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Many organisms, including yeast cells, bacteria, nematodes, and tardigrades, endure

harsh environmental conditions, such as nutrient scarcity, or lack of water and energy

for a remarkably long time. The rescue programs that these organisms launch upon

encountering these adverse conditions include reprogramming their metabolism in order

to enter a quiescent or dormant state in a controlled fashion. Reprogramming coincides

with changes in the macromolecular architecture and changes in the physical and

mechanical properties of the cells. However, the cellular mechanisms underlying the

physical–mechanical changes remain enigmatic. Here, we induce metabolic arrest of

yeast cells by lowering their intracellular pH. We then determine the differences in the

intracellular mass density and stiffness of active and metabolically arrested cells using

optical diffraction tomography (ODT) and atomic force microscopy (AFM). We show that

an increased intracellular mass density is associatedwith an increase in stiffness when the

growth of yeast is arrested. However, increasing the intracellular mass density alone is not

sufficient for maintenance of the growth-arrested state in yeast cells. Our data suggest

that the cytoplasm of metabolically arrested yeast displays characteristics of a solid. Our

findings constitute a bridge between the mechanical behavior of the cytoplasm and the

physical and chemical mechanisms of metabolically arrested cells with the ultimate aim

of understanding dormant organisms.

Keywords: yeast, optical diffraction tomography, atomic force microscopy, refractive index, stiffness, liquid solid

transition

INTRODUCTION

Eukaryotic cells form compartments and organelles to spatially and temporally organize their
cellular contents [1, 2]. Many of these compartments such as nuclei, lysosomes, mitochondria,
and endoplasmic reticulum are bound by a lipid bilayer. Yet, recent studies have suggested
that several types of organelles are not delimited by a lipid bilayer, but formed by liquid–liquid
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phase separation, where the dense phase of macromolecules such
as RNAs and proteins are concentrated spontaneously from the
surrounding solution [3, 4]. A growing number of organelles have
been reported as such membrane-less compartments, including
nucleolus for ribosome biogenesis and stress response, and
P bodies for RNA storage and degradation [2]. The liquid–
liquid phase separation process can be tightly regulated by
the cell owing its sensitive dependence on internal material
concentration. However, under certain circumstances, these
membrane-less compartments can also undergo liquid-to-solid
phase transitions to form aberrant solid aggregates. For instance,
when the genes encoding for the constituting macromolecules
carry specific mutations, this phase transition is associated with
neurodegenerative diseases via amyloid-like assembly of RNA
binding protein Fused in Sarcoma (FUS) [5].

Liquid-to-solid phase transitions are not always pathological.
Some organisms change their physical properties from a liquid-
to solid-like state when faced with unfavorable conditions to
facilitate survival. In this state, typically referred to as dormancy,
the cell cycle is arrested and metabolic activity is reduced or
suspended, but the cell can still recover to normal physiology and
function when the conditions are favorable again. For example,
plants develop seeds that survive cold and dry weather and
germinate in spring [6]. Bacteria form metabolically inactive
spores that are highly resistant to stress and antibiotics [7].
Caenorhabditis elegans enter a dauer stage that relies entirely on
internal energy sources for as long as 4 months [8]. And finally,
yeast cells compact their cytoplasm and cease proliferation in the
absence of energy [9, 10]. These changes in the function of the
organism are associated with drastic alterations of the cellular
architecture.

Yeast cells undergo metabolic and morphological changes
when faced with various types of stresses including temperature
changes, osmotic, and oxidative pressure [11, 12]. Delaraue et al.
demonstrated that external compression exerted on yeast cells
as a result of self-driven confinement leads to slow down in
cell growth and delay of cell cycle progression in the G1 phase
[13]. Also, Munder et al. showed recently that lowering the
intracellular pH of yeast cells, which is a consequence of lack of
energy, promotes entry into dormancy [14]. When the cytosol
was in acidic pH, the cells reduced their volume and formed
macromolecular assemblies. These cells exhibited a reduction in
the mobility of organelles and exogenous tracer particles, and
were measurably stiffer than active cells. Yet, it is still unclear
how they acquire this increased mechanical stability associated
with dormancy. Is an increase in the intracellular mass density
sufficient for a liquid-to-solid transition, which could then be
associated with a glass-transition above a critical volume fraction?
Or does it involve the assembly of macromolecules to form
a percolated, solid-like intracellular matrix? In this study, we
adopt the same technique of Munder et al. to arrest growth in
fission yeast cells by lowering intracellular pH. We evaluate the
physical properties of yeast cells optical diffraction tomography
(ODT) and atomic force microscope (AFM) for probing their
mass density and mechanical properties, respectively. We show
that metabolically arrested cells exhibit higher intracellular mass
density as well as elevated cell stiffness. However, an increased

intracellular mass density alone is not sufficient to maintain cells
in growth arrest. Thus, we suggest that yeast, when challenged by
extreme conditions, utilizes distinct supramolecular structures in
its dense cytoplasm that induce an increasedmechanical stability.

