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The primary therapeutic approach for high-grade brain tumor is surgical resection.

However, identifying tumor margins in vivo remains a major challenge. Biopsy analysis

remains the standard diagnostic technique on tumor margins. This ex vivo analysis is

time consuming and delays treatment. The aim of this study is tissue discrimination

using label free autofluorescence and application in intraoperative optical probe for

optical biopsy. Biopsy samples from 51 patients who underwent brain tumor surgery

(21 metastasis tumors, 17 glioblastoma tumors, GBM, and 13 control samples)

were included in this study. The samples underwent a multiscale and multi-contrast

optical analysis. The excitation were performed with a deep-UV synchrotron beam,

at 275 nm, and a near-infrared Ti:sapphire pulsed laser, from 690 to 1,040 nm. The

detection modalities were fluorescence imaging, spectroscopy and fluorescence lifetime.

Using deep-UV excitation, and combining three molecular ratios (tyrosin-tryptophan,

tryptophan-collagen, tryptophan-NADH) resulted in discrimination with a sensitivity of

90% and a specificity of 73%. Using a two-photon excitation, and combining average

lifetime, NADH-FAD ratio and Porphyrin-NADH ratio, resulted in discrimination with a

sensitivity of 97% and a specificity of 100%. A multiscale algorithm resulted in an overlap

of only 1.8% between control and tumor samples.

Keywords: deep-UV, synchrotron, Multi-photon, autofluorescence, brain tumor, phasor analysis, cluster, spectral

analysis

INTRODUCTION

Many Central Nervous System (CNS) tumors, such as glioblastoma and metastasis both primary
and secondary, are infiltrating. Surgical resection is the main course of treatment for such tumors.
The outcome and life expectancy after these operations is very low and their improvements
is one of the major challenges in modern medicine. In recent years many new technologies
such as intraoperative ultrasound [1], intraoperative magnetic resonance imaging (MRI) [2],
confocal endoscopy [3] have been brought into the operating room to help guide surgeons in
resecting tumors. However none of these tools has been able to discriminate infiltrating tumors
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margins (ITMs). These techniques have failed to offer cellular-
level resolution, and to detect the low concentrations of tumor
cells in infiltrating regions. As a consequence, the chosen
surgical approach is to maximize the extent of tumor removal
while minimizing intrusion on the eloquent brain area [4].
And while resection improves the outcome and life expectancy
of the patient, the surgeon still operates “blind” on the true
nature of margins. To meet the challenge of discriminating
ITM’s intraoperatively, there has been a boom in developing
surgical medical imaging tools that can contrast brain tissues and
discriminate cell types. Examining tissue autofluorescence with
optical microscopy techniques is one answer to the demand for
intraoperative ITMdiscrimination. Several molecules produce an
endogenous fluorescence signal in the brain [5] and this signal
can change from one type of tissue to another. This difference can
be used to distinguish tumoral regions from healthy ones (6–8).
Following that direction, our group miniaturized two-photon
microscopy into a fibered configuration for intraoperative
purpose. This endomicroscope enables two imaging contrasts:
two-photon autofluorescence emission (TPEF) and second
harmonic generation(SHG), with an excitation in the near
infrared (NIR). The NIR excitation lies in the tissue therapeutic
window, resulting in less photodamage and a better penetration
depth. In our set-up we also choose to include several
types of measurements: full field imaging, micro-spectroscopy
and fluorescence lifetime to provide the most reliable and
reproducible response. To validate this technical approach we
built, in parallel, an optical database of the autofluorescence
response from brain tissues which will be used to develop
and test robust algorithms to automatically discriminate tissue
and validate automatic tissue analysis, potentially eliminating
subjective reading of images by a human operator. Multimodal
study of endogenous fluorescence on human tissue is relatively
new and, according to the literature, only a few tissue types
have been explored. Our lab focused on brain tissue endogenous
fluorescence by partnering with (1) the Saint-Anne hospital
(Paris, France) who provided biopsy samples and medical
knowledge, and (2) Synchrotron SOLEIL who provided access
to a deep UV imaging platform at DISCO beamline, while
the IMNC, performed two-photon microscopy with a benchtop
microscope.

