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We discuss a set of local fields which provide the on-shell massless states expected

for the fundamental linear representation of supersymmetry in twelve dimensions. We

recover the states of the anticipated N = 16, S = 4, massless supermultiplet upon

reduction to four dimensions. Using algebraic methods, we also construct ghost arrays

which permit the covariant quantization of each of the gauge fields in the set.
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INTRODUCTION

Using group theoretic methods, Nahm [1] has established that all linear representations of
supersymmetry in D > 11 dimensions will give rise to fields with spins greater than two when
reduced to four dimensions. That is, simple supergravity cannot exist if D is greater than eleven.
A set of local fields which realize supergravity when D = 11 is now well-known from the seminal
work of Cremmer et al. [2].

Perhaps it is still not always appreciated, however, just how truly economical D = 11
supergravity is. Consider the following properties of the “fundamental” massless supermultiplet
[1]. Increasing the dimension raises the number of physical degrees of freedom from 256, for
D = 11, to 65536, for D = 12, and raises the maximum “helicity” content from S = 2, for
D = 11, to S = 4, for D = 12. This considerable enlargement of the fundamental supermultiplet
forD = 12 can be understood by noting that the smallest (Majorana orWeyl) spinor field in twelve
dimensions carries 32 massless degrees of freedom on-shell. Ultimately, this results in N = 16
separate supersymmetries upon reduction to four dimensions, with a correspondingmanifest 0 (16)
global invariance.

The major increase in the size of the smallest supermultiplet, in going from D = 11 to D = 12,
might not be so undesirable, except that there is no knownway to construct a completely consistent,
locally interacting theory involving fields with S > 2. In fact, there are a number of “no-go”
theorems which, taken at face value, indicate that higher spin local field theories are incurably sick.
(For an example of such a theorem, see Weinberg and Witten [3]. For a review of higher spin
problems around that same time, see Curtright [4].)

Nonetheless, in this paper we shall adopt a constructive point of view based on the following
remarks. Although the fundamental D = 12 supermultiplet is large, it is expected to exist as a
well-defined free field theory with interesting kinematical structure, and it deserves to be explicitly
discussed in the literature, at the very least for purposes of comparisonwithD = 11 supergravity. In
addition, if higher spin local fields have any natural setting, surely it is within the context of N > 8
extended supersymmetric models where the symmetry alone requires at least one spin as high as
S = N/4 for the fundamental linear supermultiplet. Drawing a lesson fromN = 8 supergravity, the
most elegant and natural formulation of such models is probably in higher dimensions. Finally,
it is possible that the local fields appearing in massless D = 12 supermultiplets may play a role
as auxiliaries in lower dimensional theories. Thus, we shall exhibit here an elementary local field
candidate for the fundamental D = 12 supermultiplet.
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Curtright Fundamental Supermultiplet in Twelve Dimensions

First, we give a set of local fields which have the correct on-
shell states appropriate for the massless D = 12 fundamental
supermultiplet. All but two of the members of this set are
“maximal” gauge fields, with rather exotic local symmetries.
Next, we discuss reduction of the multiplet from D = 12 to D =

11 and lower dimensions, and explain how the N = 16, S = 4
multiplet arises upon going to D = 4. Then, using algebraic
methods, we initiate the covariant quantization of the gauge
fields contained in the proposed supermultiplet by constructing
an acceptable ghost array for each field. Finally, we conclude
with some conjectures concerning the uses of such a high spin
supermultiplet. In particular, it could also be interpreted as a
massive bound-state multiplet for D = 11 supergravity.

CANDIDATE LOCAL FIELDS

Massless fields in Twelve dimensions describe on-shell states
which are representations of the transverse orthogonal group
0(10). We shall decompose these on-shell representations into
irreducible ones (“irreps”), and label the latter by their highest
weights [standard group theoretic notation [5]]. Since 0(10)
has rank five, these weights are vectors in a five-dimensional
Euclidean space: (w1,w2,w3,w4,w5). In addition, we shall
sometimes use subscripts and superscripts, respectively, to
denote the dimensions and second indices (divided by 5) of the
0(10) irreps:

(w1,w2,w3,w4,w5)2nd index/5
dimension

Note that the two irreps related by interchange of their spinor
labels, i.e., (wl,w2,w3,w4,w5) and (wl,w2,w3,w5,w4), have equal
dimensions and indices of all orders.

