
METHODS
published: 14 August 2018

doi: 10.3389/fphy.2018.00086

Frontiers in Physics | www.frontiersin.org 1 August 2018 | Volume 6 | Article 86

Edited by:

Jinjin Li,

Shanghai Jiao Tong University, China

Reviewed by:

Edoardo Milotti,

University of Trieste, Italy

Sungwoo Ahn,

East Carolina University, United States

Jiarui Zhang,

Boston University, United States

*Correspondence:

R. Matthias Geilhufe

geilhufe@kth.se

Wolfram Hergert

wolfram.hergert@physik.uni-halle.de

Specialty section:

This article was submitted to

Computational Physics,

a section of the journal

Frontiers in Physics

Received: 15 January 2018

Accepted: 23 July 2018

Published: 14 August 2018

Citation:

Geilhufe RM and Hergert W (2018)

GTPack: A Mathematica Group

Theory Package for Application in

Solid-State Physics and Photonics.

Front. Phys. 6:86.

doi: 10.3389/fphy.2018.00086

GTPack: A Mathematica Group
Theory Package for Application in
Solid-State Physics and Photonics
R. Matthias Geilhufe 1* and Wolfram Hergert 2*

1Nordita, KTH Royal Institute of Technology, Stockholm University, Stockholm, Sweden, 2 Institute of Physics, Martin Luther

University Halle-Wittenberg, Halle, Germany

We present the Mathematica group theory package GTPack providing about 200

additional modules to the standard Mathematica language. The content ranges from

basic group theory and representation theory to more applied methods like crystal field

theory, tight-binding and plane-wave approaches capable for symmetry based studies

in the fields of solid-state physics and photonics. GTPack is freely available via http://

GTPack.org. The package is designed to be easily accessible by providing a complete

Mathematica-style documentation, an optional input validation and an error strategy.

We illustrate the basic framework of the package and show basic examples to present

the functionality. Furthermore, we give a complete list of the implemented commands

including references for algorithms within the Supplementary Material.

Keywords: mathematica, group theory, computational algebra, group theory package, GTPack

INTRODUCTION

Symmetry and symmetry breaking are basic concepts of nature. Thus, arguments based on
the symmetry of the considered system play a significant role within almost all branches of
physics. Group theory represents the mathematical language to deal with symmetry, since
all transformations that leave a physical system invariant (usually described in terms of
transformations of algebraic or differential equations) naturally form a group. The application of
group theory in physics has a long tradition ranging back to the beginning of the twentieth century
[1, 2]. Concentrating on solid-state and condensed matter physics, examples for the application
of group theory can be found in the theory of the degeneracy of energy bands [3], color centers,
d0 magnetism and impurity states [4–6], optical transitions [7], phase transitions, atoms and
molecules on surfaces [8], x-ray diffraction and crystallography in Fourier space [9], construction of
effective low-energy excitation Hamiltonians [10], the classification of the superconducting states
of matter [11–15], and, more recently, topological band theory [16–20] and topological quantum
computation [21]. Due to the similarity of the underlying formalism, several concepts can be
transferred to the field of photonics, for example, the band theory of photonic crystals [22–24],
impurities and defect modes [25], and selection rules and uncoupled modes [26, 27].

In many cases, non-trivial results can be obtained from basic group theoretical information like
the characters of the irreducible representations or the Clebsch-Gordan coefficients. In the past
decades these information were tabulated in various books (e.g., [28, 29]). A comprehensive and
widely used online group theory tool is provided by the Bilbao crystallographic server [30]. The
work with printed group theory tables is not suitable for automation and the probability of copying
and pasting misprints is high. However, modern computer algebra systems are capable to provide
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the same information, assumed that the necessary algorithms
are implemented. Especially, the computer algebra system
GAP (groups, algorithms and programming) [31] represents
a powerful program to deal with computationally demanding
questions in abstract algebra. Similarly, the computer algebra
system Mathematica is well established within the research
community. However, a stable group theory package designed for
applications in solid-state physics and photonics is not included
in the standard version.

The development of the Mathematica group theory package
GTPack was designed to fill this gap. The functionality was
planned to cover both, an application in active research and an
application in university teaching. Therefore a main focus is the
development of a user-friendly application, via self-explanatory
names for new commands, a comprehensive documentation
system and an optional input validation.