This study searched for an objective optical marker to
discriminate tumor from healthy tissue, and to discriminate
primary from secondary tumors. A large study on fixed
biopsy tissue of primary (glioblastoma), secondary (metastasis)
tumor and control cortex was performed, with large scale
excitation ranging from deep-UV (DUV) to near infrared
(NIR), and several modalities of detection from qualitative,
fluorescence and lifetime imaging, to quantitative, spectral
and lifetime measurements. Finding a discriminating optical
marker was made possible by exploiting multiple contrast and
building 2D and 3D discriminative algorithms for the DUV
and NIR excitations individually, and then in combination.
Discrimination specificity and sensitivity were in the 70–100%
range, highlighting the power of optical analysis to discriminate
the nature of tissue with enough precision to be clinically useful.
The qualitative results of our study were also used to compare

optical microscopy technology to the gold standard H&E
staining. This comparison highlighted discriminative histological
structure in the optical images, and a “blind” pathologic analysis
was then performed directly on our images.

MATERIALS AND METHODS

Study Design
The samples were excited in the deep-ultraviolet (DUV) and
the near infrared (NIR) range on two different platforms. The
design of the study is presented in Figure 1. On both platforms
an excitation emission matrix was performed to highlight
the different excited components and to select the optimal
wavelengths for our study. Under DUV excitation we chose
275 nm as the optimal wavelength, being the most efficient in
set-up, and in exciting four components simultaneously: Tyrosin
(Tyr), Tryptophan (Trp), Collagen crosslinks (Col), and NADH
[6, 7].

In the NIR range we chose two excitation wavelengths: 810
and 890 nm. Four molecules and SHG were tracked: NADH,
FAD, Lipopigments, Porphyrin [6, 7]. At 810 nm excitation
NADH was optimally detected and at 890 nm we obtained
the best tradeoff between SHG and emitted fluorescence [8].
Samples (Figure 1Aiv) underwent the following process: (1) large
mosaic at 275 nm in the four detection channel (Tyr, Tryp,
Col, NADH) (Figure 1Aii) (2) selection of a region of interest
and spectral measurements at 275 nm (Figure 1Ai) (3) Large
mosaic at 890 nm (Figure 1Av) (4) selection of the same region
of interest as in DUV to perform spectral (Figure 1Avi) and
FLIM measurements (Figure 1Avii) at 810 and 890 nm. Once
data acquisition was completed, analysis followed: (i) spectral
fitting of the data at each wavelength using homemade Matlab
program (Figures 1Ai,viii) (ii) Fitting of the lifetime data with
Symphotime software (Figure 1Aix) (iii) Phasor analysis of
the lifetime data (iv) construction of discriminative algorithm
combining the different analysis results and (v) comparison with
the gold standard histology (Figure 1Aiii).

Sample Preparation
A collaboration with the anatomopathology and neurology
departments of the Saint-Anne Hospital (Paris, France) provide
a large cohort of human biopsy samples. The protocol of
experimentation was approved by the Institutional Review
Board of Sainte Anne Hospital (Ref CPP S.C.3227). Fifty-one
individuals (31 males, 20 females; age average 54.1± 17 year-old)
were included and an informed written consent was obtained
from all patients prior to enrollment. Frozen human brain tissues,
conserved at −80◦C, were obtained from two types of tumor (21
metastasis samples, Meta; 17 glioblastoma samples, GBM) and
Control specimens (13 patients with no history of tumor) selected
from epileptic surgery. Themetastases were originated from lung,
breast, bladder and skin. The characteristics of the cohort are
summarized in Table 1.

A dedicated transport (360◦, France) brought the selected
cohort to the IMNC laboratory (Orsay, France). Samples were
conserved at −80◦C, before being transferred to a −20◦

freezer 24 h before being cut with a cryostat (Leica CM 1950).
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FIGURE 1 | (A) Schematic of the acquisition-analysis protocol from deep-UV to infrared excitation (B) Deep-UV excitation-emission matrix. (C) Two-photon (NIR

excitation) excitation-emission matrix. The bottom line present how were fitted tyrosin, tryptophan, collagen crosslinks and NADH at 275 nm (D), NADH, FAD,

lipopigments, porphyrin I and porphyrin II at 810 nm (E) and SHG, NADH, FAD, lipopigments, porphyrin I and porphyrin II at 890 nm (F).

TABLE 1 | Description of samples.