We shall label the fields carrying these 0(10) representations
by a Young pattern of 0(11, 1) Lorentz indices (a, b, c, · · · ), using
“R” for the real tensors, “C” for the complex tensors, and “ψ”
for the (Majorana or Weyl) spinor-tensors. By convention, any
rows of Lorentz indices are first totally symmetrized, and then
any columns of indices are totally antisymmetrized. Dirac indices
on the spinor fields will always be suppressed. When we list a real
representation for a complex field, both real and imaginary parts
of the field are understood to carry such a real representation
independently. With these conventions, the local fields we
propose to describe the fundamental D = 12 supermultiplet are
listed in Table 1. Only two of these fields are obvious, (40000)
and (30001)+ (30010), since we expect one S = 4 and 16 S = 7/2
states upon reduction toD = 4. The other entries inTable 1were
determined essentially by trial and error.

Note that in Table 1, all the spinor-tensor fields, and two of
the real tensor fields, reduce on-shell to a pair of 0(10) irreps. It
is also remarkable, but certainly not surprising, that essentially all
entries in Table 1 are generalized gauge fields [6, 7]. Only two
fields, ψ and C, lack local gauge transformations. Some of the
local gauge transformations for the other fields in the Table are
rather exotic. We will say more about this later when we discuss
covariant quantization and ghosts.

As a preliminary check that these fields form the alledgedD =

12 supermultiplet, we observe that the sums of dimensions, and

second indices, over all the bosons are precisely equal (= 32768)
to the same sums over the fermions. These are examples of “spin-
moment” sum rules for supermultiplets [8], generalized to higher
dimensions [9]. For the present case, supersymmetry requires
agreement between index sums over bosons and index sums over
fermions up to but excluding the sixteenth order1. Note that
it is not difficult just to match dimensions for the boson and
fermion representations by using a smaller set of fields [6, 10].
This trivial match, however, is grossly insufficient to guarantee
supersymmetry.

DIMENSIONAL REDUCTION

Another check on the supersymmetry of the field multiplet is
obtained by reducing fromD = 12 toD = 11. The physical 0(10)
states then branch into 0(9) representations as shown in Table 2.
Since 0(9) has rank 4, the 0(9) irreps are characterized by four-
dimensional weight vectors as shown. The 0(9) states listed in
Table 2 may be grouped into simple D = 11 supermultiplets. In
fact, one readily identifies the 0(9) states in Table 2 as just those
obtained by “squaring” the physical state representations of the
fundamental D = 11 supermultiplet: { (2000), (0010), (1001) } .

The D = 12 → D = 11 reduction and 0(10) → 0(9)
branching procedure can also be turned around as follows.
First, square the physical 0(9) states for the fundamental D =

11 supermultiplet. Then, embed the resulting representations
in 0(10) irreps. Finally, identify those 0(11, 1) fields which
yield these 0(10) irreps on-shell. (In practice, the second and
third steps may require a bit of educated guess-work.) This
inverted procedure can usually be successfully employed to raise
D, but note that it may sometimes fail. For example, suppose
one trys to raise D = 10 to D = 11, starting with the
fundamental D = 10 supermultiplet whose physical on-shell
states are the 0(8) irreps { (1000), (0001) }. Simply squaring
these states does not give a set of representations which can
be expressed as an eleven dimensional theory. Rather, one
obtains the states of a type-II, D = 10 superstring [11]: {
(2000), 2(0000), 2(0100), (0002), 2(0010), 2(1001) }. To obtain
the states corresponding to D = 11 supergravity, one must
multiply { (1000), (0001) } by { (0000), (0010) } where (0001) has
been replaced by the inequivalent spinor (0010).

Having shown how the D = 12 fields reduce to give D =

11 states appropriate for supermultiplets, it follows that further
dimensional reduction, say to D = 4, must also give the correct
states for supermultiplets. Nevertheless, there are some slight
subtleties encountered if one simply takes the D = 12 fields in
Table 1 and reduces. The S = 4 singlet, S = 7/2 16-plet, and
S = 3 120-plet are all easily found among the D = 12 → D = 4
fields. Lower spins may appear to be too plentiful, however.
To correctly count lower spins, one should consider the free
field action. As a simple illustration, reduce a maximally gauge
invariant Dirac spinor-tensor, ψa

b
, from D = 5 to D = 4.

