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Closed, Two Dimensional Surface
Dynamics
David V. Svintradze*

School of Health Sciences, University of Georgia, Tbilisi, Georgia

We present dynamic equations for two dimensional closed surfaces and analytically solve
it for some simplified cases. We derive final equations for surface normal motions by two
different ways. The solution of the equations of motions in normal direction indicates
that any closed, two dimensional, homogeneous surface with time invariable surface
energy density adopts constant mean curvature shape when it comes in equilibrium with
environment. In addition, we show that the shape equation is an approximate solution
to our equation of motion in the normal direction and is valid for stationary or near
to stationary shapes. As an example, we apply the formalism to analyze equilibrium
shapes of micelles and explain why they adopt spherical, lamellar, and cylindrical shapes.
Theoretical calculation for micellar optimal radius is in good agreement with all atom
simulations and experiments.

Keywords: shape dynamics, differential geometry, membrane dynamics, micelles, fluid film dynamics

1. INTRODUCTION

Biological systems exhibit a variety of morphologies and experience large shape deformations
during a motion. Such “choreography” of shape motility is characteristic not only for all living
organisms and cells [1] but also for proteins, nucleic acids, and to all biomacromolecules in
general. Shape motility, which is a motion of two-dimensional surfaces, may be a result of active
(by consuming energy) or passive (without consuming energy) processes. The time scale for
shape dynamics may vary from slow (nanometer per nanoseconds) to very fast (nanometer per
femtosecond) [2, 3]. Slowly moving surfaces are considered as overdamped systems. An example is
cell motility. In that case onemay use well developed theHelfrich formalism to describe themotion,
where free energy expansion in powers of the curvature tensor gives coarse-grained modeling of
membranes [4]. However, while the formalism [4] are applicable to slowly moving surfaces they are
not applicable to fast moving surfaces, where biomolecules could be fitted. Surface dynamics for
proteins or DNA [2, 3] may reach nm/fs range. So that surfaces may be represented as virtual three
dimensional pseudo Riemannian manifolds. We derived fully generic equations of motions for
three manifolds [5], but purposefully omitted lengthy discussion about motion of two-dimensional
surfaces, which is a topic for this paper.

Currently, significant progress on fluidic models of membrane dynamics has already been
made. The role of geometric constraints in self-assembly have been elucidated by linking together
thermodynamics, interaction free energies, and geometry [6, 7]. The Helfrich formalism provides
the foundation for a purely differential geometric approach whereby the membrane surface
potential energy density is considered as a functional of the static curvature [4], see also review
papers [8–10]. Themodel has been improved by adding force and torque balance equations [11, 12].
Specific dynamical equations accounting for bending as well as electrodynamic effects have also
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been reported [13–15]. Furthermore, active membrane theories,
by including external forces, have extended the understanding of
passive membranes [16–19].

Among the remarkable aspects of the fluid lipid membranes
deduced from the large body of theoretical works [8–10], is that
the physical behavior of a membrane on the length scale of
its own thickness, in first approximation, can be expressed by
a purely geometric Hamiltonian [4, 20, 21]. Associated Euler-
Lagrange equations [22, 23], so called “shape equations,” are
fourth order partial nonlinear differential equations, and finding
a general analytical solution is typically difficult, even though
it has been analytically [24] and numerically solved for some
specific [25–32] and general cases [33, 34].

In fluid dynamics, material particles can be treated as a vertex
of geometric figure and virtual layers as surfaces and equations
of motion for such surfaces can be searched. We refer to the
formalism as differentially variational surfaces (DVS) (or DVS
formalism) [5].

In this paper, we propose different approach to the “shape
choreography” problem. We use DVS formalism, tensor calculus
of moving surfaces and the first law of thermodynamics to derive
the final equation for the closed 2D surface dynamics (later
on referred as a surface) and to solve it analytically for the
equilibrium case. In other words, we derive generic equations
of motions for closed two-dimensional surfaces and without
any a priori symmetric assumptions, we show that constant
mean curvature shapes are equilibrium solutions. In contrast to
the Young-Laplace law these solutions, are universally correct
descriptions of capillary surfaces as well as molecular surfaces.
In addition, our equations of motions (20–25) are generic
and exact. It advances our understanding of fluid dynamics
because generalizes ideal magneto-hydrodynamic and Naiver-
Stokes equations [5] and in contrast to Navier-Stokes, as we
demonstrate in this paper, are trivially solvable for equilibrium
shapes. To demonstrate the validity of these equations and
their analytical solutions we apply them to micelles. Within our
formalism it becomes simple task to show micelles lamellar,
cylindrical, spherical shapes, and assert their optimal spherical
radius.