Type Nb patient Age Men Women

Control 13 35.2 ± 7.4 9 4

Primary Tumor: GBM 17 68.3 ± 11.4 12 5

Secondary Tumor: Metastasis 21 58.8 ± 12.2 10 11

Total 51 54.1 ± 17 31 20

Ten-micron slices were deposited on quartz coverslips and
microscope slides, and fixedwith an ethanol solution (100%). The
quartz coverslips were brought to the Synchrotron in a dedicated
box, and the microscope slides were used for H&E staining and
two-photon imaging on the PIMPA platform.

Histological Process: Hematoxylin and
Eosin Staining
A gold standard Hematoxylin and Eosin (H&E) staining was
performed on one of the microscope slices following the Sainte-
Anne hospital protocol [9] whose steps are hydration, H&E

staining, dehydration, and toluene fixation. Once stained the
samples were imaged in a Digital Slide Scanner NanoZoomer 2.0
(Hamamatsu Photonics K.K, Hamamatsu, Japan).

Deep-Ultraviolet Imaging and Spectral
Measurements
The Deep-Ultraviolet (DUV) measurements were performed on
the DISCO beamline at the Synchrotron SOLEIL [10]. Two
set-ups, a full-field microscope (Zeiss Axio-observer Z-1) and
a microspectrofluorimeter (Olympus IX71), were used for this
study. The samples were excited with the continuous emittance
from the DISCO beamline bending magnet between 275 and
335 nm. The details of the set-up have been presented in other
studies [11, 12].

A large mosaic of the sample was made under the full field
microscope with an excitation wavelength of 275 nm and four
emission filters (307–323, 323–357, 408–438, and 435–455 nm,
Semrock, USA) in front of a detector (CCD camera, Pixis
BUV, Princeton Instrument, USA). Regions of interest were
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then selected in this mosaic and spectral measurements were
done with the microspectrofluorimeter at the same excitation
wavelength. One second integration time and a 10 microns
lateral step size were applied. An Excitation-Emission matrix was
also measured using the microspectrofluorimeter. An emission
spectrum was acquired for each excitation wavelength from 275
to 335 nm every 10 nm.

Two-Photon Imaging and Quantitative
Measurements
A two-photon benchtop microscope (TCS SP8 MP microscope,
Leica Microsystems, Wetzlar, Germany) combined with a
Ti:sapphire laser source (Mai Tai DeepSee, Spectra-Physics, Santa
Clara, USA) was used to perform fluorescence imaging (TPEF),
emission spectra and fluorescence lifetime imaging (FLIM). The
set-up and acquisition methods are described thoroughly in
our previous work [8, 13]. The measurements were recorded
on the same region of the sample as the one imaged with the
DUV excitation. On each region TPEF and SHG image were
recorded using 890 nm excitation wavelength. Then spectral and
FLIM analyses were performed using 810 and 890 nm excitation
wavelength. Excitation-Emission matrices were also measured by
acquiring a spectral stack at excitation wavelengths between 740
and 940 nm every 20 nm.

Data Analysis
DUV Analysis
DUV full-field images were processed, using Image J, to create a
merged image of the fourth detection filter and to visually identify
any difference between tissue regions. The spectral results were
analyzed using lab-written Matlab script and the PLS toolbox
(Eigenvector Research Inc., WA, United-States). Two types of
analyses were performed on the data. First was a cluster analysis
to extract spectral signature of tumoral region, and second was a
fitting analysis to compare tissues at a molecular scale.

In the first method, the data were first preprocessed using lab-
written scripts developed by SOLEIL and IMNC teams, in order
to: (1) reduce the noise, (2) suppress dead pixels, (3) set-up a
baseline, and (4) normalize to the maximum of the cohort. Then
a discriminative cluster analysis (DCA, K-Means) was applied to
all the pixels of every images using the PLS toolbox. The number
of input clusters was chosen iteratively looking at the results, and
fixed at five in our case.

The second analysis applied on the spectral data was a spectral
fitting of the different molecular contributions. The fit was
performed using a lab-written Matlab script previously used
on visible and near infrared autofluorescence data 15, 20 and
adapted to the DUV data.

The results of the fit were used to compare different molecular
ratios. The ratio between tryptophan and collagen crosslinks
was given a particular attention, but tyrosin/tryptophan and
tryptophan/NADH ratio were also computed to build a robust
discriminative marker.