Altogether, there must be zero physical (propagating) states both
before and after the reduction, but naively, there appear to be

1For the fields inTable 1, we have only checked thematching of fermion and boson

index sums up to sixth order.
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TABLE 1 | D = 12 Local fields and their massless 0(10) on-shell states.

Fermions (Real) Bosons (Complex) Bosons

ψabc = (30001)27722640 + (30010) Rabcd = (40000)704660 Cabc
d
e

= (20100)43124312

ψab
c
d

= (10101)92408800 + (10110) Rabc
d
e
f

= (20011)86248085 Cab
cd

= (02000)616770

ψab
c

= (11001)33883696 + (11010) Rab
cd
ef

= (00200)44004125 Ca
b
c

= (00100)56120

ψa
b
c
d
e

= (00003)616672 + (00030) Rab
c
d
e
f

= (10020)8401050 + (10002) C = (00000)01

ψa
b
= (01001)364560 + (01010) Rab

cd
e
f
g

= (01020)36963696 + (01002)

ψ = (00001)416 + (00010)

TABLE 2 | 0(10) → 0(9) Branching of massless on-shell states upon reducing

D = 12 → D = 11.

Fermions:

(30001) or (30010) −→ (3001)+(2001)+(1001)+(0001)

(10101) or (10110) −→ (1011)+(1101)+(0011)+(0101)

(11001) or (11010) −→ (1101)+(2001)+(0101)+(1001)

(00003) or (00030) −→ (0003)

(01001) or (01010) −→ (0101)+(1001)

(00001) or (00010) −→ (0001)

Bosons:

(40000) −→ (4000)+(3000)+(2000)+(1000)+(0000)

(20011) −→ (2002)+(1002)+(2010)+(0002)+(1010)+(0010)

(00200) −→ (0020)+(0110)+(0200)

(10002) or (10020) −→ (1002)+(0002)

(01002) or (01020) −→ (0102)+(1002)

(20100) −→ (2010)+(1010)+(2100)+(0010)+(1100)+(0100)

(02000) −→ (0200)+(1100)+(2000)

(00100) −→ (0010)+(0100)

(00000) −→ (0000)

D = 4 propagating modes corresponding to a spin 3/2 field, ψa
5

(a = 1, 2, 3, 4). Those spurious states are immediately dismissed
by inspection of the appropriate D = 5 Lagrangian, which in this
case is iεabcde ψa

b
∂c ψd

e
. Similarly, when carefully done, complete

reduction fields in Table 1 from D = 12 to D = 4 gives the
correct set of physical N = 16, S = 4 supermultiplet.

GHOST ARRAYS AND MAXIMAL GAUGE
INVARIANCE

Next, let us consider some aspects of the covariant quantization
of the gauge fields in Table 1. We exhibit in Table 3 arrays of
ghost fields which are needed to carry out such a quantization.
In the first column of Table 3 we again list the physical on-shell
0(10) irreps carried by the D = 12 local fields of Table 1. In
the second column, we list the 0(12) irreps which describe the
gauge fields, and their ghost fields, off-shell. (It is unnecessary

here to distinguish 0(12) and 0(11, 1).) For each entry in column
1 of Table 3, the initial row of the corresponding entry in column
2 consists of the off-shell 0(12) irreps carried by the primary
gauge field itself (whose Young pattern appears in Table 1). For
example, Rabcd is reducible and carries the irreps (400000) +
(200000). The second irrep is simply the trace, Rabcc (Note that
this field has no double trace, Raacc = 0.)

The other rows in column 2 describe the ghosts. Those with
minus signs have “wrong” statistics. Again considering Rabcd
as an example, “−2(300000)” signifies two anticommuting, real,
traceless, symmetric rank 3 tensor ghost fields. On the other
hand, ghosts with plus signs have “right” statistics. These “+”
ghosts (and some of the “−” ghosts as well) are actually “ghosts
for ghosts” required by the subsidiary local gauge invariances
of other ghosts [12–15]. This last statement may be somewhat
confusing, so let us indicate how the ghosts may be obtained very
quickly using algebraic methods.