For clarity, we shall give brief description of micelles and
their structures. A micelle consists of monolayer of lipid
molecules containing hydrophilic head and hydrophobic tail.
These amphiphilic molecules, in aqueous environment, aggregate
spontaneously into a monomolecular layer held together due
to a hydrophobic effect [35, 36] (see also [5, 37–40]) by weak
non-covalent forces [41]. They form flexible, diverse surfaces
with different topology, but remarkably in thermodynamic
equilibrium conditions they are spherical, lamellar (plane), or
cylindrical in shape.

2. METHODS

In the section we provide basics of tensor calculus for moving
surfaces and summarize the theorems we used directly or
indirectly to derive equations for two-dimensional surface
dynamics. Differential geometry preliminaries we used here are
available in tensor calculus textbook [42] and in our work [5].

FIGURE 1 | Graphical illustration of the arbitrary surface and its’ local tangent
plane. ES1, ES2, EN are local tangent plane base vectors and local surface normal,
respectively. EX1, EX2, EX3 are arbitrary base vectors of the ambient Euclidean
space and ER = ER(X ) = ER(t,S) is radius vector of the point. EV is arbitrary surface
velocity and C,V1,V2 display projection of the velocity to the EN, ES1, ES2
directions, respectively.

2.1. Basics of Differential Geometry
Let Si (i = 1, 2) be the coordinates of the moving surface S and
Xα be the coordinates in the ambient Euclidean space (Figure 1).
The surface is smooth enough for sufficient differentiability in
space-time and it is expressed as Xα = Xα(t, Si) in the ambient
coordinates. The surface equation for the position vector ER is1:

ER = ER(Xα) = ER(t, Si) (1)

A dot product of the covariant bases EXα = ∂α ER is a metric tensor:

Xαβ = EXα EXβ (2)

where ∂α = ∂/∂Xα . The matrix inverse of the covariant metric
forms the contravariant one: XαβXβγ = δα

γ (the Kronecker
delta δα

γ ). In the ambient Euclidean space, due to mutual linear
independence of the base vectors, the Christoffel symbols Ŵα

βγ =

EXα · ∂β EXγ are zeros and, therefore, covariant/contravariant
derivatives become partial ones ∇α = ∂α .

The surface base vectors ESi = ∂iER and metric tensors Sij, Sij are
similarly defined

Sij = ESi · ESj (3)

where ∂i = ∂/∂Si and SabS
bc = δca. The surface Christoffel

symbols given by Ŵi
jk

= ESi · ∂jESk are not zeros and

covariant/contravariant derivatives differ from partial ones ∇i 6=
∂i. The space/surface Christoffel symbols form the basic concept

1Latin letters in indexes are related to the surface tensors and Greek letters are
related to space tensors. Equations throughout the text are tensorial and repeated
upper and lower indexes indicate Einstein summation convention, for instance
XaY

a = 6XaY
a.
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for defining curvilinear derivatives on mixed space/surface
tensors:

∇iT
αj

βk
= ∂iT

αj

βk
+ X

γ
i Ŵα

γ νT
νj

βk
− X

γ
i Ŵ

µ
γβT

αj

µk
+

Ŵ
j
imT

αm
βk − Ŵm

ikT
αj
βm (4)

where Xγ
i is the shift tensor, so that ESi = Xα

i
EXα and Sij = ESi · ESj =

Xα
i
EXαX

β
j
EXβ = Xα

i X
β
j Xαβ . Note that in (4) the Christoffel symbols

with Greek indexes are zeros.
Using (2, 4), one may directly prove metrilinic property of the

surface metric tensor∇iSmn = 0, from where follows ESm ·∇iESn =
0, meaning that ESm⊥∇iESn are orthogonal vectors, therefore:

∇iESj = ENBij (5)

where EN is an unit surface normal and Bij is the symmetric
curvature tensor. The trace of the mixed curvature tensor is
the mean curvature Bii and the determinant is the Gaussian
curvature. A particular case:

Bii = λ (6)

where λ is some non-zero constant is a sphere if the surface is
closed. According to (5, 6), finding the curvature tensor non-
directly implies identification of the surface.

2.2. Basics of Tensor Calculus for Moving
Surfaces
All Equations written above are generally true for moving
surfaces. We now turn to a brief review of definitions of
coordinate velocity Vα , interface velocity C (which is the same as
normal velocity), tangent velocity V i (Figure 1), time derivatives
of the surface tensors and the space/surface integrals. The original
definitions can be found in textbooks [42, 43].

Suppose that Vα is the coordinate velocity defined as:

Vα =
∂Xα

∂t
(7)

Then, given that the position vector ER (1) is tracking the
coordinate particle Si the surface velocity can be written as:

EV =
∂ ER(t, Si)

∂t
=

∂ ER

∂Xα

∂Xα(t, Si)

∂t
= Vα EXα (8)

Therefore, Vα is ambient component of the surface velocity EV .
Taking into account (8) the surface normal velocity C can be
represented as:

C = EV · EN = Vα EX
αNβ EXβ = VαN

βδα
β = VαN

α (9)

C is called the interface velocity, is invariant and its sign
depends on the choice of the surface normal. The surface velocity
projection on the tangent plane (Figure 1) is V i the tangential
velocity:

V i = VαXi
α (10)

Taking (9, 10) into account one may write the surface velocity as
EV = C EN + V iESi.

