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The relation between the behavior of a single element and the global dynamics of its

host network is an open problem in the science of complex networks. We demonstrate

that for a dynamic network that belongs to the Ising universality class, this problem can

be approached analytically through a subordination procedure. The analysis leads to a

linear fractional differential equation of motion for the average trajectory of the individual,

whose analytic solution for the probability of changing states is a Mittag-Leffler function.

Consequently, the analysis provides a linear description of the average dynamics of an

individual, without linearization of the complex network dynamics.

Keywords: fractional calculus, subordination, inverse power law, complex networks, control

1. INTRODUCTION

The last decade has witnessed the blossoming of two quite different strategies for the mathematical
modeling of the complex systems, which are network science [1–3] and fractional calculus [4–6].
The widespread adoption of the network science perspective to study phenomena such as epidemic
spreading of diseases [7], neuronal avalanches [8], or social dynamics [9] derives from the fact
that these systems are composites of many simpler, interconnected, and dynamically interacting
elements. Similarly, popularization of fractional calculus in research that concerns physical
processes that are characterized by long-termmemory and spatial heterogeneity [10, 11] stems from
its particular mathematical formulation, based on a definition of the nonlocal differentiation and
integration operators. Therefore, since memory effects and heterogeneity are frequently observed
in biological, social, and man-made systems [12, 13], the application of fractional calculus in the
domain of complex networks is a natural step toward providing novel analytical tools that are
capable of addressing research questions arising in the field.

Despite the simplicity of their basic building blocks, complex systems, such as cooperative
animal behavior [14], the flow of highway traffic [15], or the cascades of load shedding on power
grids [16], are characterized by rich self-emergent behavior. However, since in most cases, solving
a system of coupled nonlinear equations that trace the dynamics of a network composed of N units
is not possible, the primary focus of investigations into complex networks has been on their global
behavior [17]. This approach follows the path taken by classical statistical physics, with Boltzmann’s
realization that the description of the state of a gas or a solid state could be only achieved on the
scale of the entire system [18]. Analogously, the ability to characterize the global behavior of a
complex network comes at a price of not being able to quantify the dynamics of the components
that give rise to it. Typically, one attempts to infer the global dynamics by averaging the behavior
of single elements within the system, following a bottom-up approach of the mean field theory (see
Figure 1).
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FIGURE 1 | Typical description of the dynamics arising from the interaction of

numerous basic elements over a complex network that focuses on the global

behavior of the system (left). Such an approach, however, comes with a price

of not being able to quantify dynamics of individual elements within the system.

In this paper, we address this problem by adopting statistical properties of the

macroscopic dynamics in order to infer the behavior of individual units.

In this paper, we address this issue by posing the inverse
question. Rather than inferring the global dynamics by
combining the behavior of single elements within the dynamical
system, we ask whether it is possible to construct a description of
the dynamics of the individual elements, provided information
about the network’s global behavior. We approach the problem
by considering statistical properties of the global variable.

Frequently, the macrovariables observed in complex networks
display emergent properties of spatial and/or temporal scale-
invariance. These are manifested by, for example, the inverse
power scaling of waiting-time probability density functions
(PDFs) between events, such as communication instances in
human interactions or occurrence of earthquakes. At the
same time, the inverse power laws (IPLs) that characterize
the emergent macroscopic behavior are reminiscent of particle
dynamics near a critical point, where a dynamic system
undergoes a phase transition [19]. However, despite the advances
made by the renormalization group approach and self-organized
criticality theories that have shown how scale-free phenomena
emerge at critical points, the issue of determining how the
emergent properties influence the microdynamics of individual
units of the system remains open.

Herein, we address the problem of quantifying the response
of an individual unit to the dynamics of the collective. This is
done by taking advantage of the fractional calculus apparatus,
whose utility arises from its ability to seamlessly incorporate
the IPL statistics into its dynamics. The phase transitions that
characterize many complex systems suggest the wisdom of using
a generic model from the Ising universality class to characterize
system dynamics. It is then possible to demonstrate that the
individual trajectory response to the collective dynamics of the
system is described by a linear fractional differential equation.
This is achieved through a subordination procedure without the
necessity of linearizing the underlying dynamics. Following this
procedure, it is shown that the analytic solution to the linear

fractal differential equation retains the influence of the nonlinear
network dynamics on the behavior of the individual. Moreover,
the solution to the fractional equation of motion suggests a new
direction for designing mechanisms to control the dynamics of
complex networks.