MATERIALS AND METHODS

Yeast Cell Culture and Growth Assay
Schizosaccharomyces pombe strain ED668 was grown
and maintained on YES (Formedium) agar plates at low
temperatures. Two days prior to measurement, 50mL liquid
YES and 50mL YES supplemented with 1.2M sorbitol (Sigma)
were inoculated with single colonies and incubated shaking at
180 rpm at 30◦C overnight, respectively. The overnight cultures
were then used to inoculate both, 50mL YES and 50mL YES
supplemented with 1.2M sorbitol at an optical density of OD600

nm = 0.05, respectively, and grown to early mid-log phase OD600

nm = 0.2–0.4. The later was intended for adapting the cells to a
hypertonic growth medium. Note that YES is a rich medium that
contains glucose. For particle tracking analysis, S. cerevisiae cells
grown at 25 or 30◦C in yeast extract peptone dextrose (YPD)
were used.

pH Adjustment of Cells
The pH adjustment of the yeast cytosol was carried out as
described previously [10, 14]. Briefly, a set of either 100mM
potassium phosphate, 2% glucose, or 40mM PIPES, 2% glucose
was prepared at different pH-values. Yeast cells from a liquid
culture were centrifuged for 10 s at 2,000 rcf and washed once
with the buffer to remove residuals of culture medium. The cells
were then resuspended in the respective buffer supplemented
with 2mM 2,4-dinitrophenol (DNP) in order to equilibrate the
intracellular pH with the extracellular pH. Omitting DNP from
the sample served as controls. The pH values used range between
6.0 and 7.6.

Spheroplasting (Cell Wall Removal)
Early mid-log cells were harvested by centrifugation (4min
at 1,500 rcf) and resuspended in 100mM phosphate buffer
supplemented with 1.2M sorbitol and 2% glucose. To remove
the cell wall, 0.5 mg/mL Zymolyase 100T (ZymoLabs) and 2.5
mg/mL lysing enzymes from Trichoderma harzianum (Sigma)
were added to the PBS medium and the reaction was incubated
for ∼120min. Spheroplasts were then resuspended in 100mM
potassium phosphate buffer pH 6.0 or pH 7.5, respectively. Two
millimolar of DNP were added as described in the previous
section. Spheroplasting removes the very stiff cell wall (but not
the cell membrane) of yeast cells so that the cell stiffness can
be determined by indentation tests. Sorbitol is required in the
medium after spheroplasting to prevent the cells from bursting.

Optical Diffraction Tomography (ODT)
The three-dimensional (3D) refractive index (RI) distribution of
samples was measured using a custom-made ODT microscope.
The optical setup of ODT employsMach-Zehnder interferometry
in order to measure complex optical fields of light scattered by
samples from various incident angles, as shown in (Figure 1A).

Frontiers in Physics | www.frontiersin.org 2 November 2018 | Volume 6 | Article 131

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Abuhattum et al. Density and Stiffness of Growth-Arrested Yeast

A coherent laser beam (λ= 532 nm, frequency-doubled Nd-YAG
laser, Torus, Laser Quantum, Inc., UK) is divided into two beams
by a 2× 2 single-mode fiber optic coupler. One beam is used as a
reference beam and the other beam illuminates the specimen on
the stage of a custom-made inverted microscope through a tube
lens (f = 175mm) and a high numerical aperture (NA) objective
lens (NA= 1.2, 63×, water immersion, Carl Zeiss AG, Germany).
To reconstruct a 3D RI tomogram of samples in a field-of-view,
the samples are illuminated with 150 various incident angles
scanned by a dual-axis galvanomirror (GVS012/M, Thorlabs Inc.,
USA). The diffracted beam from a sample is collected by a high
NA objective lens (NA = 1.3, 100×, oil immersion, Carl Zeiss
AG) and a tube lens (f = 200mm). The total magnification is set
to be 90.5×. The beam diffracted by the sample interferes with
the reference beam at an image plane, and generates a spatially
modulated hologram. The hologram is recorded with a CCD
camera (FL3-U3-13Y3M-C, FLIR Systems, Inc., USA).