The aim of the paper is to report on the initial version
of the Mathematica group theory package GTPack which is
freely available for academic usage via http://GTPack.org. In
the first part of the paper we introduce the main functionality
and structure of the package. Afterwards we give general
information about the implementation of the commands. In the
last part we provide simple examples to illustrate the package.
The Supplementary Material contains a full reference of all
implemented modules. A more comprehensive guide about
applied group theory in connection to GTPack can be found in
Hergert and Geilhufe [32].

FUNCTIONALITY AND STRUCTURE

According to the functionality of the modules, GTPack is
divided into various subpackages as illustrated in Figure 1. In
general, the subpackages can be assembled in three groups,
“basic functionality,” “structure,” and “applications.” Subpackages
belonging to the class of “basic functionality” are Auxiliary.m,
Basic.m, Install.m and RepresentationTheory.m. The package
Auxiliary.m contains modules which are needed by GTPack
or extend the general Mathematica language. Among others
tesseral harmonics (real spherical harmonics) were added and
also the Cartesian form of tesseral and spherical harmonics
was implemented. Furthermore, the package contains modules
for the handling with quaternions, the calculation of Gaunt
coefficients, Dirac matrices or SU(2)-rotation matrices, to name
but a few. The package Basic.m concentrates on general abstract
group theory and, for example, provides modules for the

FIGURE 1 | Subpackage structure of GTPack and interaction with external data.

calculation of classes, multiplication tables, left and right cosets
and several logical commands to check for groups, Abelian
groups, subgroups or invariant subgroups. Modules needed
for basic representation theory are contained in the package
RepresentationTheory.m. This package comprises the calculation
of character tables, handling of irreducible representations, the
calculation of Clebsch-Gordan coefficients, etc.. Modules for the
installation of point and space groups or symmetry elements can
be found in Install.m.

The second class “structure” comprises of the packages
CrystalStructure.m, Lattice.m and Molecules.m. Within
CrystalStructure.m, modules for loading, saving and handling
of crystal structures can be found. Modules with similar
functionality but specialized on molecules are contained within
Molecules.m. The construction and manipulation of atomic
clusters as well as several commands for dealing with the
reciprocal space are summarized in the package Lattice.m.

Next to basic group theory GTPack also contains
subpackages for particular applications in solid state physics
and photonics. The third class “Applications” contains the
subpackages CrystalField.m, ElectronicStructure.m, Photonics.m,
PseudoPotential.m, TightBinding.m and Vibrations.m. The
crystal field package CrystalField.m is capable of automatically
generating crystal field Hamiltonians. Furthermore, it contains
the generation of standard operator equivalents like Stevens
[33] and Buckmaster-Smith-Thornley [34] operators. GTPack
also allows for electronic structure calculations for periodic
systems, i.e., crystals, in the framework of the tight-binding
and the pseudopotential approximation. Modules to construct
tight-binding Hamiltonians are summarized in TightBinding.m
and modules for the pseudopotential approximation in
PseudoPotential.m. The calculation of band structures, density
of states as well as the calculation of a Fermi surface is
practically independent of the underlying model Hamiltonian.
Therefore such commands are contained within the package
ElectronicStructure.m. In the framework of plane-waves it is also
possible to calculate the band structure of photonic crystals. The
necessary modules for the construction of the master equation
for various geometrical objects can be found in the package
Photonics.m. Commands for the investigation of phonons or
molecular vibrational modes are contained in Vibrations.m.

For various applications it is necessary to incorporate data, for
example, tight-binding parameters, crystal field parameters and
crystal structures. Therefore, GTPack contains several modules
for the creation and handling of databases (cf. Figure 1). Here,
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FIGURE 2 | Rotation axes for symmetry elements in Schönflies notation (according to Cornwell [40]).

special file endings are used, such as ∗.parm and ∗.struc.
Databases can be easily created, extended and modified by
the user. Furthermore, GTPack includes commands for the
interaction with external data formats and ab initio software. This
concerns the import and export of structural data files ∗.cif [35]
and ∗.xsf [36] and the output of the programs MIT Photonic
Bands - MPB [37]1. For the future it is intended to implement
similar modules for VASP [38] and abinit [39].