In section 2, we sketch out the mathematics of the dynamical
decision making model (DMM), introduce renewal events, and
subordinate the behavior of the individual to the mean field
behavior of the network. In section 2.2, the dynamics of the
individual is determined from the subordination theory to be a
tempered fractional differential equation. The exact solution to
this equation is given by an attenuated Mittag-Leffler function,
which is fitted to the numerical solution of the DMM equation.
In section 4, we discuss some implications of the high quality
convergence of the analytical and numerical results of this
complex network.

2. COMPLEX NETWORK DYNAMICS

As demonstrated by Grinstein et al. [20], any discrete system,
defined by means of local interactions, with symmetric
transitions between states and randomness that originate from
the presence of a thermal bath or internal causes belongs to the
universality class of kinetic Ising models. One such system is
the DMM [21–23] and is the one we implement herein. Each
individual unit si of the model is a stochastic oscillator and can
be found in either of the two states, +1 or −1. The dynamics are
defined in terms of the probability of an individual to be in either
state, and it is modeled by the coupled two-state master equation,

dp(t)

dt
= g0 [I− 21] p(t), (1)

where I and 1 are the 2×2 identity and unit matrices, respectively.
The probability of being in one of the two states (+1,−1),
p(t) = [p1(t), p2(t)]

⊺, defines a Markovian telegraph noise, with
symmetric and constant rate of changing states 0 < g0 < 1.

Positioning N such individuals at the nodes of a complex
network introduces coupling between them [21, 22], which, here,
is limited to the nearest neighbor interactions. The influence
that unit si experiences due to the presence of its neighbors is
expressed by a modification of its transition rate

g
(i)
12 (t) = g0 exp

[
−

K

M(i)

(
M
(i)
1 (t)−M

(i)
2 (t)

)]
,

g
(i)
21 (t) = g0 exp

[
K

M(i)

(
M
(i)
1 (t)−M

(i)
2 (t)

)]
, (2)

which becomes a time dependent variable. Here,K is the strength
of the coupling between nodes, 0 < K < ∞, constant for all
nodes in the network. The variable M(i) denotes the degree of

the node i, and M
(i)
1,2(t) denotes, respectively, the count of the

nearest neighbors in states si(K, t) = 1 and si(K, t) = −1 at

time t. As single units si change their states, quantities M
(i)
1 (t)

andM
(i)
2 (t) fluctuate in time, while their sum is always conserved

M
(i)
1 (t) +M

(i)
2 (t) = M(i). In this paper, we consider the case of a
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regular two-dimensional lattice, whereM(i) = 4 and 0 ≤ M
(i)
1,2(t)

for all the nodes. The single unit in isolation corresponds to the
case of K = 0. When the coupling constant K > 0, a unit in state
+1(−1) makes a transition to the state −1(+1) faster or slower
according to whether M

(i)
2 (t) > M

(i)
1 (t) or M

(i)
1 (t) > M

(i)
2 (t),

respectively.
Time-dependent transition rates modify the two-state master

(Equation 1) to take the form

dp(i)(t)

dt
= Gi(t)p

(i)(t), (3)

where the matrix of rates Gi(t) is defined as

Gi(t) =

(
−g

(i)
12 (t) g

(i)
21 (t)

−g
(i)
21 (t) g

(i)
12 (t)

)
, (4)

and p(i)(t) is the probability of the element i = 1, 2, ...,N in the

network at time t and is normalized such that p
(i)
1 (t)+p

(i)
2 (t) = 1

for every i.
Dynamics of an entire network is described by a

system of N such coupled equations, resulting in a highly
nonlinear system [23], containing 6N dynamic variables(
p
(i)
1 (t), p

(i)
2 (t), g

(i)
12 (t) , g

(i)
21 (t) ,M

(i)
1 (t),M

(i)
2 (t)

)
. This number of

coupled variables prevents the successful application of analytic
methods, as these are usually adopted to solve problems that
involve only a few coupled time-dependent differential equations.
Instead, extensive numerical calculations are supplemented by
an analytic formulation of the evolution of a global variable.