The complex optical fields of light scattered by the samples
were retrieved from the recorded holograms by applying a
Fourier transform-based field retrieval algorithm as previously
published [15, 16]. The 3D RI distribution of the samples
was reconstructed from the retrieved complex optical fields via
the Fourier diffraction theorem. A more detailed description
of tomogram reconstruction can be found elsewhere [17–20].
From the reconstructed RI tomograms, the individual yeast cells
were segmented by applying Otsu’s method and a watershed
segmentation algorithm, and the mean RI-value inside the binary
image of an individual yeast cell was determined. The mass
density of individual yeast cells is directly calculated from the
mean RI-value, since the RI-value in biological samples is linearly
proportional to the mass density inside cells as n(x,y,z) = nm +
αC(x,y,z), where n(x,y,z) is the 3D RI distribution of samples,
nm is the RI-value of the surrounding medium (nm = 1.339
at λ = 532 nm), α is an RI increment (α = 0.190 mL/g for
protein [21]), and C(x,y,z) is the mass density inside cells. All
tomogram acquisition and data analysis were performed using a
custom-written MATLAB code.

Atomic Force Microscopy (AFM)
Measurements
AFM-based nanoindentation measurements were performed
using a Nanowizard 4 (JPK Instruments) and an optical
inverted microscope (Observer D1, Zeiss). For immobilizing the
spheroplasts of S. pombe prior to the measurement, CellTak
(Corning), a cell adhesive protein solution, was first applied to
the plastic petri dish and then rinsed for removing residuals
[22]. Measurements were carried out using a wedged cantilever
that is parallel to the petri dish as illustrated in Figure 1B. This
simplifies indenting spherical cells, prevents their movement
during the procedure and compensates for the original 10◦ angle
of the glass blocks used for mounting the cantilevers. The wedged
cantilever was prepared using a UV curing glue that was applied
to tipless cantilevers (PNP-TR-TL, nominal spring constant k =
0.32 N/m, Nanoworld, or HQ: CSC37/tipless/No Al, nominal
spring constant k= 0.3 N/m, Mikromasch). For determining cell
stiffness, the cantilever was positioned above a single spheroplast
and lowered with a speed of 5 µm/s. Force-distance curves

were recorded until an indentation of 0.3–0.8µm was reached
(1.5–4 nN). All measurements were carried out in the 100mM
phosphate buffer containing 1.2M sorbitol, 2% glucose, and DNP
at 30◦C.

AFM-based Indentation Data Analysis
The force-distance curves were analyzed using JPK data
processing software. First, the curves’ baseline was adjusted and
the data were corrected for the tip-sample separation [23]. Then
each curve was fitted with the Hertz model modified by Sneddon
for a spherical geometry to evaluate the spherical spheroplasts as
shown in Figure 1C [24, 25] using

F =
E

1− ν2
×

(

R2 + r2

2
ln
r + R

r − R
− Rr

)

and (1)

δ =
R

2
ln

(

r + R

r − R

)

, (2)

where F denotes the indentation force, δ the indentation depth, r
the cell radius, R =

√
δr the radius of the circular contact area,

and ν is the Possion’s ratio and is set to 0.5 in all measurements.
The radius of the cells was measured for each of the cell

groups and the average radius was used for each individual
group (ranging between r = 2.28–2.45µm) shown in the inset
in Figure 1C. The apparent Young’s modulus extracted from the
fit was corrected for the additional stress that the cells encounter
from the bottom of the plate, which causes an additional
deformation of the spherical shape [26, 27]. The Young’s modulus
is reported as “apparent,” acknowledging the fact that some of
the Hertz model assumptions are not met such as isotropic and
homogeneous samples. While the absolute values are debatable,
this approach still serves well the aim of quantitative comparison.

Osmolality
Osmolality measurements of mediums and buffers used were
carried out using an Osmomat 3000 Freezing point osmometer
(Gonotec). Three independent measurements were carried out
per sample and averaged to calculate the mean and standard
deviation.