The surface velocity in general and the interface velocity in
particular has clear geometric interpretation. Suppose that the
surfaces at the two nearby moments of time t, t+1t are St , St+1t .
Then, for any arbitrarily chosen A ∈ St and the corresponding
point B ∈ St+1t the vector EAB is approximately the surface
velocity times increment of time: EAB ≈ EV1t (Figure 2). If the
P is the point where the surface normal EN ∈ St intersects the
surface St+1t , then for infinitely small 1t, 6 APB → π/2 and
AP → EV · EN1t, therefore:

C = lim
1t→0

AP

1t
(11)

The interface velocity C is the instantaneous velocity of the
interface in the normal direction.

2.3. Invariant Time Differentiation
Among the key definitions in calculus for moving surfaces,
perhaps one of themost important is the invariant time derivative
∇̇ . As we have already stated, invariant time derivative is already
well defined in the literature [42, 43]. In this paragraph, we just
give geometrically intuitive definition.

FIGURE 2 | Geometric interpretation of the interface velocity C and of the
curvilinear time derivative ∇̇ applied to invariant field F. A is arbitrary chosen
point so that it lays on F (St ) ∈ St curve and B is its’ corresponding point on the
St+1t surface. P is the point where St surface normal, applied on the point A,
intersects the surface St+1t. By the geometric construction, for small enough
1t → 0, 6 APB → π/2, EAB ≈ EV1t, and AP ≈ EV EN1t. On other hand, by the
same geometric construction the field F in the point B can be estimated as
F (B) ≈ F (A)+ 1t∂F/∂t, while from viewpoint of the St+1t surface the F (B)
value can be estimated as F (P)+ 1tV i∇iF, where ∇iF shows rate of change in
F ∈ St+1t and along the BP ≈ 1tV i .
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Let take smooth functional F defined on the surface F ∈ St .
The invariant time derivative has to be defined so that: (1) it is free
from choice of a reference frame (invariance) and (2) properly
takes into account deformations along the normal. We explain
importance of normal deformations in integration subsection.
This can be achieved by following geometric construction: for
an arbitrary chosen point A from the St surface A ∈ St let us
find points B ∈ St+1t and P so that the B is the intersection of
the surface velocity to the St+1t and the P is intersection of the
surface normal to the St+1t (Figure 2). Then, the invariant time
derivative ∇̇ can be defined as:

∇̇F = lim
1t→0

F(P)− F(A)

1t
(12)

(12) is geometric, therefore must be an invariant. From the
geometric construction (12) one can estimate value of F in point
B, so that

F(B) ≈ F(A)+ 1t
∂F

∂t
(13)

B, P ∈ St+1t are nearby points, therefore according to the
definition of covariant derivative F(B) can be estimated as:

F(B) ≈ F(P)+ 1tV i∇iF (14)

since ∇iF shows rate of change in F ∈ St+1t and 1t ·V i indicates
BP. Determining F(A), F(P) values from (13, 14) and putting it in
(12), gives

∇̇F =
∂F

∂t
− V i∇iF (15)

The definition (15) extends for space/surface mixed tensors by
the following formula:

∇̇Tαi
βj =

∂Tαi
βj

∂t
− Vk∇kT

αi
βj + Vγ Ŵα

γµT
µi
βj − Vγ Ŵ

µ
γβT

αi
µj

+Ŵ̇i
kT

αk
βj − Ŵ̇k

j T
αi
βk (16)

where analog of the Christoffel symbol Ŵ̇i
j for moving surfaces

is defined by the formula Ŵ̇i
j = ∇jV

i − CBij. The derivative
(16) satisfies: commutativity with the contraction, product and
chain rules, metrilinic properties against the ambient metric and
does not commute with the surface derivative [42]. According to
(12) the invariant time derivative vanishes when applied to time
independent scalars.

2.4. Time Differentiation of Integrals
The calculus of moving surfaces are effective due to two
fundamental theorems about taking time derivatives of space and
surface integrals [42]. In evaluation of the least action principle
of the Lagrangian there is a central role for time differentiation
of the surface and the space integrals, from where the geometry
dependence is rigorously clarified.