Two-Photon Analysis
TPEF images were processed using Image J, in order to produce
both a good quality and scaled image of the merged TPEF-SHG

signal. The images were then compared with H&E images. After
highlighting the histological structure on the TPEF images, a
neuropathologist was asked to perform a blind analysis. The
analysis was done on paired TPEF and H&E images from 25
samples (10 metastases, 8 glioblastomas, 7 controls). First, a
senior neuropathologist, blind to the TPM results, performed an
initial histopathological analysis. No specimen was excluded due
to lack of histopathological representativeness. Then, 6 months
later, we presented a web-based survey of the TPEF images
(PNGTPEF/SHG images) and the participant was asked to
classify the sampled tissue in four categories: (1) GBM; (2) Meta;
(3) healthy tissue; or (4) unclassified. Although completely blind
to the initial histological analysis, the participants had access
along with the TPM images, to typical clinical data including
patient’s age, gender, clinical presentation, tumor location, and
pre-operative MRI images. These results were then compared
to initial histological analysis to calculate the accuracy of the
diagnosis on TPEF images.

The spectral stacks were opened in Image J to extract five
spectral region of interest (ROIs) in each of the 810 and 890 nm
images, and then processed in Matlab. The obtained spectra
were fitted using a lab-written Matlab script previously published
and used on meningioma samples [8]. Five autofluorescent
molecules were fitted: NADH, Flavin adenine dinucleotide
(FAD), Lipopigments, Porphyrin I and Porphyrin II. The results
of the fit were used to compute two indicators according to the
literature [14, 15]. The oxydo-reduction ratio between NADH
and FAD:

ROx =
FAD890

NADH810+FAD890
(1)

And the optical index ratio between NADH and porphyrin:

OI =
Porphyrin I890
NADH810

(2)

The NADH values were extracted from the emission spectrum
using 810 nm excitation wavelength and the FAD and Porphyrin
from the emission spectrum using 890 nm excitation wavelength.
To be comparable, the spectra were normalized by the excitation
power.

As with spectral data, the FLIM data were analyzed using two
methods, fitting and non-fitting, which were developed. First, bi-
exponential fitting—the method implemented in the acquisition
software (Symphotime Vx64, Picoquant)—was used. On each
image the same five ROI as for spectral measurements were
selected, and on each ROI the fluorescence decay histogram
was bi-exponentially fitted. The amplitude average lifetime was
extracted from this fit using a method previously published on
bladder tumor [16]. The second implemented method used a
non-fitting process, called phasor analysis. We started with the
time-correlated single-photon counting (TCSPC) detection of
fluorescence decay curves at each pixel of a 3 ∗ 3 mosaïc image.
The intensity of a 32 ∗ 32 pixel (a 28 µm-side) square was added
together to obtain the decay I(t) at each reduced pixel.

In the phasor approach, the decay I(t) at each pixel is
transformed into two coordinates in a Cartesian plot according
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to the following equations:

Si (ω) =

∫

∞

0 I (t) cos (ωt) dt
∫

∞

0 I (t) dt
(3)

Gi (ω) =

∫

∞

0 I (t) sin (ωt) dt
∫

∞

0 I (t) dt
(4)

where, Si(ω) and Gi(ω) are the x and y coordinates of the
phasor in the phasor plot, respectively;ω is the angular repetition
frequency linked to the signal length (L) and the sampling period
(Ts) by the relation: ω =

2π
L Ts

.
We stored for each pixel Si(ω), Gi(ω) andMi – the normalized

integration under the decay of each pixel to provide the
phasor histogram of the 3∗3 mosaic image. A global phasor
histogram grouping the data of all the samples (n = 51)
was plotted. Five areas were selected on this global phasor
histogram and the images were reconstructed with a five
colors-scale corresponding to selected area. Pixel colors criteria
following Equation (5) were used to compare the data from each
group.

log

(

%green pixel + %blue pixel

%red pixel +%yellow pixel

)

(5)

Value of fluorescence lifetime was also determined in this analysis
using an error ellipse method. An ellipse that should contain 95%
of phasor counts in each area was fitted on the five areas of the
global histogram. The two intersections between the major axis
and the circle segment are linked to the two lifetimes and their
contributions.