Particle Tracking
For particle tracking in budding yeast (S. cerevisiae), we made
use of a genetically encoded viral capsid protein (GFP − µ

NS) which self-assembles into distinct particles in the yeast
cytoplasm [14]. These particles were subsequently imaged on
an Andor Spinning disk setup [Olympus IX71 stand, Olympus
UPlanSApo 60x oil objective, resulting pixel size (x, y)= 108 nm].
Particle tracking was performed using the open source Fiji plugin
MosaicSuite particle tracker [28]. Analysis of the tracked particles
was performed in MATLAB.

Statistical Analysis
To perform statistical analysis on ODT and AFM experiments we
measured three independent sets of yeast cells. The mean values
were subjected to statistical analysis by the two-tailed Mann-
Whitney U-test using python Scipy library. The shown asterisks
indicate significance levels: ∗p< 0.01, ∗∗p< 0.001, ∗∗∗p< 0.0001.
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FIGURE 1 | Experimental setups. (A) Schematic diagram of the optical setup for optical diffraction tomography (ODT). SMFC, single-mode fiber coupler; TL, tube

lens; CL, condenser lens; OL, objective lens; M, mirror; BS, beam splitter. (B) Schematic diagram of atomic force microscopy (AFM) using a wedged cantilever to

indent a spherical sample. (C) Representative force-distance curve (blue dotted line) recorded during compression with a wedged cantilever shown in inset. Hertz

model fit (red solid line) to extract the apparent Young’s Modulus.

RESULTS

Yeast cells usually grow in acidic environments and use proton-
translocating ATPases for maintaining their intracellular pH
neutral at the expense of large amounts of energy in the form
of ATP hydrolysis. When energy is scarce, however, these cells
enter into a dormant state [29–32]. In dormancy, the cytosol
becomes acidic as the supply of ATP is not sufficient to maintain
the proton pumping [9, 10, 14]. We have shown that lowering
the intracellular pH, by incubating the cells in acidic buffers and
adding protonophores, such as DNP, that carry protons across
the membrane, promotes entry into a dormant state in both
fission and budding yeast cells, even if energy is present [14]. As
a consequence of reducing intracellular pH, two main changes
occur in the cell cytoplasm. First, a large fraction of cytosolic
proteins reduces the net charge, becomes less soluble and forms
aggregates, and second, the cell displays a reduction in volume
and an increase in cytoplasmic crowding. Both processes can
potentially lead to an increase in the mechanical stability of
the cytoplasm in the liquid-to-solid transition that is observed,
either mediated by the formation of a percolated cellular matrix
of supramolecular assemblies (similar to a sol-gel transition)
or by the increase in mass density after volume loss above a
critical value, leading to a glass-like state. Here, we focus on
fission yeast and decouple these two scenarios by designing a
set of experiments to independently change intracellular pH
and volume of yeast cells. We start by examining the effects of
either pH changes or osmotic pressure on mass density using

ODT. We then combine both effects to understand their mutual
contribution to growth arrest of cells. Finally, we compare the
mass density to the stiffness measurements done using AFM to
determine whether an increasedmass density is sufficient to drive
cells into the mechanically stable state associated with dormancy.

Lowering Intracellular pH Increases Mass
Density of Yeast Cells
We have previously shown that lowering the intracellular pH
promotes entry into dormancy and is coupled with volume
decrease [14]. However, it is still unclear whether cells with
low intracellular pH simply expel water and increase overall
intracellular mass density or whether they also decrease the non-
aqueous cytoplasmic content. Here, we investigated the effect of
this pH reduction on intracellular mass density. We used ODT
to measure the RI-values from which we calculated directly the
mass density (see Methods and Materials section) of yeast cells in
media with different pH-values starting from neutral pH 7.6 to
acidification of the cytoplasm at pH 6.0 (see Figure 2A). The pH
of the cytoplasmwas adjusted by resuspending the cells in a buffer
with the respective pH that containedDNP in order to equilibrate
the intracellular pH with the extracellular pH (see Materials
and methods Section pH adjustment of cells). As a control, we
incubated the cells at two pH values (pH 6.0 and pH 7.6) in the
absence of DNP so that the intracellular pH in the cells remained
neutral. Figure 2B shows that the mean RI-values of yeast were
increased in the pH range of 6.2–6.4 compared to the other, more

Frontiers in Physics | www.frontiersin.org 4 November 2018 | Volume 6 | Article 131

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Abuhattum et al. Density and Stiffness of Growth-Arrested Yeast

FIGURE 2 | The effect of intracellular pH on the refractive index and dry mass of S. pombe. (A) Typical cross-sectional slices of the 3D refractive index tomograms of

yeast cells in the x-y plane. Two control groups of cells incubated at pH 6.0 and 7.6 in the absence of DNP are denoted by DNP−. The scale bar indicates 10µm.