Let the scalar field F = F(t, S) be defined on an Euclidean
domain � which has the surface boundary S and the surface
evolves with the interface velocity C while volume moves

(expands or shrinks). Analogically suppose that the closed surface
evolves and F = F(t, S) is again some scalar functional defined
on the evolving surface S. Then, there are theorems for taking
derivative of space and surface integrals from F integrand:

d

dt

∫
�

Fd� =

∫
�

∂F

∂t
d� +

∫
S
CFdS (17)

d

dt

∫
S
FdS =

∫
S
∇̇FdS−

∫
S
CFBiidS (18)

On the right hand side of (17, 18) the first terms indicate how the
scalar field changes and the second terms show how geometry
evolves. There are rigorous mathematical proofs of these
formulas in the tensor calculus textbooks; we do not reproduce
them here. Instead, we intuitively show why only interface
velocity has to be taken into account. Rigorous mathematical
proof follows from fundamental theorem of calculus

d

dt

∫ b(t)

a
F(t, x)dx =

∫ b(t)

a

∂F(t, x)

∂t
dx+ b′(t)F(t, b(t)) (19)

In the case of volume integral or surface integral it can be shown
that b′(t) is replaced by interface velocity C.

Intuitive explanation is pretty simple. Propose there is no
interface velocity then closed surface velocity only has tangent
component. For each given time tangent velocity (if there is no
interface velocity) translates each point to its neighboring point
and therefore, does not add new area to the closed surface (or new
volume to the closed space, or new length to the closed curve).
As so, tangential velocity just induces rotational movement (or
uniform translational motion) of the object and can be excluded
from additive terms in the integration. Perhaps, it is easier to
understand this statement for one dimensional motion. Let’s
assume that material point is moving along some trajectory
(some closed curve or loop), then, in each point, the velocity
of the material point is tangential to the curve. Now one can
translate this motion into the motion of the closed curve where
the loop has only tangential velocity. In this aspect, the embedded
loop only rotates (uniformly translates in the plane) without
changing the length locally, therefore tangential velocity of the
curve does not add new length to the curve (same is true for open
curve with fixed ends).

3. GENERAL EQUATIONS OF SURFACE
MOTIONS

Fully non-restrained and exact equations for moving three-
dimensional surfaces in electromagnetic field, when the
interaction with an ambient environment is ignored, reads

∇̇ρ + ∇i(ρV
i) = ρCBii (20)

∂α(ρV
α(∇̇C + 2V i∇iC + V iV jBij)

− Vα(
1

4µ0
FµνF

µν + AµJ
µ)) = fa (21)

∫
S
ρVi(∇̇V i + V j∇jV

i − C∇ iC − CV jBij)dS =
∫

�

f iaid� (22)
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where ρ is the surface mass density, Vα , V i are coordinate and
tangential components of the surface velocity, C is interface
velocity, α = 0, 1, 2, 3 for Minkowski four-dimensional space-
time ambient space, i = 0, 1, 2 for pseudo-Riemannian
manifold (surface), Bij is the surface curvature tensor, Fµν is
electromagnetic tensor, Fα = Jα − ∂βF

βα , Jα is α component
of EJ = (Jα) four current, f , f i are normal and tangential
components of EF = (Fα), a, ai are the normal and the tangential
components of the ∂ EA/∂t (here EA = (Aα) is four vector), S, �
stand for the surface and the space integrals, respectively. The
exact derivation of (20–22) is given in our work [5], we do not
reproduce derivation of this set in this paper, rather just mention
that first one is the consequence of mass conservation, second
and third equations come from minimum action principle of a
Lagrangian and imply motion in normal direction (21) and in
tangent direction (22). For two dimensional surface dynamics,
Minkowskian space becomes Euclidean, so that α = 1, 2, 3 and
the surface is two-dimensional Riemannian manifold i = 1, 2.
So that, after modeling the potential energy as a negative volume
integral of the internal pressure and inclusion interaction with an
environment, (20–22) further simplifies as

∇̇ρ + ∇i(ρV
i) = ρCBii (23)

∂α(ρV
α(∇̇C + 2V i∇iC + V iV jBij)

+ Vα(P+ + 5)) = −Vα∂α(P
+ + 5) (24)

ρVi(∇̇V i + V j∇jV
i − C∇ iC − CV jBij) = 0 (25)

where P+, 5 are internal hydrodynamic and osmotic pressures,
respectively. Derivation of (20–22) can be found in Svintradze
[5]. We derive (23-25) in Appendix section. It is noteworthy that
from the last equations set only the second equation (24) differs
from the dynamic fluid film equations [42, 44]

ρ(∇̇C + 2V i∇iC + V iV jBij) = σBii (26)

where σ is the surface tension. Equation (26) is only valid
when the surface can be described with time invariable surface
tension [42, 44], meaning that the surface is homogeneous
and the surface tension is constant, while (24) does not have
that restriction. Using (26) in (24) and taking into account
that in equilibrium processes internal pressure is the same as
external pressure, one gets exactly the same equation of motion
in normal direction (39) as we get from using the first law of
thermodynamics (see below).