As depicted in Figure 2B, the global behavior of the model,
defined by the fluctuations of the mean field variable

ξ (K, t) =
1

N

N∑

i=1

si(K, t), (5)

shows a pronounced transition as a function of the control
parameter K. While in Figure 2A, the single elements appear
to be essentially unchanged by their interactions with the rest
of the network, the global variable shifts from a configuration
dominated by randomness to one in which strong interactions
give rise to long-lasting majority states shown in Figure 2B. Note
that the origin of the random fluctuation in the DMM is the finite
size of the network, which has nothing to do with the thermal
fluctuations in the Ising model of magnetization.

To characterize the changes in the temporal properties of the
micro- and macro-variables, we evaluate the survival probability
function, 9 (τ), of time intervals τ between consecutive events
defined as changes of the state or crossing of the zero-axis, for
the single element or the global variable, respectively. These
calculations unveil modest deviations of 9 (τ) for a single
individual from the exponential form, 9 (τ) = exp

(
−g0τ

)
,

that characterizes single non-interacting elements, as shown in
Figure 2C. Clearly, the influence of the network on the behavior
of the individual does not appear to induce a significant change
in the latter. Despite such a modest change in the behavior of the
individual, the global variable manifests IPL statistics, as depicted

FIGURE 2 | Behavior of a discrete, two-state dynamic unit on a

two-dimensional lattice. Temporal evolution and corresponding survival

probability 9(τ ) for the transitions between two states for the single unit si (t) of

the system, presented on panels (A,C), respectively, are compared with the

behavior and statistical properties of the global order parameter ξ (t), showed

on panels (B,D). Simulations were performed on a lattice of size N = 50× 50

nodes, with periodic boundary conditions, for g0 = 0.01 and increasing values

of the control parameter K. Blue, red, and green lines correspond to K = 1.50,

1.70, and 1.90, respectively. The critical value of the control parameter is

KC ≈ 1.72. Black dashed line on the plots of 9(τ ) denotes an exponential

distribution, with the decay rate g0.

in Figure 2D. Thus, the following question arises: To what extent
are individual opinions within a complex network influenced by
the network dynamics?

2.1. Renewal Events
Many physical processes, for example earthquakes, radioactive
decay, and social processes, such as making a decision, can
be viewed as particular events. A characteristic property of an
event is that it’s onset can be precisely localized in time, even
if its occurrence has extended consequences in space. Thus, the
dynamics of a process characterized by events is described in
terms of the probability of an event occurring, rather than by a
more traditional Hamiltonian approach.

The process of event occurrence is characterized by the
waiting-time PDFψ (τ), which specifies the distribution of times
between consecutive events. The probability for an event to occur
in the short time interval [t, t + dt] is given by

ψ (t) dt = Pr
(
t < τ < t + dt

)
, (6)

where τ is measured from the occurrence of the previous event.
Consequently, one can define the survival probability 9 (τ) as
the probability that no event occurs up to the time since the last
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event as

9 (τ) ≡

∞∫

τ

ψ (t) dt. (7)

As a consequence of this integral, the waiting-time PDF can be
written as

ψ (t) = −
d9 (t)

dt
, (8)

and the PDF ψ (τ) is a properly normalized function,

∞∫

0

ψ (τ) dτ = 1,

since it is assumed that an event occurs somewhere within the
time interval (0,∞). It is also true that no event occurs at time
t = 0, which means that the survival probability9 (0) = 1.

A particular class of events can be defined, renewal events, that
reset the clock of the system to an initial state instantaneously
after their occurrence. After a renewal event takes place, the
system evolves in time independently of whatever occurred
earlier, having no memory of previous instances in which such
an event occurred. Some examples of renewal events found in
physics include anomalous diffusion of tagged particles inside
living cells, blinking quantum dots, and defects arising in the
weak turbulence regime of liquid crystals.