IMPLEMENTATION

To distinguish new commands provided by GTPack from
the standard Mathematica language and to prevent conflicts
with new versions of Mathematica, all GTPack commands
are starting with the characters GT (e.g., GTInstallGroup,
GTCharacterTable, ...). Options are denoted with a suffixGO (e.g.,
GOVerbose, GOIrepNotation, ...). One of the main features of
GTPack is the symbolic representation of symmetry elements.
Symmetry elements for various standard axes (see Figure 2)
are predefined and the respective symbols, such as C3z for a
3-fold rotation about the z-axis are protected. As a standard
form they are displayed with subscripts, i.e., C3z . Internally
all symmetry elements are represented using matrices. The
conversion between symbols and matrices can be done using
GTGetMatrix and GTGetSymbol, respectively. Every module is
implemented such that it is capable to handle lists of matrices in
arbitrary representations. Depending on the application, GTPack
uses a certain standard representation to provide a faithful
matrix representation of point groups. Elements of ordinary
point groups are represented by 3D rotation matrices of the
group O(3). In the special case of planar groups, the standard
representation can be chosen to be O(2). Symmetry elements
within double groups are represented according to Damhus
[41], where elements of groups not containing the inversion are

1Available online at: http://ab-initio.mit.edu/mpb

represented by SU(2) matrices and elements of groups containing
the inversion are represented by matrices of the direct product
group SU(2) ⊗ S with S = {1,−1}. Additionally, users can
also define a group by providing a multiplication table. In
this case GTPack automatically installs the provided elements
within the multiplication table as new symmetry elements using
permutation matrices as faithful representations.

Character tables are frequently needed and can be calculated
using GTCharacterTable. The module uses the Burnside
algorithm [42], which is a reasonable choice for relatively
small groups, such as point groups. Representation matrices
can be generated using GTGetIrep, where the algorithm of
Flodmark and Blokker is implemented [43]. Clebsch-Gordan
coefficients, which are necessary to generate the basis of
a direct product representation, can be calculated using
GTClebschGordanCoefficients. Here, the algorithm of van Den
Broek and Cornwell is implemented [44]. To calculate band
structures of solids, GTPack supports a plane-wave basis [45, 46]
and a tight-binding method in the two- and three-center form
[47, 48]. TheMaster equation for photonic crystals is constructed
by GTPhMaster as described in Sakoda [24].

INSTALLATION OF GTPACK

GTPack is installed similarly to all other Mathematica packages.
After downloading and decompressing GTPack, the content
of the package has to be copied to the application folder of
Mathematica within the respective base directory. Here, the user
can choose between making the package available for all users of
the computer or only for her- or himself. If the package should be
available for all users of the computer, the corresponding folder
to copy to can be found by opening a Mathematica notebook
and typing $BaseDirectory. If the package should be available
exclusively for the current user of the computer the respective
base directory can be found by typing $UserBaseDirectory.
According to the path of the base or user base directory (called

Frontiers in Physics | www.frontiersin.org 3 August 2018 | Volume 6 | Article 86

http://ab-initio.mit.edu/mpb
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Geilhufe and Hergert GTPack: A Mathematica Group Theory Package

FIGURE 3 | Installation of groups and double groups and calculation of the character tables using the commands GTInstallGroup and GTCharacterTable.

$dir in the following), the folder containing GTPack needs
to be copied to the directory $dir\Applications. Afterwards,
the package and the documentation are available. The package
itself can be loaded within a Mathematica notebook by typing
Needs[”GroupTheory‘”].

EXAMPLES

Installation of Groups and Character Table
In the first example, the installation of point groups and the

calculation of character tables is shown. Within the example,
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FIGURE 4 | Crystal field expansion and level splitting for a localized d-electron in an octahedral, a cubic and a tetrahedral crystal field.

the point group T is considered. Using GTPack, the point
group is installed with the command GTInstallGroup as shown
in Figure 3. The output is a list of symmetry elements, where
each element is given in symbolic form. In total T contains 12
elements, where the symmetry elements are denoted using the
Schönflies notation [32], where Cna denotes a rotation about the
angle 2π/n about the rotation axis Ea. The implemented standard

axes are shown in Figure 2. Additional rotation axes can be
installed using GTInstallAxis. Each symbol can be transformed
into a rotation matrix using GTGetMatrix. A character table for a
point group is installed using GTCharacterTable.