No matter how elaborate, all ghost arrays can be constructed
by simple numerical methods involving elements in a
representation ring. One begins with the familiar structure
for a vector field. For D = 12, this may be written as

(10000) = (100000)− 2(000000) (1)

That is, the physical 0(10) states may be viewed as a difference
(hence representation ring) of 0(12) vector and scalar irreps, the
latter being the usual Faddeev-Popov ghosts. To obtain the ghost
structures for other, higher rank gauge fields, one must define
appropriately symmetrized products of both sides of Equation
(1). For example,

(

(10000)⊗ (10000)
)

symmetric

=
[ (

(100000)− 2(000000)
)

⊗
(

(100000)− 2(000000)
) ]

symmetric

(2)

The LHS of this equation is obviously

(

(10000)⊗ (10000)
)

symmetric
= (20000)+ (00000)

The RHS of Equation (2) is not so obvious, however.
Anticommutativity of the local ghost fields must be correctly
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incorporated into the definition of symmetrized products of
the ghost 0(12) irreps. Here, it suffices to give an operational
definition of arbitrarily symmetrized products of the full RHS of
Equation (1), in terms of an algorithm.

The algorithm goes as follows. First, construct Young patterns
of Lorentz indices corresponding to appropriately symmetrized
products of the (100000)’s which come from the RHS of Equation
(1). Then, remove Lorentz indices from these patterns in all
possible ways by substituting for individual Lorentz indices,
a, b, c, · · · , either an “X” or a “Y”, corresponding to the two ghosts
in Equation (1). Incorporate the anticommutativity of those
ghosts using the rule that neither two X’s nor two Y ’s can be used
to remove a symmetric pair of Lorentz indices. Next, identify the
0(12) irreps corresponding to the various Young patterns which
arose from removing Lorentz indices by these “ghost insertions”.
Finally, a resulting 0(12) irrep has right/wrong statistics if an
even/odd number of Lorentz indices were removed to obtain that
irrep.

For the example in Equation (2),
(

(100000)⊗ (100000)
)

symmetric
= (200000) + (000000).

The application of the algorithm to (200000) gives: (200000) →

b d →

{

b X , b Y , X Y

}

→

{

−(100000),−(100000),+(000000)
}

. Thus, using the algorithm,
the RHS of Equation (2) is

[ (

(100000)− 2(000000)
)

⊗
(

(100000)− 2(000000)
) ]

symmetric

= (200000)+ (000000)− 2(100000)+ (000000) .

Upon canceling a common, commuting singlet field from both
sides of Equation (2) , (00000) = (000000), we obtain

(20000) = (200000)+ (000000)− 2(100000) (3)

One immediately recognizes the well-known pair of vector ghosts
employed in the covariant quantization of a symmetric rank 2
tensor field (gravity). The first two terms on the RHS of Equation
(3) are just the 0(12) irreps into which the reducible metric tensor
decomposes (i.e. (000000) is the off-shell trace of the graviton
field).

As another example, we take the antisymmetric square of
Equation (1).

(

(10000)⊗ (10000)
)

antisymmetric

=
[ (

(100000)− 2(000000)
)

⊗
(

(100000)− 2(000000)
) ]

antisymmetric

Applying the algorithm to the RHS of

this equation gives: (010000) →
a

c
→











a

X
,

a

Y
,

X

X
,

X

Y
,

Y

Y











→

{

−2(100000),+3(000000)
}

. Thus, we obtain

(01000) = (010000)− 2(100000)+ 3(000000)

An antisymmetric rank 2 tensor requires two vector ghosts which
in turn require three scalar ghost-ghosts [12]. The latter are
commuting fields.

At this point, further generalizations should be obvious.
In particular, all the entries in Table 3 follow from these
simple algebraic considerations2. Spinor-tensors are treated by
multiplying both sides of tensor equations (such as Equation (1))
by the elementary spinor result: (00001) + (00010) = (000001)
or (000010). Note that this always yields 0(10) spinor irreps
in pairs of the form (wl,w2,w3,w4,w5) + (wl,w2,w3,w5,w4).
Fortunately, all the physical 0(10) states occurring in Tables 1,
3 are so paired, including multi-spinor irreps such as (10020) +
(10002) (i.e., this 0(10) irrep of physical states is not (anti)self-
dual). In fact, it has been argued that such (multi-)spinor pairing
is necessary in order to have a covariant formulation for a gauge
field [18]. From a group-algebraic point of view, this is a direct
consequence of embedding O(D− 2) into O(D).