The renewal character of events is captured by the probability
of n events occurring as follows. First, one assumes that an event
occurs at time t = 0, thus, ψ0 (t) = δ (t). Next, the first event
occurs at time t > 0, taking place with the probability ψ1 (t) =
ψ (t) . Subsequently, the probability for event n in a sequence to
occur at time t is expressed in terms of probabilities of earlier
events by the correlation chain condition

ψn (t) =

t∫

0

ψn−1

(
t′
)
ψ1

(
t − t′

)
dt′. (9)

Frequently, experimentally observed waiting-time PDFs are
exponential, but quite often in complex networks they are IPLs.
For the purpose of this paper, we define the waiting-time PDF in
terms of the hyperbolic distribution

ψ (t) =
(µ− 1)Tµ−1

(T + t)µ
. (10)

If the events are generated by an ergodic process, thenµ > 2, and
the first moment of the hyperbolic PDF is

〈t〉 =

∞∫

0

tψ (t) dt =
T

µ− 2
. (11)

In the framework of renewal theory, Equation (11) denotes the
average time that one would have to wait between successive
events. However, when µ < 2, the process is non-ergodic, and
the mean value of the distribution diverges. In the non-ergodic
case, T becomes a characteristic time scale of the process.

2.2. Subordination of Time
The notion of different clocks associated with different
physical systems arises naturally in physics; the linear Lorentz
transformation in relativistic physics being probably the most
familiar example. Thanks to the recent availability of time-
resolved data, biological, and social sciences have also started
adopting the notion of multiple clocks, distinguishing between
cell-specific and organ-specific clocks in biology and person-
specific and group-specific clocks in sociology. Of course, the
notion of subjective and objective time dates back to the middle
of the nineteenth century with the introduction of the empirical
Weber-Fechner law [24].

However, the striking difference between the clocks of classical
physics and natural sciences is that the relations between the
latter clocks are nonlinear. While the global activity of an organ,
such as the brain or the heart, might be characterized by quite
regular, often periodic fluctuations, the activity of single neurons
demonstrates burstiness and noisiness. Similarly, in a society,
people operate according to their individual schedules, not always
being able to perform particular actions in the same global time
frame. Thus, owing to the stochastic behavior of one or both
clocks, a probabilistic transformation between times is necessary.
An example of such a transformation is the subordination
procedure.

We begin by defining two clocks. The first clock records
a discrete operational time n, which measures the time T(n)
of an individual. The second clock records the continuous
chronological time t, which measures the time T(t) that a system
of individuals have agreed upon. If each advancement of the
discrete clock n is thought of as an event, then the relation
between the operational time and chronological time can be
given by the waiting-time PDF of those events in chronological
time ψ(t). Assuming a renewal property for events, as given by
chain condition from renewal theory (Equation 9), one can relate
operational time to chronological time by

〈T (t)〉 =

∞∑

n=1

t∫

0

9
(
t − t′

)
ψn

(
t′
)
T (n) dt′. (12)

Every advancement of the operational clock is an event, which
in the chronological time occurs at time intervals drawn from
the renewal waiting-time PDF. Because of this randomness, one
needs to sum over all events, and the result is an average over
many realizations of the transformation.

As an example, consider the behavior of a two-state
operational clock, whose evolution is shown in Figure 3. In
operational time, the clock switches back and forth between
its two states at equal unit time intervals. In chronological
time, however, this regular behavior is significantly distorted.
In the figure, the time transformation was taken to be an
IPL PDF of waiting times. Thus, a single time step in the
operational time corresponds to a time interval being a random
number drawn from ψ(t) in chronological time. The long
tail of the IPL PDF leads to especially strong distortions of
the operational time trajectory, since there exist a non-zero
probability of drawing very large time intervals between events.
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FIGURE 3 | The upper curve is the regular transition between the two states of the individual in operational time. The lower curve is the subordination of the transition

times to an IPL PDF to obtain chronological time.

However, since the transformation between the operational and
chronological time scales involves a random process, one needs
to consider infinitely many trajectories in the chronological
time, which leads to the average behavior of the clock in
the chronological time denoted in Equation (12) by the
bracket.

We note that the time subordination procedure can also be
used to model communication delays in the system. However,
contrary to frequently used approaches, where individual units
of the system are subordinated to model the interaction delay,
here, we adopt the statistics of the macroscopic variable to
derive the behavior of the interacting individual units. The
coupling between units causes them to deviate from the Poisson
behavior of an individual non-interacting unit. However, as
illustrated in Figure 2, the time scale of interacting units is
orders of magnitude that are smaller than the time scale
of the macroscopic variable. Thus, we use the statistical
properties of the macroscopic variable to provide a first-order
estimate of the single unit dynamics. As such, we adopt a
top-down approach, which is different from the bottom-up
approach adopted for the consideration of communication
delays.