Statistical Analysis
The different computed ratios were compared statistically with t-
test in Matlab to obtain a p-value with a criteria of significance at
p < 0.5.

The representation in scatter plot and the blind analysis were
evaluated by defining the sensitivity (Se) and specificity (Sp) of
the discrimination criteria, following Equations (6, 7).

Se =
TP

TP + FN
(6)

Sp =
TN

TN + FP
(7)

The variables were TP = True Positive, FP = False Positive,
TN = True Negative and FN = False Negative, defined as: TP
= Tumoral tissue classified as tumoral, FP = Control tissue
classified as tumoral, TN = Control tissue classified as healthy
and FN = Tumoral tissue classified as healthy.

Multiscale Discriminative Algorithm
In the various excitation ranges the three best indicators were
chosen: (1) Porphyrin/NADH ratio using two-photon excitation,
(2) Tryptophan/collagen crosslinks ratio at DUV excitation and
(3) the average lifetime using 890 nm excitation. A region of
interest measured in our protocol could be then represented in
the 3D-scatter plot with these three indicators as its coordinate.

The scatter cloud of a group was fitted by a Gaussian ellipsoid
using the mean and the standard deviation as parameters for the
covariance with the ellipse to cover 60% of the total probability
mass. The percentage of overlap between the ellipses for each
group was then calculated to assess of the performance of such
algorithm.

RESULTS

In this large study, we first look at the results under DUV
excitation. The Figure 2 presents a summary of the analysis
results and discrimination reached in this excitation range.

Figures 2A–C shows an example of the superposition of
the tryptophan (red) and collagen (green) channels of wide-
field (WF) image in each group. The control image presents
an homogeneous color, while in primary and secondary tumor
some regions show a different color, exposing a variation in
the tryptophan-collagen ratio in tumoral tissue. Based on this
observation a method of clustering was applied to the spectral
data to validate this hypothesis and to see if two types of spectral
signatures were highlighted.

The Figures 2D–F shows the results of the spectral cluster
analysis on the same region as the one on the WF images.
The spectra corresponding to each color are superposed in
the Figure 2G. The two dominant colors in control (red
and pink) correspond to spectrum with a main peak in the
tryptophan range and a secondary peak in the collagen crosslinks
range, where the different dominant colors (blue and cyan) in
tumor correspond to spectrum with only one main peak in
the tryptophan range. These results led us to track the ratio
between the two main peaks of the DUV spectral response, the
Tryptophan/collagen ratio.

Figures 2H–J gives an example of the Tryptophan/collagen
ratio in a tissue of each group, the ratio being higher in tumoral
groups than in control group. The results of the selected regions
of interest (ROI) are plotted in the Figure 2K. A threshold value
distinguishes tissue type: below 2.8 the tissue is healthy, above
3 the tissue is tumoral. This discrimination, highlighted on a
small set of data, was then validate statistically on a larger set of
data in the Figure 2L. The Tryptophan/collagen ratio showed a
significantly higher ratio in tumoral tissue than in control tissue
(p < 0.01). Then new molecular ratios were tested. The results
are shown in Figures 2M,N. The Tryptophan/NADH ratio also
showed the same trend but with less statistical significance (p
= 0.13). The third ratio, Tyrosine/Tryptophan, showed a lower
value in tumoral tissue than control (p < 0.01). To find a
discriminative algorithm with statistical significance, these three
molecular ratios were extracted in five ROI in different types of
tissue, and projected as the coordinate of the ROI in a 3D-scatter
plot (Figure 2O). A discriminative cross-section could be drawn
between tumoral tissue (red dots) and control tissue (green
dots), with calculated algorithm specificity of 73% and sensitivity
of 90%. This discriminative algorithm has a high sensitivity,
making it a good diagnosis tool, ruling out tumor presence with
precision. However it still gave a non-negligible level of false
positives.
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FIGURE 2 | Analysis of the Deep-UV data. Comparison of the three tissue groups control (A,D,H), glioblastoma (B,E,I) and metastasis (C,F,J) with different analysis

methods: wide-field(WF) imaging (A,B,C), spectral clustering (D,E,F) with a 5-cluster decomposition shown on a graph (G), map of the tryptophan/collagen ration

(H,I,J) with comparison of selected ROIs (K). Molecular analysis of the tryptophan/collagen ratio (L), the tryptophan/NADH ratio (M) and the tyrosin/tryptophan ratio

(N) combined in 3-D scatter discrimination plot (O).