∂α(σV
αBii + (P+ + 5)Vα) = −(∂αP

+ + ∂α5)Vα (27)

It is worth of mentioning that (23–25) also follows from (20–22)
if one applies same formalism as it is given in (30-32). Indeed, the
space is 3D Euclidean so that α = 1, 2, 3 and the surface is 2D
Riemannian (i = 1, 2) for relatively slowly moving surfaces and
the potential energy could be written as:

U =

∫
�

(
1

4µ0
FµνF

µν + AµJ
µ)

=

∫
�

(−
ǫ0

2
E2 +

1

µ0
B2 − qϕ + EAEJ)d� (28)

where EE, EB are electric and magnetic fields and q,ϕ, EA,EJ are
charge density, electric potential, magnetic vector potential and
current density vector respectively. Using (30–32) formalism into
account, we find

dU = −(P+ + 5)d� = (−
ǫ0

2
E2 +

1

µ0
B2 − qϕ + EAEJ)d� (29)

Taking into account (29) and that the pressure comes
from the normal force applied to the surface, we find
fa = −Vα∂α(P+ + 5) and in tangent direction f iai = 0,
then (20–22) becomes (23–25). Electromagnetic potential energy
can be generalized if one takes into account environment,
which enters in energy terms as bound and free charges
and electric/magnetic fields are replaced by polarization and
magnetization vectors [5].

4. RESULTS AND DISCUSSION

4.1. General Assumptions
In this section we apply basics of thermodynamics and
fundamental theorems of calculus of moving surfaces to
demonstrate shortest derivation of the equation, describing
motion of homogeneous, closed two dimensional surface with
time invariable surface tension at normal direction (27). We
consider the system consisted of aqueous media with the formed
closed surface in it (Figure 3). The system is isolated with
constant temperature and there is no absorbed or dissipated heat
on the surface; in other words, a process is adiabatic. According
to the first law of thermodynamic, as far as there is no dissipated

FIGURE 3 | Graphical illustration of the isolated system containing aqueous
solution. Water molecules are represented as red and white sticks. The system
boundary is shown as white faces with black edges. The subsystem-micelle is
closed surface, blue blob in the center of the system.
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or absorbed heat, the change of the internal energy of the surface
must be

dE = δW (30)

where δW is infinitesimal work done on the subsystem and
dE is infinitesimal change of the internal energy. Because the
temperature of the system is constant, the differential of the
subsystems’ internal energy can be remodeled as

dE = dU (31)

where U is the total potential energy of the surface. By the
definition the elementary work done on the subsystem is

δW = (P− + 5)d� (32)

where , P−,5 are external hydrodynamic and osmotic pressures
applied on the surface by the surroundings correspondingly and
� is the volume that surface encloses with boundary of S surface
area. Let’s propose that the surface is homogeneous (i.e., material
particles are homogeneously distributed on the surface) so that
the total potential energy is integration of the potential energy
per unit area over the surface, then

dU = σdS (33)

where σ is the potential energy per unit area and is called surface
tension in the paper. As far as we discuss simplest case of the
system consisted of aqueous medium and single closed surface,
we can suggest that the surface tension is not time variable. Using
(30–33) after few lines of algebra, we fined

∫
S
σdS =

∫
�

(P− + 5)d� (34)

Assuming the surface is moving so that (34) stays valid for
any time variations, then time differentiation of the left side
must be equal to the time differentiation of the right integral.
As far as on the right hand side we have space integral, time
differentiation can be taken into the integral, using general
theorems for differentiation of space and surface integrals (17–
18), so that the integration theorem for the space integral which
takes into account the volume motion holds, therefore:

d

dt

∫
�

(P− + 5)d� =

∫
�

(∂αP
− + ∂α5)

∂Xα

∂t
d�

+

∫
S
C(P− + 5)dS (35)

To calculate a time derivative of the surface integral we have
to take into account the theorem about time differentiation of
the surface integral (18), from which follows that for the time
invariable surface tension

d

dt

∫
S
σdS =

∫
S
−σCBiidS (36)

Where C = VαNα is interface velocity, Nα is α component of
the surface normal and V = ∂Xα/∂t is coordinate velocity, Xα

is general coordinate and Bii is the trace of the mixed curvature
tensor generally known as mean curvature. After few lines of
algebra putting (34–36) together, we find

∫
S
(σCBii + C(P− + 5))dS = −

∫
�

(∂αP
− + ∂α5)Vαd� (37)

Generalized Gauss theorem converts the surface integral of the
left hand side of (37) into space integral, so that

∫
S
NαV

α(σBii + P− + 5)dS =
∫

�

∂α(σV
αBii

+(P− + 5)Vα)d� (38)

Combination of (37) and (38) immediately gives equation of
motion for surface in normal direction