(B–C) The mean refractive index (RI) distribution (B) and the dry mass content (C) of yeast cells at different intracellular pH. the points shown correspond to the mean

refractive index or dry mass measured at that pH value and lines indicate error bars (for each pH condition, N > 95).

neutral pH-values. The sigmoidal fit illustrates the cooperativity
of this behavior. In contrast, the dry mass stayed constant for all
values of intracellular pH (see Figure 2C), which suggests that
lowering intracellular pH increases the intracellular mass density
as a result of volume decrease (see Supplementary Figure 1).

To understand the biochemistry of the cytosolic proteins of
S. pombe in different intracellular pH-values, we calculated the
distribution of the isoelectric points of all proteins in the S.
pombe yeast proteome, as was done in our previous study by
Munder et al. [14]. We found that the isoelectric points of yeast
proteins are clustered in two peaks one in the acidic range
and the other in the basic range, excluding the neutral pH (see
Supplementary Figure 2). This may suggest that many proteins
reduce their net charge in low pH, become less soluble and form
aggregates in the cytoplasm. However, it still remains unknown
whether a reduction in volume and the associated increase in
intracellular mass density alone would lead to stiffness changes
associated with cells entering dormancy.

Cytoplasmic Crowding Is Insufficient For
Promoting Growth Arrest
Next, we applied osmotic pressure on yeast cells without
changing their intracellular pH to examine whether high
intracellular mass density triggers dormancy. We measured
RI tomograms of yeast cells grown in YES medium as a
control (osmolality 0.196 ± 0.001 Osmol/kg, see Figure 3A),
and compared their RI tomograms with those obtained for

cells after adding 1.2M sorbitol to YES medium (osmolality
1.946 ± 0.008 Osmol/kg which corresponds to an osmotic
pressure of ∼ 3.9MPa, see Figure 3B) as well as with those
for cells that had adapted to osmotic pressure overnight
(Figure 3C).

Figure 3D shows that the mean RI value of yeast cells
increases immediately upon osmotic stress, from 1.3840± 0.0002
(mean± SEM) to 1.4190± 0.0004, however, it recovers to 1.3950
± 0.0003 as the cells adapt to osmotic pressure overnight. The
RI changes are associated with the change of cell volume, as the
yeast cells shrink upon osmotic stress from 66 ± 2 to 44 ± 2
fL and recover to a volume of 60 ± 2 fL after the adaptation to
osmotic pressure (Figure 3E). Moreover, the dry mass of yeast
cells increases upon osmotic stress from 15.0 ± 0.4 to 18.2 ±
0.7 pg and then maintains a similar dry mass of 17.7 ± 0.6 pg
during the osmotic adaptation (Figure 3F). The initial increase
of the dry mass after osmotic shock can be attributed to two
processes. In short times the sorbitol molecule might diffuse into
the cytoplasm, consecutively cells produce additional substances
such as trehalose or glycerol as a protection mechanism from
osmotic stress [33, 34]. The addition of material leads to a slight
increase of the mean RI-value of osmotically adapted yeast cells
compared to controls grown in YES medium. Here, we show
that cells adapt to and grow in a hypertonic medium despite
high-density values even exceeding those exhibited by lowering
intracellular pH. This finding implies that increasing intracellular
mass density to values similar to, or even beyond those associated
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FIGURE 3 | The effect of osmotic stress and adaptation on yeast cells. (A–C) Cross-sectional slices in the x-y, y-z, and x-z planes of 3D RI tomograms of

(A) control in YES medium, (B) osmotically stressed, and (C) osmotically adapted yeast cells. The scale bars correspond to 10µm, and dashed lines indicate

corresponding cross-sectional slices. (D–F) The distribution of (D) RI, (E) cell volume, and (F) dry mass of control, osmotically stressed, and osmotically adapted

yeast cells, respectively. The box plot indicates the interquartile ranges (IQR) with a line at the median. The whiskers extend to the data within the 1.5 IQR of the

respective quartile. Outliers outside of 1.5 IQR are marked as × (for each condition, N > 45). *p < 0.01; **p < 0.001; ***p < 0.0001.

with lowering intracellular pH is not sufficient for keeping the
cells in a growth-arrested state.