The command applies the Burnside algorithm for the
calculation of the character table [42]. Within the command
several options can be specified, such as an input validation
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(GOFast), a control of the printed output (GOVerbose), or
the choice of notation for the irreducible representations
(GOIrepNotation). For example, possible options for the names
of irreducible representations are: the Mulliken notation [49,
50], which is widely used in chemistry and spectroscopy; the
notation according to Bouckaert et al. [3], which is usually used
in connection to band structure calculations; and a simple index
notation, which is denoted by Bethe notation. To determine
additional degeneracies of energy levels due to time-reversal
symmetry, the reality of irreducible representations plays a
central role [40]. Given a point group G, a representation Ŵ of G
is called: potentially real, ifŴ is equivalent to a real representation
and Ŵ ∼ Ŵ∗; pseudo-real, if Ŵ is not equivalent to a real
representation, but Ŵ ∼ Ŵ∗; and essentially complex, if Ŵ ≁ Ŵ∗.
This property can be determined by means of the equation of
Frobenius and Schur [40], given by

1

g

∑

T∈G

χ(T2) =







1 if Ŵ is potentially real
0 if Ŵ is essentially complex
−1 if Ŵ is pseudo-real

. (1)

Equation (1) can be evaluated using GTReality, or during the
calculation of the character table by specifying the option
GOReality. In the second part of the example in Figure 3

the character table is calculated for the double group of
T. The double group is installed by specifying the option
GORepresentation within the command GTInstallGroup and
choosing SU(2) as standard representation. The additional
symbols of the double group elements are denoted with an
overline. Instead of four, the double group of T has seven
classes and irreducible representations. The additional classes are
classified by the theorem of Opechowski [51, 52]. The respective
extra representations of the double group can be determined
using GTExtraRepresentations.

Crystal-Field Splitting
Crystal field theory represents a semi-empirical approach to
describe localized states in an atomic or crystallographic

surrounding. The crystallographic surrounding or crystal field is
described in terms of a small perturbation Vcr(Er) leading to the
total Hamiltonian

[

−
h̄2

2m
∇2 + V(Er)+ Vcr(Er)

]

ψ(Er) = Eψ(Er). (2)

The crystal field itself can be expanded in terms of spherical
harmonics Y l

m [32],

Vcr(Er) =
∑

l

l
∑

m=−l

rlAl,mY
l
m(θ ,φ), (3)

or more generally in terms of crystal field operators Ôl
m,

V̂cr =
∑

l

l
∑

m=−l

Bl,mÔ
l
m. (4)

GTPack contains various modules to calculate matrix
elements

〈

jm1|Ô
l
m|jm2

〉

for operator equivalents, such as

spherical harmonics, Buckmaster-Smith-Thornley operators
[34], and Stevens operators [33]. The respective GTPack
commands are GTGauntCoefficients, GTBSTOperator, and
GTStevensOperator.

Depending on the underlying symmetry of the system some of
the expansion coefficientsAl,m or Bl,m are zero. Given a symmetry
group G, the Hamiltonian of the system and with that the crystal
field expansion as to be invariant under the application of the
projection operator of the identity representation,

P̂
1Vcr(r, θ ,φ) = Vcr(r, θ ,φ). (5)

However, for any proper coordinate transformation P̂(T)
corresponding to an element T ∈ G the spherical harmonics (and

FIGURE 5 | The level splitting for a localized d-electron into Eg (E) and T2g (T2) levels in an octahedral, a cubic and a tetrahedral crystal field.
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FIGURE 6 | Structural information and construction of the tight-binding Hamiltonian for graphene.

similarly crystal field operators Ôl
m) transform as

P̂(T)Ym
l =

l
∑

m′=−l

Dl
m′m(T)Y

m′

l , (6)

where Dl
m′m denotes the Wigner-D function. For improper

coordinate transformations (inversion, reflections, etc.) a factor

of (−1)l has to be taken into account. Evaluating Equation (5) by
using the expansion (3) and transformation behavior (6) leads to
the under determined equation system

Am
l =

1

g

∑

T∈G

l
∑

m′=−l

Dl
mm′ (T)A

m′

l . (7)
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FIGURE 7 | Band structure calculation for graphene.