The data obtained in the NIR excitation range were tested with
similar approaches. The results are shown in Figure 3.

The first approach was to compare the TPEF images,
Figures 3E–G, to the histological gold standard H&E images,
Figures 3A–C, to find the structure used to discriminate
tissues. The TPEF images are a merger of autofluorescence
emission, red contrast, and SHG signal, green contrast. In
the control, Figures 3A,E, typical cortical arrangement of
neurons (dark violet triangular spot in H&E), showed a strong
fluorescent spot on the TPEF images. In the glioblastoma,
Figures 3B,F, large vessels, identified by light pink structures
in H&E and filament in SHG green channel. The vessels
are surrounded by a high density of tumor cells, identified
with an intense signal in the fluorescence image. In the
metastasis, Figures 3C,G, strong neovascularization with tumor
cells entangled, light pink signal signal in H&E surrounded by
high density of cells, were identified on the TPEF images by
a strong SHG signal with bright fluorescent spots. Thereafter
the TPEF were given to senior neuropathologist for blind
diagnosis, Figure 3D, in order to evaluate the capability of direct
diagnosis on TPEF images. The senior pathologist was able to
discriminate tissues with a specificity of 50% and a sensitivity of
75%.

Next the quantitative results were analyzed on each TPEF
image region. A spectral response with a 810 and 890 nm
excitation was measured and different molecular indicators were
calculated at different regions of interest for every tissue. The two
spectral markers calculated were the redox ratio and the optical
index. In Figure 3H, the redox tended to be higher in tumoral
tissue and discriminative between tumor types (pcontrol−GBM <

0.01, pcontrol−meta = 0.06, pGBM−meta < 0.01). The optical index
is also higher in tumoral tissue and can discriminate primary
from secondary tumor (pcontrol−GBM < 0.01, pcontrol−meta = 0.01,
pGBM−meta < 0.01). Complementary quantitative measurements
were performed on the samples: extraction of the average
lifetime using a fitting method applied on the various regions
of interest, and boxplot comparison of different tissue types,
as shown in Figure 3J. This method could discriminate the
three types of tissue (pcontrol−GBM < 0.01, pcontrol−meta < 0.01,
pGBM−meta < 0.01).

The results were combined to develop a discriminative
algorithm. First we used the two most efficient indicators,
optical index and average lifetime (Figure 3N). Results
with specificity and sensitivity respectively of 92 and 95%
are shown in a 2D-scatterplot. To improve the diagnostic
algorithm, a third piece of information was added, the
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FIGURE 3 | Analysis of NIR data. Comparison of three tissue groups: control (A,E,K), glioblastoma (B,F,L) and metastasis (C,G,M) with different imaging techniques

H&E (A,B,C), TPEF imaging (A,F,G) and FLIM (K,L,M). Results of the “blind” analysis on TPEF for diagnosis (D). Boxplot of the spectral molecular analysis, redox ratio

(H) and optical index (I), these results were combined in a scatter plot (N). Boxplot of the average lifetime (J). 3D-scatter of the two molecular indicators and the

average lifetime to build a discriminative algorithm (O).

redox ratio to translate metabolic changes. This resulted in
a 3D-representation of the data (Figure 3O). A cross-section
was drawn to obtain a sensitivity of 97% and specificity
of 100%.

The best method to directly discriminate tissue types was
shown to be lifetime measurements. We decided to investigate
it more in detail by implementing another analysis method,
called the phasor approach [17] which helped to uncover a
discriminative indicator without fitting of data. The results are
shown in Figure 4.