∂α(σV
αBii + (P− + 5)Vα) = −(∂αP

− + ∂α5)Vα (39)

For equilibrium processes internal and external pressures are
identical P− = P+, so that (39) becomes identical to the equation
of motion in normal direction observed from master equations
(23–27). Also, we should note that (39) is only valid for
motion of the homogeneous surfaces with time invariable surface
tension at the normal direction, therefore, it does not display
any deformation in tangent directions. Equation (39) further
simplifies when the surface comes in equilibrium with the
solvent where divergence of the surface velocity ∂αV

α (stationary
interface) along with ∂P/∂t (where P = P− + 5) vanishes,
then the solution to (39), taking into account the condition (35),
becomes

Bii = −
P

σ
(40)

The result (40) shows that the solution is constant mean
curvatures (CMC) surfaces. Such CMC are rare and can be many
if one relaxes the condition we restricted to the system. We
consider isolated system where the surface is closed subsystem,
these two preconditions mathematically mean that the surface we
discuss is compact embedded surface in R

3. According to A. D.
Alexandrov uniqueness theorem, if a compact surface embedded
in R

3 has constant non-zero mean curvature then it is a sphere
[45]. Correspondingly the solution (40) is a sphere (as far as we
have compact two-manifold in the Euclidean space). When

P

σ
6= 0 (41)

the surface is spheroid (or a cylinder if one relaxes compactness
restriction making the cylinder infinitely long) and becomes
plane (again when compactness argument is relaxed) or other
zero mean curvature shape when compactness argument is
not relaxed but contour of the surface remains fixed. This
surprisingly simple and elegant derivation explains all the
shapes surfaces can adopt in aqueous solution at equilibrium
conditions2. If the compactness condition is relaxed then (40)

2Even though we set environment as aqueous, it enters into equations as osmotic
pressure term, which due to a generality of arguments can be anything. Therefore,
as a medium one may pick any liquid or gas.
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predicts that in addition to cylinder and plane all other CMC
surfaces are also equilibrium shapes for moving surfaces. Taking
into account that the surface tension in general can be a function
of many variables, such as Gaussian curvature, bending rigidity,
spontaneous curvature, molecules concentration, geometry of
surfactant molecules and etc., then (39) may predict possible
deformations of differently shaped surfaces and their wide range
of static shapes. In fact, if considered that the surface tension,
which is defined as potential energy per unit area, can be a
function of mean curvature σ = σ (Bii), then Taylor expansion of
σ (Bii) naturally rises all additional terms. These generalizations
and temperature fluctuations can be included in the equations,
but it is not scope of this paper and should be addressed
separately. One may even propose σ as time independent the
Helfrich Hamiltonian and then (39, 40) will become equation
of static shapes for homogeneous surfaces with time invariable
surface tension. In fact we clarify this statement in the following
subsection.

4.2. Relevance to the Shape Equation
Here we give brief comparison of our equations of motions to
the Helfrich formalism and show that the shape equation is a
stationary approximate solution to the equation of the normal
motion (39).

Let us propose that the system is overdamped, therefore
variations in kinetic energy is much smaller than variations in
the potential energy. Throughout of our equations we model
potential energy as

U =

∫
�

P−d�

Assume that the Hamiltonian of the system
H =

∫
S ρV2/2dS+

∫
�
P−d� is modeled as the free energy

on the surface
∫
S(σ0 + k/2(Bii − K0)2 + kKG)dS, where σ0

is classically defined constant surface tension, k is bending
rigidity constant, K0 is spontaneous curvature and KG is the
Gaussian curvature. This interpretation of the free energy is
called spontaneous curvature model [8, 31]. As far as the system
is overdamped, the variation of the kinetic energy is infinitely
small, therefore in the first approximation δ

∫
S ρV2/2dS ≈ 0 and

we have

H =

∫
S

ρV2

2
dS+

∫
�

P−d�

=

∫
S
(σ0 + k/2(Bii − K0)

2 + kKG)dS

δ

∫
�

P−d� = δ

∫
S
(σ0 + k/2(Bii − K0)

2 + kKG)dS (42)

For evaluation of the Hamiltonian variation, we note that
according to the time differentiation of the space integrals (17)
δ
∫
�
P−d� =

∫
�

∂P−/∂td� +
∫
S CP

−dS. On the other hand, the
variation of the Helfrich free energy, which can be restricted to

the normal variations [8], is

δ

∫
S
(σ0 + k/2(Bii − K0)

2 + kKG)dS

=

∫
S

δ(σ0 + k/2(Bii − K0)2 + kKG)

δN

δN

δt
dS

=

∫
S
(σ0B

i
i − k(∇a∇

aBii −
1

2
(Bii − K0)[(B

i
i − K0)B

i
i

− 2(Bii)
2 + 4KG]))CdS (43)

where N is the normal coordinate and thus the interface velocity
becomes C = ∂N/∂t. For stationary or near to stationary shapes
∂P−/∂t ≈ 0, taking into account (42, 43) and the variation of the∫
�
P−d�, we find