There is an extra interesting feature about the ghosts for each
of the spinor-tensors in Table 3. For example, consider ψabc.
Naively, it appears in Table 3 that the representation (200010)
is simply canceled by −(200010) occurring in the adjacent line.
One can in effect cancel out these fields, and subsequently ignore
them, if a certain type of gauge is selected, but in a general gauge
one cannot. This additional ghost was first discussed by Nielsen
in the context of spin 3/2 fields in four dimensions [19]. At issue
is simply the reducibility, in a general gauge, of the spinor-tensor
ψabc when considered as an 0(12) representation. In general, the
field has a Dirac trace, γaψabc (but note that, as defined inTable 3,
ψabc is always without a triple Dirac trace, γaγbγcψabc = 0)3.
Similar remarks obviously hold for the other spinor-tensors in
Table 3

4.
There are some simple numerical checks that one can perform

for the ghost arrays in Table 3 which are similar to checking
supersymmetry by matching fermion and boson representation
index sums. First, the net dimension of the 0(10) irreps in
column l of Table 3 must agree with the net dimension of the
0(12) irreps in column 2 (subtract dimensions of the “–” ghosts,
add all other dimensions). Secondly, the net second index of
the 0(10) irreps, divided by the rank of 0(10) (= 5), must equal
the net second index of the 0(12) irreps, divided by the rank of
0(12) (= 6). One easily verifies these checks on Table 3 using the
numerical results in McKay and Patera [5].

2It facilitates the determination of ghosts for other examples to use Schur-function

division. One divides the S-functions corresponding to physical state irreps by

the S-functions generated by the formal series
∑

m,n (−1)mn {1m} × {1n}. Not

surprisingly, this is the formal inverse of the operation which reduces O(D) to

O(D − 2) [see King [16]]. Division of S-functions is explained and many specific

examples are given in Wybourne [17]. I am indebted to Professor Wybourne for

discussions about S-functions, especially for suggesting that S-function division

might be useful for this problem, and for bringing this literature to my attention.
3Note, if a gauge like γaψabc = 0 is chosen, one must re-introduce as an

independent field the irrep (100001) that appears in Table 3.
4Note that right statistics, even-order insertions of the fundamental Faddeev-

Popov ghosts, “X” and “Y”, may be directly carried by higher rank primary gauge

fields in the form of even-order Dirac, or metric traces. Nielsen ghosts are wrong

statistics, odd-order insertions of the fundamental Faddeev-Popov ghosts, and are

used to cancel odd-order Dirac traces of primary spinor gauge fields. Note that

there are also examples of Nielsen ghosts for ghosts in Table 3.
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TABLE 3 | Gauge field and ghost arrays.

0(10) irreps of 0(12) irreps of primary gauge

physical states and accompanying ghost fields

Fermions:

(30001)+(30010) (300001)+(200010)+(100001)

-2(200001)-(200010)

(01001)+(01010) (010001)+(100010)+(000001)

-2(100001)-2(000010)-(100010)

+2(000001)+2(000010)

(11001)+(11010) (110001)+(200010)+(010010)+2(100001)+(000010)

-2(200001)-2(010001)-2(100010)-2(000001)

-(200010)-(010010)-(000010)

+2(100001)+2(100010)

(10101)+(10110) (101001)+(110010)+(001010)+(200001)+(010001)+2(100010)

+(000001)

-2(110001)-(110010)-2(200010)-2(010010)

-2(001001)-(001010)-6(100001)-4(100010)-2(000010)

+2(200001)+2(200010)+3(010001)+2(010010)

+2(100010)+2(000010)+2(000001)

(00003)+(00030) (000012)+(000110)+(001001)+(010010)+(100001)+(000010)

-2(000101)-(000110)-2(001010)-4(010001)

-3(010010)-4(100010)-5(000010)-6(000001)

+2(001001)+2(001010)+2(010010)

+4(100001)+4(100010)+4(000010)

Bosons:

(40000) (400000)+(200000)

-2(300000)

(20011) (200100)+(101000)+(000100)

-2(100100)-2(001000)-2(201000)-6(110000)

-4(300000)-4(100000)

+3(101000)+3(010000)+3(210000)+8(200000)

(00200) (002000)+(020000)+(200000)+(000000)

-2(011000)-2(110000)-2(100000)-4(001000)

+3(101000)+3(010000)

(20100) (201000)+(110000)+(001000)

-2(210000)-6(200000)-2(101000)-2(010000)