Control, GBM and Metastasis decays were gathered on a
global phasor counts, Figure 4A. In this phasor plot five local
maximums of counts were observed and selected in order to
assign a different color to pixels within each region. Each
image using the phasor plot was displayed with this color code.
Examples are shown in Figures 4B–D,I–K and compared to the
fast FLIM images obtained by the microscope software. The
images show green and blue dominant in control, while red
and yellow are more present in tumoral tissue. To quantify
this difference a color ratio was defined and calculated in each
sample. The results, comparing the tissue groups, are presented
in Figure 4L. Each tumor could be differentiated from the
control tissue (Control-GBM: p = 0.03 and Control-Metastasis:
p = 0.02). However it did not give a significant discrimination
between primary and secondary tumor. The green and blue
areas, occupying the majority of healthy tissue, had an average
lifetime around 1.4–1.6 ns, while control had a mean average
lifetime around 1.3 ns in the fitting method. Yellow and red
areas, occupying the majority of tumoral tissue, had average
lifetimes around 1.8–2 ns, while the GBM mean was around

1.6 ns and the metastasis mean around 1.9 ns in the fitting
method.

From DUV to NIR, various interesting discriminative
indicators were highlighted. To improve the capacity to
discriminate not only control from tumor, but also tumor
types from one another, the three most efficient indicators
were combined for scatter plotting the groups in 3D space
to highlight discrimination. The results with the indicators,
Porphyrin-NADH ratio at two-photon excitation (Optical
Index), Tryptophan collagen ration at DUV excitation (DUV
ratio) and the average lifetime at 890 nm, are shown in the
Figure 5.

This 3D algorithmwas used to find an accurate discrimination
between a healthy region and any tumoral region, Figure 5A,
the points of each type were approximated by an ellipsoid
giving an overlap of only 1.8%, resulting in high rate of
tumor discrimination. This algorithm was also used to look
for discrimination between tumor types, Figure 5B, primary
tumors had only 6.7% overlap with secondary tumors. This
second 3D-plot also showed that the secondary tumors could be
unambiguously discriminated from the control tissue.

DISCUSSION

In this study excitation ranging from DUV to NIR, various
detection contrasts, and multiple methods of analysis were
applied to biopsied brain tissue of three types: primary tumors
(n = 17), secondary tumors (n = 21) and controls (n = 13).
We demonstrated that: (1) Tumor could be discriminated from
control in the DUV excitation range using molecular ratio.
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FIGURE 4 | Phasor analysis of the FLIM: (A) Global phasor histogram with the selected zones and the error ellipses. (E) Average lifetime fluorescence decay

calculated in each zones. (L) Boxplot of the pixel colors criterion with p-values of the control-tumor test. Comparison of three tissue groups control (B,F,I,M),

glioblastoma (C,G,J,N) and metastasis (D,H,K,O) with rebuilt images of the phasor analysis (B,C,D,I,J) and Fast FLIM of the microscope (F,G,H,M,N,O).

FIGURE 5 | Discrimination of tissue types combining three indicators: Porphyrin/NADH ratio using two-photon excitation (Optical Index), Tryptophan/collagen ratio at

DUV excitation (DUV ratio) and the average lifetime using 890 nm excitation. (A) Results comparing Control and any tumor types. (B) Results for Control, primary

tumor (GBM) and secondary tumor (Metastasis).

(2) The merged TPEF-SHG images revealed features similar to
those seen in standard neuropathology, and could discriminate
tumor from normal tissue. (3) Quantitative TPM signals also
discriminated between tissue types combining molecular ratio
and average lifetime. (4) Lifetime measurements analyzed with
a phasor method gave a discriminating criteria significantly (p <

0.05) distinguishing control from tumor tissue. (5) A multiscale
discriminative algorithm, could graphically separate the tissue
types in a 3D plot.

First, using DUV spectral response and cluster analysis, we
showed that a distinguishing spectral signature for tumoral
vs. healthy tissues, quantified in the tryptophan and collagen
peaks ratio calculated on all spectral mosaic, with <2.8 being
healthy, and >3 being tumoral. Few studies have exploited
DUV excitation of Tryptophan. Pradhan et al. [18] studied
Tryptophan/NADH and found a higher ratio in metastasis tissue,
similar to our findings in ex vivo human brain tumor. The
autofluorescence of collagen has also been studied in tumor with
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a UV excitation. Georgakoudi et al. looked at cervical lesions and
Barett’s esophagus and found lower collagen signal in high-grade
dysplasic legions [19]. Pu et al. collagen emission in prostate
cancer, and showed a decrease in tumor region. They looked at
the NADH/collagen ratio for a robust quantitative indicator of
tissue nature [20]. The actual state of art is often comparing one
or two molecules to find discrimination. In order to improve
these actual performances, we build here an analysis based on the
fluorescence emission of four molecules. The 3D discriminative
algorithmusing threemolecular ratios achieved specificity of 73%
and sensitivity of 90% and thus could be used as diagnostic tool.
However, low specificity indicates significant false-positives when
a tumor is detected.