∫
S
(σ0B

i
i − k(∇a∇

aBii −
1

2
(Bii − K0)[(B

i
i − K0)B

i
i

− 2(Bii)
2 + 4KG]))CdS =

∫
S
CP−dS (44)

The last Equation (44) has to hold for any interface velocity C,
therefore

σ0B
i
i − k(∇a∇

aBii −
1

2
(Bii − K0)[(B

i
i − K0)B

i
i

− 2(Bii)
2 + 4KG]) = P− (45)

(45) is exactly the shape Equation [4, 8, 22, 23, 31]. Note that the
shape Equation (45) can be obtained from the equation of motion
in the normal direction (39) for near to stationary case. Indeed,
according to (39) taking into account that the surface pressure
can be modeled from (44, 45), we find

∂α(σB
i
iV

α+(σ0B
i
i − k(∇a∇

aBii −
1

2
(Bii − K0)

[(Bii − K0)B
i
i − 2(Bii)

2 + 4KG]))V
α) = −

∂P−

∂t
(46)

Taking into account that for stationary shapes
∂P−/∂t = 0, ∂αV

α = 0, the last equation has trivial solution

σ
,
0B

i
i − k(∇a∇

aBii −
1

2
(Bii − K0)[(B

i
i − K0)B

i
i

− 2(Bii)
2 + 4KG]) = P0 (47)

where σ
,
0, P0 are some constant surface tension and pressure

respectively. These calculations formally establish that the shape
equation is an approximate solution of our equations of motions
constrained by the conditions: time invariable surface tension
and stationary interfaces; and is valid only for overdamped
systems. Note that the analytic solution (40) is exact and
only valid for the surfaces in equilibrium with environment,
while the shape equation is the approximate solution for
stationary surfaces. It is no surprise that the stationary shapes are
geometrically richer than equilibrium shapes. Equilibrium shapes
can only adopt constant mean curvature.
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4.3. Physical Application, Micelle
We can put Equation (39) and its solution (40) under the test
for homogeneous micellar surface equilibrated with the aqueous
solution. Based on (40) we can calculate minimal value of a
micelle radius. The value of the trace of the mixed curvature
tensor for a sphere is

Bii = −
2

R
(48)

where R is a radius.
Let’s calculate value of the surface pressure when the micelle

still can exist. Lipids in a micelle are confined in the surface
by hydrophobic interactions with average energy in the range
of hydrogen bonding. As far as values of hydrogen bonding
energy are somewhat uncertain in the literature, by the first
approximation we take average energy for the hydrogen bonding
energy interval and assign it to the lipid molecule. Low boundary
of the interval (minimum energy) for XH · · · Y hydrogen bond
is about 1 kJ per mol (CH · · · C unit) and high boundary is
about 161 kJ per mol (FH · · · F unit), the low and high values
are taken according to references [46, 47]. Therefore, average
energy is about (1 + 161)/2 = 81kJ/mol ≈ 13 · 10−20J.
To estimate hydrogen bonding energy per molecule with the
undefined shape (lipid molecule) in the first approximation is to
assign average energy to it and consider the spherical shape with
the gyration radius. Of course it is low level approximation, but
even such rough calculations produce reasonable results. After all
these rough estimations the pressure to move one lipid from the
surface, in order to induce critical deformations of the surface, is
about average energy per the average volume of the lipidmolecule

P ≈
3 · 13 · 10−20

4πr3G
≈ 3.1 · 107N/m2 (49)

where 4πr3G/3 is the estimated volume of a lipid molecule
considered as sphere with the gyration radius rG ≈ 1nm. On the
other hand, the surface tension of a fluid monolayer at optimal
packing of the lipids is about σ ≈ 3 · 10−2N/m [7, 48, 49], using
these and (48, 49) in (40) the estimated micelle radius is

R ≈
2 · 3 · 10−2

3.1 · 107
= 19.3± 0.1Å (50)

These calculations put the minimum radius in nanometer scale
and is in very good agreement with experimental as well as
computational frameworks [50, 51]. To further validate the (50)
result, we ran a CHARMM based Micelle Builder simulation
[52, 53] for 100 phospholipid molecules (DHPC lipids). The
simulation result (Figure 4) generated a spherical micelle with
diameter 38.5±0.1Å. These calculations indeed indicate that even
such rough estimations produce reasonable accuracy.