+3(300000)+3(100000)+3(110000)

(02000) (020000)+(200000)+(000000)

-2(110000)-2(100000)

+3(010000)

(00100) (001000)

-2(010000)-4(000000)

+3(100000)

(10020)+(10002) (100011)+(000100)

-4(110000)-10(100000)-2(100100)-6(001000)-2(000011)

+5(200000)+5(000000)+3(101000)+8(010000)+3(000100)

(01020)+(01002) (010011)+(100100)+(001000)

-2(100011)-2(010100)-6(000100)-6(101000)

-4(020000)-12(010000)-4(200000)-4(000000)

+3(100100)+3(000011)+3(011000)+8(110000)

+8(001000)+8(100000)

The above change of scale (i.e., group rank) in comparing
second indices is physically significant for computing quantum
corrections. Unitarity requires that covariant evaluations of
closed loops using the 0(12) gauge field and ghost irreps give
the same results as dispersive evaluations of closed loops using
the physical 0(10) irreps as on-shell intermediate states. This
unitarity constraint can be satisfied if such loop evaluations
depend on the ratio “second index/rank”, as is the case in a simple
example [9].

To end this discussion of Table 3, we explain the character
of the local gauge transformations for the primary gauge fields.
These gauge fields are all “maximal” in the following sense. The
local variation of any such (spinor-)tensor field of rank “r”’ is just
a gradient of a general local gauge parameter (spinor-)tensor of
rank “r − 1”, with all Lorentz indices appropriately symmetrized
after the gradient is taken, to conform to the original symmetry
pattern of the primary gauge field. The only constraints possibly
to be imposed on the local gauge parameters are simple “zero
trace” conditions (cf. [4] for a guide to the earlier literature on
this subject). For example, for the primary gauge field Rabcd, the
rank 3 local gauge parameter, rabc, has no trace, raac = 0.

This trace condition, and any others, actually follows from
Table 3, if the local gauge transformations are written in BRST
form. In that form, a local gauge parameter is expressed as a
local ghost field multiplying a global scalar parameter. Any trace
constraints are then carried by the ghost 0(12) representation.
For the Rabcd example, (300000) denotes a traceless, symmetric,
rank 3 ghost. Hence the corresponding local gauge parameter
is traceless. Similarly, it follows that trace conditions on local
gauge parameters for other high rank (spinor-)tensor fields can
be deduced rather easily as a by-product of the simple numerical
analysis used to construct their ghost arrays, starting from
Equation (1). By postulating maximal gauge invariance, the free
field Lagrangians may be uniquely determined (up to trivial field
redefinitions) for all the gauge fields in Table 3. This remark
summarizes a straightforward, but tedious exercise which will not
be given in detail here, to avoid unnecessarily straying from our
group-algebraic line of development.

POSSIBLE APPLICATIONS AND OPEN
QUESTIONS

In conclusion, we briefly consider possible applications of the
local fields given in the Tables. Obviously, consistent interactions
are required before these fields can be used to describe physical
states in a model. Consistent local interactions among all these
fields are not known, and for reasons reviewed in Curtright
[4], probably do not exist for most of the fields when they are
massless. Still, this leaves open two logical possibilities: nonlocal
interactions, ormassive fields. Conceivably, both of these options
may need to be used simultaneously. (Recall dual resonance
models as high spin theories [20, 21].)

Let us consider some consequences of allowing the local fields
to be massive. Viewed as on-shell states for massiveD = lZ fields,
the individual 0(10) representations in the Tables are incomplete:
longitudinal modes are missing. One could remedy this by
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simply adding the missing states necessary to form complete
0(11) irreps. However, a more interesting possibility is simply to
keep the original 0(10) irreps inTable 1 and interpret them as on-
shell states for massiveD = 11 fields. Such a massive multiplet of
D = 11 fields is of interest inD = 11 supergravity. (Themultiplet
in Table 1 is not the supercurrent multiplet, but it can be used to
directly obtain that multiplet through successive multiplications
by two 0(10) vector irreps, (10000).) It is unknown whether or
not such a massive multiplet could be dynamically realized as
bound states for D = 11 supergravity. (Perhaps related to this,
such a multiplet might provide some of the auxilliary fields for
the D = 11 theory.) One way to study this possibility would
be to generalize to higher dimensions previous work on the
Reggeization of N = 8 supergravity [22]. Note that in general,
the logical extension of Regge theory to higher dimensions would
require “highest-weight-vector” trajectories, if on-shell states are
to be unambiguously specified along the trajectories.