Secondly, we used the NIR images superposing two
modalities: fluorescence emission and second harmonic
generation, to highlight tissue structure comparable to the
histological standard for tumor diagnosis. A neuropathologist
was asked to perform a histological diagnosis blind to the
H&E results. This test showed discrimination with a sensitivity
of 75% and a specificity of 50%. Training neuropathologists
on TPEF images could improve these results since this trial
was a first time experience using this imaging modality. Blind
analysis of TPEF-SHG images have never been performed
before on brain tumor, but on other types of cancer, such as
gallblader cancer [21], breast masses [22], and liver cancer
[23]. In these analysis, they found even higher results than us
with accuracy of discrimination around 90%, due to training
of the neuropathologist on bigger sets of data. Analysis directly
on TPEF images have advantages over staining technique,
such as time management and tissue preservation, however it
still requires a trained neuropathologist to diagnose based on
visual observation. The real advantage of optical microscopy
in our study is the capacity to provide more parameters and
new quantitative measurements, feeding into data analysis
and visualization that support automated distinguishing of
tissues. Two-photon excitation provides other parameters
besides fluorescence intensity: the fluorescence lifetime and
SHG. We use the power of these techniques to achieve a better
discrimination of the nature of tissue by combining the results
of molecular analysis on emitted spectrum and the lifetime
analysis of the same region. The combination in 3D-plot of:
(1) the average lifetime, (2) the FAD/NADH ratio and (3) the
Porphyrin/NADH gave the best discrimination with a 97%
sensitivity and 100% specificity. This type of analysis were
already published only with visible, one-photon excitation
[24]. Other groups tried to build a 2D algorithm, using visible
excitation: Liu et al. [14] studied redox ratio and spectral shape
with a 89% sensitivity and a 97% specificity. Lin et al. [25]
analyzed fluorescence intensity and reflectance at 337 nm, with
a one-step algorithm yielding sensitivity and specificity under
85%. A two-steps algorithm gave them better results (sensitivity,
100%, specificity, 76%). However we can achieve similar results
with a one-step algorithm, which is easier to implement in a
clinical workflow.

Thirdly, using two photons imaging, only the fluorescence
lifetime produced significant discrimination among the three
types of tissue (p < 0.01). Due to their independence from

concentration, fluorescence lifetimemeasurements have been the
most popular technique. Several teams have tried to implement
it with various analysis algorithms to answer the question of
glioma margin resection. Sun et al. [26] used the Laguerre
coefficient value and found a longer lifetime in GBM than
normal tissue with a p-value < 0.05. They preferred this
technique because there is no deconvolution process of the
data, avoiding any assumption on the decay shape. Another
non-fitting technique is the phasor approach [17]. This is
the second method we tried, since it offers a very graphical
representation of data. The phasor approach showed five distinct
regions, with some being predominant in tumor and others
in control tissue. From this a numerical indicator from region
repartition was exploited and resulted in a significant difference
between tissue types (0.023 < p-value < 0.031). However,
compared to the exponential fitting, primary and secondary
tumor could not be discriminate. Other exploitations of phasor
plot exist [27], that could be implemented to improve these
results.

We took advantage of our multiscale analysis and designed
a graphical discriminating algorithm based on spectral DUV
measurements, spectral NIR measurements, and lifetime NIR
measurements. We distinguished an ellipsoid region for each
type of tissue. Primary tumor and control had only 1.8% of
overlap. Secondary tumor and control had 0% overlap and
primary and secondary tumor had 6.7% overlap.

This study highlights the capability of discriminating brain
tissue type from one another, tumoral from control, but also
tumor types from one another. This was achievable by combining
the different quantitative and qualitative measurements
accessible with optical microscopy. The technique used in this
study can be implemented in real-time in the operating room
with fast and direct analysis. These results are bringing us closer
to clinical use and could improve the surgical practice of tumor
resection. The perspective of this study are to extend the work to
fresh tissues and other tissue types to get information closer to
the in vivo condition and improve the discriminating algorithm.
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