To provide additional insight into the physical structure of
the internal cellular environment, we analyzed the motion of
self-aggregated viral capsid proteins (GFP − µNS, see section
Materials and Methods and the Supplementary Material) in
the cytoplasm of yeast (S. cerevisiae). Following the analysis of
Munder et al., we considered the correlation of two subsequent

particle displacements
−→
δx and

−→
δx′ [14]. The projection of the

second displacement onto the direction of the first one is≡
−→
δx′ ·

−→
δx

∣

∣

∣

−→
δx

∣

∣

∣

. For small displacements, we expect this quantity to be a

linear function of the initial particle displacement, c = b|
−→
δx |.

For a viscous material the slope b vanishes, whereas for an elastic
material b = −1/2. The value of b consequently serves as a
proxy for the rigidity of the cytoplasm. In the previous work it
was found that healthy, log phase cells displayed b ≈ −0.17
whereas acidified cells showed b ≈ −0.34 [14]. In Figure 4, the
projection c defined above is shown for S. cerevisiae exposed to
0.8M sorbitol (circles) and 1M sorbitol (squares). Also shown
are the scalings of c expected for log phase cells (dashed line)

and acidified cells (solid line). It is clear that osmotic compression
alone does not significantly alter the value of b, suggesting that the
elastic properties of the cytoplasm remain unaffected by osmotic
compression.

Intracellular pH Affects Mass Density
Recovery Rate After Osmotic Stress
Our findings so far show that metabolic arrest induced by an
acidified cytoplasm is correlated with higher intracellular mass
density, while inducing the same high mass density by osmotic
stress alone does not arrest cell growth. To confirm that only cells
with low intracellular pH stay in the growth-arrested state and do
not recover, we followed the recovery of osmotically stressed cells
after changing their intracellular pH by measuring time-lapse RI
tomograms. We induced osmotic stress on yeast cells by adding
1.2M sorbitol to the phosphate buffer with 2% glucose in pH 7.5
(osmolality 2.03 ± 0.03 Osmol/kg) and pH 6.0 (osmolality 2.02
± 0.04 Osmol/kg) as before, and then added DNP to equilibrate
the intracellular pH to that of the surrounding medium. As
a control, we added 1.2M sorbitol to the YES medium. We
then measured tomograms every 10min in order to explore the
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FIGURE 4 | Quantitative analysis of particle tracking. The dependence of the

displacement correlation as defined in the main text, as function of the

displacement length for yeast (S. cerevisiae) treated with 0.8M sorbitol (circles)

and 1M sorbitol (squares). The solid line correspond to the dependence of the

correlation on displacement length for acidified cells, and the dashed line

corresponds to healthy, log-phase cells from Munder et al. [14]. The

displacement correlation measured in osmotically stressed cells is consistent

with healthy cells, but not with acidified cells.

change of mass density and volume of yeast cells after osmotic
stress.

Figure 5A shows time-lapse tomograms of yeast cells with
different intracellular pH when osmotic stress was induced at
t = 0min. The control yeast cells (first row in Figure 5A)
recovered their RI-value promptly after the osmotic stress,
exhibiting an exponential decay of mean RI-value. Meanwhile,
the mean RI-values of yeast cells with an intracellular pH of
7.5 (second row in Figure 5A) stayed stable for the first 30min
(most probably for adapting to their transfer from YES medium
into phosphate buffer medium), before the RI started to recover.
More interestingly, the mean RI-values of yeast cells with the
intracellular pH of 6.0 (third row in Figure 5A) did not change
during the 60min of observation (yellow box plots in Figure 5B).
While only increasing intracellular mass density at neutral pH
was followed by a recovery of intracellular RI and mass density,
the lack of such recovery in low intracellular pH implies that
physical and mechanical changes of the cytoplasm, associated
with growth arrest, have occurred.

To test themechanical status of the fission yeast cytoplasm it is
possible to remove the rigid cell wall (spheroplasting) and then to
follow their rounding up—or the lack thereof [14]. As shown in
Figures 6A,B, osmotically stressed yeast cells in YESmedium and
with a intracellular pH of 7.5 rounded up into a spherical shape
to minimize the surface to volume ratio after spheroplasting,
which indicated that the cytoplasm was in a liquid-like state
[35, 36]. They also had slightly lower RI-values than osmotically
stressed yeast cells without spheroplasting, which might have
induced an increase in volume. However, osmotically stressed
yeast cells with an intracellular pH of 6.0 did not acquire a round

shape upon cell wall removal and exhibited increased RI-values
(Figure 6C), which demonstrated the transition of the cytoplasm
into a solid state with an inherent elastic stiffness that prevented
rounding up.

