quantity is thus proportional both to the frequency of the impacts
and the momentum added by each impact. The impacts will
happen at a rate ∝ v, and it is reasonable to assume that each
impact will contribute a momentum which is also proportional
to v. Therefore we may write 1Fz = αλv2, where we have
introduced a constant of proportionality α, which was also used
by Biggins and Warner. They derived the same dependence on
the basis of their kick-off mechanism. Now, using Equations (4)
and (5) to obtain λv2 = λgh1/(1− α) and inserting this result in
Equation (7) gives

h =
α

1− α
h1, (9)

a prediction which is the same for the both the bumpy take-
off and the kick-off mechanisms. For this reason, the simplest
experiment– measuring h as a function of h1– is eliminated as
the crucial one for distinguishing between the two mechanisms.

FIGURE 6 | The fountain height obtained from an average of 8 experiments

and a simulation with h1 =2.4 m along with a semi-analytic prediction derived

from Equations (11) and (12) in Biggins [4] using α =0.12.

Using the realistic chain the fountain show in Figure 1

is produced. Figure 6 shows how the corresponding fountain
height h evolves with time, both in the simulations and the
experiment. In the figure we have also included a semi-analytic
theoretical predictions made by Biggins and based simply
on momentum balance in various parts of the chain. This
theory [4] implies that the only relevant time scale for the
relaxation of h(t) is th =

√

h1/g, a result which appears
well justified. Using α = 0.12 to fit the theory to the
experiments good agreement in terms of the predicted and
measured heights are observed. The fact that the early time
experimental values are above the theory is explained by the
finite height of the container, which are absent in the theory.
Simulations lack any dissipation associated with beads colliding
with the rim of the container and therefore produces a slightly
larger h.

Observing that a bumpy packing, or container bottom,
is crucial to produce a fountain both for the realistic and
fully flexible chain, we may still inquire if there are any
other chains that do not rely on the structure of the bottom.
Indeed, Biggins [4] explored two additional chains, one that was
composed of piecewise rigid segments, thus corresponding more
closely to his theoretical model, and one with well separated
beads, which could not support the kick-off effect. The results
were that the first chain did produce a fountain, and the
latter not.

However, doing the same in our simulations, using (i) a fully
flexible separated bead chain (with a0 = 3 cm and b = a =
3mm) running over the normal rough bottom (a = a0/4), and
(ii) the pasta model with a perfectly smooth container bottom,
we observe a fountain in both cases. The results are illustrated in
Figure 7.

In Figure 8 we collect the results of all the different chain
models measuring h as a function of h1. They are carried out
by simulating the different chain and container models. We have
also include the original measurements of Biggins and Warner
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FIGURE 7 | (A) Snapshot from a simulation of the chain fountain with

separated beads and (B) the pasta model. The latter is designed to optimize

the kick-off effect. Both simulations correspond to the experiment done by

Biggins [4].

FIGURE 8 | The fountain height as a function of elevation h1 for the different

models.

[5]. Our realistic simulations using a bottom roughness a = a0/4
agree well with these. We have truncated the measurements at
h1 =4 m as the chain lengths which have been applied, do not
allow the system to reach a steady state above that container
height. This may be understood from the fact that both th and
the asymptotic velocity grow as

√
h1.

4. DISCUSSION

It is seen that the combination of a realistic chain and a
smooth bottom produces no fountain, thus ruling out the kick-
off mechanism as a complete explanation for the phenomenon.
The kick-off mechanism by itself only works to explain the
chain fountain of the pasta model. However, it is seen that while
both the realistic and flexible chains rely on a rough bottom to

FIGURE 9 | Phase diagram for the different simulation conditions and whether

they produce a fountain.

produce a fountain, the existence of a realistic rigidity enhances
the fountain. Part of this enhancement could have the rather
trivial explanation that a more flexible chain will allow more
buckling thus increasing the chain mass contained in the height
h, or, effectively the mass density λ. This would tend to reduce
h for a given 1Fz . However, a priori, it would seem likely
that an upwards collision force on bead i = 1 would cause a
downwards motion on the i = 2 bead via the stiffness force
FS thus re-introducing the kick-off effect (the effect of FS’s is to
ensure conservation of angular moment). However, in Figure 5

no increase of 1f2 is observed from the introduction of a realistic
stiffness. So, this does not appear to be the explanation.

Coincidentally, perhaps the pasta model agrees well with
the realistic chain on a rough bottom. On the other hand, the
separated-beads model, initially thought to produce no fountain
at all, makes a higher fountain than all the other models at a given
h1. This is perhaps best understood as a lack of screening effect:
When the bead separation is increased, the upwards motion of a
colliding bead that is needed to produce a given lift on the bead
behind, is also increased. Thismeans that the bead behind ismore
likely to pick up vertical momentum through a second collision.
The lack of a fountain in the experiments may well be caused by
dissipation in the collisions between the beads and the rim of the
container.

To summarize, and to answer our initial question “what are
the mechanisms requires to produce a chain fountain?” Figure 9
represents a kind of boolean phase diagram giving the crude yes
or no’s. There are still a number of open, intriguing questions that
remain, however. Since the existence of a positive 1Fz causes
a reduction in the dissipation associated with the picking up of
a chain, it is of some general-, and even technological interest
to understand how it may be optimized by changing the many
parameters that describe the chain.
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