From Equation (7) it can be concluded which coefficients depend
on each other and which coefficients vanish. The final symmetry
adapted crystal field expansion can be calculated using GTPack
by means of GTCrystalField. Figure 4 illustrates an example for
the level splitting for a single d-electron in an octahedral, a cubic
and a tetrahedral crystal field. The underlying point groups are
Oh for the cubic and the octahedral case as well as Td for the
tetrahedral case. However, it turns out that both groups lead
to the same crystal field expansion. First, the point group Oh

is installed using GTInstallGroup. Afterwards the crystal field
expansion is calculated using GTCrystalField up to a cutoff value
of 2l. As we discuss d-electrons, the expansion is truncated after
l = 4. Next, we define the surrounding field in terms of the
nearest neighbors and create lists containing their positions and
ionic charges. The splitting is calculated from the eigenvalues
of the matrix elements over radial wave functions ψ l

m(Er) =
Rl(r)Y l

m(θ ,φ), as

Vcr =

2l
∑

l′=0

l′
∑

m=−l′

〈

rl
′
〉

Al′ ,m

〈

lm1|l
′m|lm2

〉

, (8)

where
〈

rl
〉

=

∫

drr2rlRl(r)2, (9)

and

〈

lm1|l
′m|lm2

〉

=

∫

d�Y l ∗
m1
(�)Y l′

m(�)Y
l
m2
(�). (10)

The latter integral is called Gaunt coefficient and can be
calculated by means of GTPack using GTGauntCoefficient. The

values for
〈

rl
′
〉

are materials specific and can be calculated, e.g.,

in the framework of the density functional theory [53]. GTPack
provides commands to store and load explicit values from a
database. However, in this example we introduce the generic
parameters

ǫ[oct] =
3q

〈

r2
〉

2π
, (11)

and

Dq[oct] =
q
〈

r4
〉

24π
. (12)

As can be verified from the Mathematica example in Figure 4,
in all three cases a two-fold and a three-fold degenerate level
can be found. In the cubic and octahedral case the two-fold
degenerate state corresponds to the irreducible representation Eg
and the three-fold degenerate level corresponds to the irreducible
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FIGURE 8 | Photonic band structure for a two-dimensional square lattice of alumina rods in air calculated using MPB and analyzed with GTPack.

representation T2g . For the tetrahedron the inversion symmetry
is broken and the states are denoted by E and T2, respectively.
The final result is plotted in Figure 5.

Tight-Binding Bandstructure of Graphene
Due to the occurrence of Dirac nodes within the band structure
and the resulting properties, graphene counts as one of the
most studied materials to date [54, 55]. Within the following
example the calculation of the band structure using the tight-
binding approximation will be illustrated in the framework
of GTPack. In Figure 6 the structure and the construction of
the tight-binding Hamiltonian is shown. At first, the structure
is given as a list in the standard GTPack format. The list
contains the name of the structure and a prototype, four different
names for the space group (Pearson symbol, Strukturbericht
designation, international notation, and space group number),
the lattice, and the sites containing the atom name and the
atom position. Note that the first five information are optional
and not important for the generation of the tight-binding
model. GTPack provides modules to import structures, e.g., in

the cif-format using GTImportCIF. The structural information
can be plotted using the command GTPlotStructure2D. For
the construction of the tight-binding model it is necessary to
construct a real space cluster. This cluster is reordered into
different shells corresponding to nearest neighbor, next nearest
neighbor, next next nearest neighbor interactions, etc.. The
respective commands to do so are GTCluster and GTShells. From
the information of the shells, the tight-binding Hamiltonian
is constructed for s- and p-electrons. The zero and non-zero
entries within the tight-binding Hamiltonian are illustrated using
GTHamiltonianPlot. As can be seen within the plot, the pz-
orbitals do not hybridize with all the other orbitals. Hence, those
can be considered to form a smaller tight-binding Hamiltonian of
dimension 2× 2. Setting up and solving the reduced 2× 2 tight-
binding Hamiltonian is shown in Figure 7. The high-symmetry
path within the Brillouin zone (K ′, Ŵ, M, K) is generated using
the commandGTBZPath. The pointsK andK ′ denote the corners
of the hexagonal Brillouin zone, M points to the middle of an
edge and Ŵ is the Brillouin zone center. The band structure itself
is calculated and plotted using GTBandStructure.
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FIGURE 9 | Application of the character projection operator to the field corresponding to the degeneracy between the second and third band of the transversal

magnetic mode at M.