Increased Intracellular Mass Density Is
Associated With but Not Sufficient For Cell
Stiffening
We had previously demonstrated that the acidified cytoplasm
undergoes a liquid-to-solid transition [14] and showed now that
this coincides with an increase in the intracellular mass density.
However, our data suggest that a sudden mass density increase
of the cytoplasm may not be sufficient to promote this transition.
In order to quantify and relate the mechanical changes to mass
density changes in the yeast cytoplasm, we carried out AFM
indentation experiments and ODT measurements of osmotically
stressed and adapted yeast cells taken from identical batches.
To extract and compare the mechanical properties of yeast
cytoplasm using aHertzmodel with AFM, it is important to apply
the method to the same spherical geometry. This can be achieved
by first removing the cell wall of S. pombe and then changing the
intracellular pH. However, removal of the cell wall also requires
the use of high molalities of sorbitol to prevent cell lysis.

Thus, to measure the effect of intracellular pH only, it is
important to adapt the cells to these high molarities. To this end,
we first measured spheroplasts of cells that had been adapted
to hypertonic medium overnight before cell wall removal and
adjustment of pH, as shown in Figure 7A. Yeast spheroplasts
with low intracellular pH had a higher RI, which is directly
correlated with higher mass density, than with neutral pH as
shown in Figure 7B. Importantly, the apparent Young’s modulus
of the acidified spheroplasts was significantly higher (E = 17.6
± 0.2 kPa; mean ± SEM) compared to the Young’s modulus
of spheroplasts with a neutral intracellular pH (E = 4.3 ± 0.1
kPa) (Figure 7C). These results demonstrate that acidification of
the yeast cytoplasm coincides with mass density increase and an
overall stiffness increase.

To determine if an increased intracellular mass density is
sufficient to stiffen the yeast, we osmotically stressed cells
cultured in YES medium by addition of 1.2M sorbitol,
then immediately removed the cell wall, and subjected the
spheroplasts to ODT and AFM indentation measurements
(Figure 7D). In agreement with the notion that sorbitol induces
osmotic stress, the RI-values of cells with a neutral intracellular
pH already exhibited a high RI. Interestingly, the intracellular
mass density of yeast spheroplasts with a low intracellular pH
was not further increased (Figure 7E). Importantly, the apparent
Young’s modulus of the acidified spheroplasts was significantly
higher (E = 13.1 ± 0.2 kPa; mean ± SEM) compared to the
Young’s modulus determined for spheroplasts with a neutral
intracellular pH (E = 6.3 ± 0.1 kPa), despite the similar mass
density (Figure 7F). These results unambiguously demonstrate
that increased intracellular mass density does not by itself lead
to cell stiffening. Apparently, the cytoplasm requires, in addition
to increased content crowding, other mechanisms to acquire its
mechanical stability and to arrest growth.
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FIGURE 5 | The effect of intracellular pH on the recovery rate of the mass density of yeast cells after osmotic stress. (A) The cross-sectional slices of time-lapse 3D RI

tomograms of yeast cells with different intracellular pH, acquired every 10min after osmotic stress. The scale bar indicates 10µm. (B) The mean refractive index

distribution of osmotically stressed cells in YES medium (gray, N > 120), at pH 7.5 (blue, N > 70) and at pH 6.0 (yellow, N > 150). The box plot indicates the

interquartile ranges (IQR) with a line at the median. The whiskers extend to the data within the 1.5 IQR of the respective quartile. Outliers outside of 1.5 IQR are

marked as ×.

DISCUSSION

In this study, we investigated the relationship between
intracellular mass density, changes in intracellular pH and
stiffness of growing and arrested S. pombe yeast cells. We
adopted the method of Munder et al. for lowering intracellular
pH in yeast cells [14]. We employed ODT to measure the RI-
values and evaluate the mass density of yeast cells, and found that
mass density is increased in the acidified yeast cytoplasm. We
then showed that increasing mass density triggered by osmotic
stress is not sufficient to promote a permanent transition into
a mechanically stiff and growth-arrested state. We confirmed
that yeast cells with acidified cytoplasm exhibited characteristics
of dormancy as they did not exhibit any distinct mass density
change after osmotic stress and showed no rounding up upon cell

wall removal. We assessed the mechanical properties of acidified
and neutral yeast cytoplasm using AFM. We demonstrated that
an increase in stiffness is accompanied with an increase in the
intracellular mass density. However, increasing mass density of
active yeast cells by osmotic stress was not associated with an
increase in stiffness.