To get more convincing estimations it is necessary to take
into account that neither lipids are spherical nor hydrophobic
interactions per lipid are average energy of single hydrogen
bond. In the second approximation lipids are no longer
undefined spheres, but have well defined surfactant geometry.
The Hydrophobic energy is no longer average energy of single
hydrogen bond, but is 1 kJ per mol per −CH2− unit. In

FIGURE 4 | Simulated three dimensional coordinates of the micelle in
aqueous solution display sphere with diameter 38.5Å. (Left)
dihexanoylphosphatidylcholine (DHPC phospholipids) are modeled as orange
balls. (Right) Gaussian mapping at contour resolution 8Å of the micelle shows
spherical structure.

all atom simulations we used dihexanoylphosphatidylcholine
(DHPC) lipid molecule having 12 − CH2− units (Figure 5) per
hydrophobic tail, so hydrophobic energy is about 12kJ/mol ≈
1.99 · 10−20J. Accurate calculation of the lipid molecule volume
using cavity, channel and cleft volume calculator [54], gives the
volume estimation of about 894Å3. Using this value, one gets

P ≈
1.99 · 10−20

0.894 · 10−27 ≈ 2.22 · 107N/m2 (51)

On other hand, using the same surface tension of a fluid
monolayer at the optimal packing of the lipids, one gets R = 27±
0.1Å. All atom simulation also generates spherical structure with
diameter 54 ± 0.1Å (Figure 5). There is still some uncertainty
in this estimation because we assigned 1 kJ/mol energy per
−CH2− unit and we based on references data [46, 47], while in
other literature it is mentioned that the hydrophobic interactions
are about 4 kJ/mol per −CH2− unit [55]. In our opinion, this
discrepancy can be resolved if one calculates hydrophobic energy
based on the potential energy

U = −

∫
�

ǫ0

2
E2CH2

d� (52)

where EECH2 is electric field per −CH2−, ǫ0 is dielectric constant
in the vacuum and� stands for the volume of the lipidmolecules.
Equation (52) directly emerges from FµνF

µν term written in the
equations of motion (20–22 and 28–29). For electrostatics

U =

∫
�

1

4µ0
FµνF

µνd� = −

∫
�

ǫ0

2
E2CH2

d� (53)

so one should go to the scrutiny of calculating electric field
for each −CH2− units, then take a sum of the electric field
and square it (we are not going to do it in this paper). Also,
one may ask why the hydrophilic interaction energy is not
taken into account in these calculations. Hydrophilic head of
the lipid molecule is in contact with water molecules so there is
no work needed to drag it in aqueous solution from the lipids
layer. Therefore, hydrophilic interaction energy can be neglected.
The most work goes on overcoming hydrophobic interactions
between lipid tails.
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FIGURE 5 | All atom simulation of DHPC micelle. (A) The figure shows a geometry of the DHPC surfactant molecule used in simulation and gives parametric
description of volume, surface area, sphericity, and effective radius. (B) Indicates atomistic simulation result contoured by Gaussian map and the diameter of the
micelle, measured by PyMol. The diameter of the simulated micelle appears to be 54.0Å with the uncertainty of the measurement 0.1Å.

5. CONCLUSION

We have presented a framework for the analysis of two
dimensional surface dynamics (identified as micelle in the text)
using first law of thermodynamics and calculus of moving
surfaces. In final equations of normal motion (39,27) we
assume that a surface is homogeneous and has time invariable
surface tension. However, the general equations (23–25) do
not have these constrains and indicate arbitrary motion along
normal deformation, as well as into tangent directions, but are
analytically more complex. The solution to the normal equations
of motion in equilibrium conditions are surprisingly simple and
display all possible equilibrium shapes.We applied the formalism
to estimate micelle optimal radius and compared estimations
to all atom simulations. Even for low-level approximations, we
found remarkable agreement between theoretically calculated
radius and one obtained from atomistic simulations and from
experiments. One can readily apply the theory to any closed
surfaces; such are vesicles, membranes, water droplets or soap
films.

As a final remark, even though the analytic solution (40)
looks like generalized Young-Laplace law, the difference is
obvious. Bii is a trace of mixed curvature tensor, known as
mean curvature, and when the mean curvature is constant, it
defines whole class of constant mean curvature (CMC) surfaces.
Generalized the Young-Laplace law is a priori formulated for
spherical morphologies and therefore in some particular cases
can be obtained from (40) constant mean curvature shapes.
The condition for holding the particular case is a compactness.
However, the compactness argument can be relaxed in our

derivation if the considered system is set to be much larger than
the subsystem. Therefore, the solution (40) effectively predicts
formation of all CMC surfaces while Young-Laplace law is correct
for spherical structures alone. Also in derivation of Young-
Laplace relation one of cornerstone idea is suggestion of spherical
symmetries, while our derivation is free of symmetries and
explains why CMC surfaces are such abundant shapes in nature,
observable even on molecular levels. In fact, according to the
results, any homogeneous closed surface with time invariable
surface tension adopts CMC shape when it comes in equilibrium
with environment.
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