ANALYZING PHOTONIC BAND
STRUCTURES

Photonic crystals represent the optical analogs of ordinary
crystals, where light is traveling through a periodic dielectric.
Potential optical band gaps, i.e., forbidden frequencies where
photons are not allowed to travel through the medium have
motivated research for various applications replacing ordinary
electronics and information technology [56]. Recently, photonic
crystals have been discussed with respect to nodal points [57] and
topological states in periodic and quasi periodic arrangements
[58–60]. A group theory classification of the allowed modes
yields additional information, e.g., with respect to uncoupled
bands [27]. For two-dimensional photonic crystals, the vectorial
Maxwell’s equations can be transformed into two sets of
independent equations for two modes [24], which are referred
to as transversal magnetic (TM) and transversal electric (TE)
modes. The resulting master equations are given by

−
1

ε(Er‖)

{

∂2

∂x2
+
∂2

∂y2

}

Ez(Er‖) =
ω2

c2
Ez(Er‖) , (13)

−

{

∂

∂x

1

ε(Er‖)

∂

∂x
+
∂

∂y

1

ε(Er‖)

∂

∂y

}

Hz(Er‖) =
ω2

c2
Hz(Er‖) . (14)

Here, the vector Er‖ denotes a vector in the xy plane. For
the solution of the masters equation, a plane-wave approach
can be applied which transforms the Masters equations into
an eigenvalue problem. Such an approach is implemented in
GTPack, but also within the code MPB1. GTPack can be applied
to analyze photonic band structure calculations performed with
MPB, as will be shown in the following. We consider a two-
dimensional photonic crystal with a square lattice made of
circular alumina rods (ε = 8.9) in air. The radius of the rods
is given by R = 0.2a (a-lattice constant). This corresponds to
a filling factor of γ = 0.126. The photonic band structure was
calculated using MPB incorporating a tolerance of 10−7. The
calculated band structure can be loaded, plotted and analyzed
automatically using the command GTPhSymmetryBands as
shown in Figure 8 for the transversal magnetic mode. The
underlying point group is C4v, which has four one-dimensional
irreducible representation (A1, A2, B1, B2) and one two-
dimensional irreducible representation (E). As can be seen in
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Figure 8, there is a spectral gap between the first and the
second band. Degeneracies in the band structure correspond to
the dimensions of the corresponding irreducible representation.
Therefore, all single bands are associated to the one-dimensional
irreducible representations. However, for example, for the second
and the third band, a two-fold degeneracy can be found at the
M point which corresponds to the two-dimensional irreducible
representation E. To revise this point more clearly, the specific
fields corresponding to the modes can be imported into the
Mathematica notebook using GTPhMPBFields. Afterwards, the
field is analyzed by applying the character projection operator for
each irreducible representation. As expected, only the application
of the operator corresponding to E shows non-zero results, as can
be seen in Figure 9.

ADVANTAGES AND LIMITATIONS

As an additional package to the standard Mathematica
framework, GTPack is embedded into the Mathematica
framework. The new modules provided within GTPack are
designed for application in solid state physics and photonics and
use notations which are common in these research communities.
Having a programming framework at hand comes with the
advantage of easy automation which is in contrast to recently
published group theory tables. Most of the provided modules
are kept general and can be applied in connection to any set
of matrices forming a group. This allows for applications way
beyond the provided point and space group setup. As usual, the
package is constructed in a modular form and can be extended
easily.

GTPack is under ongoing development and therefore comes
with limitations in the first version. Among others, these
comprise of the calculation of character tables for space groups
and groups containing anti-unitary symmetry elements. The
implemented modules for the calculation of photonic band
structures currently do not reach the same performance as
specialized numeric implementations such as MPB. Thus,
export and import modules connect MPB with GTPack.
Additionally, modules to export analytically generated tight-
binding Hamiltonians to Fortran help to generate more efficient
numeric codes. An extension to a parallel implementation
for the usage of the cluster version of Mathematica is
currently not planned. Concerning the symmetry analysis,
irreducible representations can currently only be associated to

the calculated bands if symmorphic space groups are taken into
account. An extension for non-symmorphic groups is under
development.

CONCLUSION

We presented the Mathematica group theory package GTPack
together with four basic examples. The package contains about
200 additional commands dealing with basic group theory
and representation theory and providing tools for applications
in solid state physics and photonics. The package itself is
structured into several subpackages. In connection to external
databases it is possible to load, change and save data, like
structural information or parameters for electronic and photonic
band structure calculations. The package works externally with
a symbolic representation of symmetry elements. Internally,
matrices are used. GTPack can be obtained online via the web
page http://GTPack.org.
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