In this work, we have, for the first time, employed ODT to
evaluate mass density changes and total dry mass of the yeast
cytoplasm. We provided evidence for the mechanism of yeast
cells to lose water and increase mass density when dormancy is
induced by lowering intracellular pH. This crowded intracellular
content leads definitely to a change in the physical properties
of the cytoplasm that were so far explored using traditional
techniques such as exogeneous particle tracking [14, 37, 38].
Various explanations have previously been proposed for the

Frontiers in Physics | www.frontiersin.org 8 November 2018 | Volume 6 | Article 131

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Abuhattum et al. Density and Stiffness of Growth-Arrested Yeast

FIGURE 6 | The cross-sectional slices of refractive index tomograms of yeast in (A) YES medium with 1.2M sorbitol, (B) phosphate buffer in pH of 7.5 and (C) pH 6.0

with 1.2M sorbitol and DNP, after the removal of cell wall. The scale bar indicates 10µm.

FIGURE 7 | Stiffness and mass density of yeast cells with different intracellular pH during or after adaptation to osmotic stress. (A,D) Schematic diagram for cell

culture, spheroplasting in phosphate buffer (PB) with sorbitol and pH adjustment for (A) overnight osmotically adapted and (D) osmotically stressed S. pombe.

(B,E) The distribution of mean refractive index of yeast cells with intracellular pH of 7.5 and 6.0 in (B) osmotic adaptation (N > 70) and (E) osmotic stress (N > 70).

(C,F) The distribution of the apparent Young’s modulus of spheroplasts in the intracellular pH of 7.5 and 6.0 in (C) osmotic adaptation (N > 60) and (F) osmotic stress

(N > 40). The box plot indicates the interquartile ranges (IQR) with a line at the median. The whiskers extend to the data within the 1.5 IQR of the respective quartile.

Outliers outside of 1.5 IQR are not shown. **p < 0.001.

nature of these changes. Some suggested that the cytoplasm
undergoes a glass transition due to increased mass density [39].
Others described a cytoplasm as water-containing matrix formed
by a cytoskeletal network that is behaving as a hydrogel [40]. We
here demonstrate that increasing the mass density of cells will not
by itself result in stiffening and growth arrest of yeast cells. We
show that the cytoplasm of metabolically arrested cells acquires,
along with an increased mass density, solid-like characteristics.

We have also explored that different degrees of compression
increased the crowding of the cytoplasm using particle tracking
method (Supplementary Figures 3, 4). In addition, similar to
Munder et al. we have analyzed the isoelectric points of all
proteins in the S. pombe yeast proteome.We found, in agreement
with other studies [41], that the isoelectric points of the proteins
are clustered in two distinct peaks one in the acidic and the other
in the basic pH range (Supplementary Figure 2). When the pH
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drops to the isoelectric points, the proteins fall out of solution
and form macromolecular aggregates. One plausible outcome of
the macromolecular aggregation is a reduction in the internal
osmotic pressure of the cell and thus water loss and densification
of the cytosol. We thus suggest that the combination of high
mass density and reinforcing the cytoplasm with some percolated
network of macromolecular assemblies is necessary for providing
the cells with the mechanical stability needed for enduring harsh
environmental conditions and ultimately survival.

Still, in order to profoundly unravel the structure and the
organization of the solid cytoplasmic network, it is necessary to
explore the response of these physical properties at various time
scales. This could be achieved with the use of AFM dynamic
probing of the mechanical properties at different frequencies.
Using AFM provides a straight-forward measurement of
cytoplasm, nevertheless, it requires steps of removing the yeast
cell wall, which could potentially alter cell properties, and current
analysis assumes homogeneity of the sample. Thus, there is
a growing interest in using non-invasive optical methods to
probe mechanical properties of soft materials such as Brillouin
microscopy [42, 43] and the temporal correlations of time-lapse
quantitative phase microscopy [44, 45].

Taken together, we present here a study that augments the
field of phase transitions in dormant organisms with an insight
into the optical and mechanical properties of the cytoplasm. We
defined the interplay between intracellular mass density, stiffness
and dormancy. Further studies for exploring the key factors
and the organization of the solid cytoplasm will be essential to
understand the underlying mechanisms of these organisms to
initiate dormancy.
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