3. COMPLEX NETWORK SUBORDINATION

To determine the network’s influence on the dynamics of
the individual, we adapt the subordination argument of the
preceding section and relate the time scale of the macro-variable
ξ (K, t) to the time scale of the micro-variable si(K, t). The two-
state master equation for a single isolated individual in discrete

time n in steps of1τ is

ϕ (n+ 1)− ϕ (n) = −g01τϕ (n) , (13)

where the notations ϕ (n) = ϕ (n1τ) and ϕ = p1 − p2 depict
the difference in probabilities for the typical individual to assume
one of the two states. The solution to this discrete equation is

ϕ (n) = (1− g01τ )
nϕ (0) , (14)

which, in the limit g01τ << 1, becomes an exponential.
However, when the individual is a part of a network, the dynamics
are not so simple.

Adopting the subordination interpretation, we define the
discrete index n as an individual’s operational time that is
stochastically connected to the chronological time t, in which the
global behavior is observed. We assume that the chronological
time lies in the interval (n − 1)1τ ≤ t ≤ n1τ and,
consequently, the equation for the average dynamics of the
individual probability difference is given by [25]

〈ϕ (t)〉 =

∞∑

n=1

t∫

0

9
(
t − t′

)
ψn

(
t′
)
ϕ (n) dt′. (15)

Here, the time t in the waiting-time PDF ψ(t) is determined
from the derivative of the survival probability. The empirically
determined analytic expression for the survival probability is

9 (t) =

(
T

T + t

)µ−1

e−ǫt . (16)
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The dominant behavior of the empirical survival probability is
an IPL as indicated in Figure 2D. However, at early times, the
probability of not making a transition approaches the constant
value of one; at late times, the probability of not making a
transition at a given time decays exponentially; it is in the middle
range, where the probability is an IPL. The extent of the IPL
range of the survival probability is determined by the empirical
values of T,µ, and ǫ, and from Figure 2D, the value of ǫ is
seen to become smaller as the control parameter K increases.
The IPL functional form of the PDF results from the behavior
of the survival probability9 (τ) of the global variable depicted in
Figure 2D, with µ = 3/2.

Using a renewal theory argument, Pramulkkul et al. [25]
show that Equation (15) expressed in terms of Laplace transform
variables indicated by f̂ (u) for the time-dependent function f (t)
has the form

〈ϕ̂ (s)〉 =
ϕ (0)

u+ ǫ + λ08̂ (u+ ǫ)
(17)

where λ0 ≡ g01τ and 8̂ (u+ ǫ) is the Laplace transform of the
Montroll-Weiss memory kernel [25, 26],

8̂ (u+ ǫ) =
(u+ ǫ) ψ̂ (u+ ǫ)

1− ψ̂ (u+ ǫ)
. (18)

Note that u is replaced by u + ǫ in the Laplace transforms,
because the exponential truncation of the empirical survival
probability shifts the index on the Laplace transform operation.
The asymptotic behavior of an individual in time is determined
by considering the waiting-time PDF as u → 0,

ψ̂ (u+ ǫ) ≈ 1− Ŵ (1− α)Tα (u+ ǫ)α ; 0 < α = µ− 1 < 1,
(19)

so that Equation (17) reduces to

〈ϕ̂ (u)〉 =
ϕ (0)

u+ ǫ + λα (u+ ǫ)1−α
. (20)

The inverse Laplace transform of Equation (20) yields the
tempered rate equation

(∂t + ǫ)
α 〈ϕ (t)〉 = −λα 〈ϕ (t)〉 , (21)

where the operator ∂
µ−1
t [·] is the Caputo fractional derivative for

0 < α = µ− 1 < 1 [11] and

λT =
[
g01τ/Ŵ (2− µ)

] 1
µ−1 . (22)

Note that owing to the dichotomous nature of the states, 〈ϕ (t)〉

is the average opinion of the individual si(K, t).
The solution of the asymptotic fractional master equation

(Equation 21) for a randomly chosen unit within the network
is given by an exponentially attenuated Mittag-Leffler function
(MLF):

〈
ϕ(t))

〉
= ϕ(0))Eα

(
− (λt)α

)
exp [−ǫt] (23)

and the MLF is defined by the series

Eα(z) ≡

∞∑

n=0

zn

Ŵ (nα + 1)
. (24)

The MLF is a stretched exponential at early times and an IPL
at late times, with α = µ − 1 being the IPL index in both
domains.

3.1. Comparisons With Numerics
We test the above analysis with numerical simulations of the
dynamic network on a two-dimensional lattice with nearest-
neighbor interactions in all three regions of DMM dynamics:
subcritical, critical, and supercritical. The time-dependent
average opinion of a randomly chosen individual is presented
in Figure 4, where the average is taken over 104 independent
realizations of the dynamics in the subcritical, critical, and
supercritical regimes.

FIGURE 4 | The probability difference
〈
ϕ(t)

〉
estimated as an average over an ensemble of 104 independent realizations of single element trajectories. Each trajectory

corresponds to evolution of a randomly selected node within a N = 100× 100 lattice network, with g0 = 0.01 and the same initial condition si (0) = 1. The parameter

values for the numerical data are given in Figure 2 and from left to right K = 1.0 (A), 1.7 (B), 2.5 (C), respectively. The fit of the exponentially truncated MLF to the

numerical calculations is summarized in Table 1.
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TABLE 1 | The probability difference
〈
ϕ(t)

〉
of Figure 4 is fitted with the MLF using

an algorithm developed by Podlubny [27].

K = 1.00 K = 1.70 K = 2.50

µ 1.8920 1.8050 1.5580

λ 0.0147 0.0206 0.0293

ǫ 4.00× 10−3 1.40× 10−11 5.58× 10−12

R21 0.9910 0.9667 0.9725

Assuming T = 0.10, 1τ = 1, and g0 = 0.01, the parameters of an analytical solution are

µ = 3/2 and λ = 0.0318.

A comparison with the exponential form of
〈
ϕ(t)

〉
for an

isolated individual indicates that the influence of the network on
the individual’s dynamics clearly persists for increasingly longer
times with increasing values of the control parameter within the
network. The parameters µ and λ of Equation (23) obtained
through fitting numerical results of Figure 4 with the MLF are
summarized in Table 1. It is evident that the influence of the
network dynamics on the individual is greatest at long times. The
deviation of the analytic solution from the numerical calculation
is evident for values of the control parameter at and below
the critical value. The analytical prediction is least reliable at
extremely long times in the subcritical domain. Consequently,
the response of the individual to the group mimics the group’s
behavior most closely when the control parameter is equal to or
greater than the critical value.

4. DISCUSSION

Herein, the subordination procedure provides an equivalent
description of the average dynamics of a single individual
within a complex network, in terms of a linear fractional
differential equation. The fractional rate equation is solved
exactly, determining the Poisson statistics of the isolated
individual becomes attenuated Mittag-Leffler statistics, owing to
the interaction of that individual with the other members of a
complex dynamic network.

1Adjusted goodness of fit, R2 = 1 −
SSreg/(n−κ)

SStot/(n−1)
, is defined as the ratio of the sum

of squared residues for the nonlinear fit with the MLF (SSreg ) and for the fit to the

average value of data points (SStot), where n is the number of data points and κ is

the number of free parameters being estimated.

Consequently, an individual’s simple random behavior, when
isolated, is replaced with behavior that might serve a more
adaptive role in social networks. We conjecture that the
behavior of the individual is generic, given that the DMM
network dynamics belong to the Ising universality class.
Members of this universality class share the critical temporal
behavior [28] that drives the subordination process. It is
the renewal property of the event statistics, which, through
the subordination process, gives rise to the linear fractional
master equation for the typical individual’s dynamics. The
solution to the tempered fractional rate equation manifests the
subsequent robust behavior of the individual; it remains to
be determined just how robust the behavior of the individual
is relative to control signals that might be driving the
network.

As pointed out by Liu et al. [29], the ultimate understanding
of complex networks is reflected in the ability to control them.
Recent observations of the interconnectedness of infrastructure
networks [30], facilitating the spread of failures [31] or the
tight coupling between banking institutions, posing a danger
to the stability of global financial system [32], demonstrate the
importance of developing a systematic approach to influence
and/or control the complex networks. The analysis presented
here provides an alternative attempt to address this need
directly. Subordination suggests a way to impose the conditions
of traditional control theory [33] onto the complex network
dynamics by, first, expressing the underlying nonlinear network
dynamics in the form of a linear fractional equation of motion.
This approach at addressing control will be pursued in a future
publication.
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