Finally, regarding local interactions, it is an open question
whether or not massive higher rank D = 11 fields (such
as those obtained by re-interpreting Table 1) can consistently
and locally couple to D = 11 supergravity. To completely
answer this question, one would have to examine all possible
local nonmininal gravitational couplings for those fields. Local
nonminimal couplings are indeed suggested by the local
conformal energy-momentum tensor improvements known to
exist for massive tensor fields which are not totally symmetric
in their Lorentz indices [7]. By way of contrast, such conformal
improvements cannot be locally constructed in a gauge invariant
way [23] for massless, generalized gauge fields5.

5Local on-shell improvements do exist in certain gauges. Thus, arbitrary gauges

require nonlocal modifications for the conformal improvement of the classical

energy-momentum tensor. This would seem to be compatible with a conjecture

that massless generalized gauge fields can couple consistently (e.g., gauge

invariantly) to gravity if nonlocal effects are incorporated .

ADDED COMMENTS

The above was written some 36 years ago, and preprinted but
unpublished in a journal at that time. It is offered here to make
the historical record more accessible.

I have modified the preceding text only in the final section
to include citations of two papers written subsequently, namely,
Curtright and Thorn [20] and Curtright [21]. One of the
reviewers for this journal suggested that a connection may
exist between this work and F-Theory [24–26]. I believe that
such a connection, if it exists, is outside the scope of this
paper. In fairness to other, more recent work, I should
also mention here efforts to develop supergravity models in
twelve dimensions involving two times [27]. While such
models fall outside Nahm’s classification, nevertheless I am
led to suspect there might be a link to the discussion
above.

In addition, there has been recent progress on constructing
interacting theories involving higher spins, and this work
is continuing [28]. Finally, as evident from the other
contributions to this issue of Frontiers, work also continues
on generalized gauge fields, especially in the context of dual
gravity.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

ACKNOWLEDGMENTS

I thank Professor P. Ramond for several discussions about
higher dimensional supermultiplets. This work was supported
in part by the Department of Energy, under contract number
DSR80136je7.

REFERENCES

1. Nahm W. Supersymmetries and their representations. Nucl Phys. (1978)

B135:149–66. doi: 10.1016/0550-3213(78)90218-3

2. Cremmer E, Julia B, Scherk J. Supergravity in theory in 11 dimensions. Phys

Lett. (1978) 76B:409–12. doi: 10.1016/0370-2693(78)90894-8

3. Weinberg S, Witten E. Limits on massless particles. Phys Lett. (1980)

96B:59–62. doi: 10.1016/0370-2693(80)90212-9

4. Curtright TL. High spin fields. In: Durand L, Pondrom LG. editor.

Proceedings, XXth International Conference on High Energy Physics.Madison,

WI: AIP (1980). pp. 985–8. Available online at: https://www.amazon.com/

High-Energy-Physics-1980-International-Conference/dp/B000OV7B7U/

ref=sr_1_1?s=books&ie=UTF8&qid=1530920078&sr=1-1&keywords=

Durand+and+Pondrom

5. McKay W, Patera J. Tables of Dimensions, Indices and Branching Rules

for Representations of Simple Lie Algebras, New York, NY: Dekker

(1981). Available online at: http://www.worldcat.org/title/tables-of-

dimensions-indices-and-branching-rules-for-representations-of-simple-

lie-algebras/oclc/7168656

6. Curtright TL. Generalized gauge fields. Phys Lett. (1985) 165B:304–8.

doi: 10.1016/0370-2693(85)91235-3

7. Curtright TL, Freund PGO. Massive dual fields. Nucl Phys. (1980)

B172:413–24. doi: 10.1016/0550-3213(80)90174-1

8. Curtright TL, Charge renormalization and high spin fields. Phys Lett. (1981)

102B:17–21. doi: 10.1016/0370-2693(81)90203-3

9. Curtright TL. Indices, triality, and ultraviolet divergences for supersymmetric

theories. Phys Rev Lett. (1982) 48:1704–8. doi: 10.1103/PhysRevLett.48.1704

10. Castellani L, Fre P, Giani F, Pilch K, van Nieuwenhuizen P, Beyond d=11

supergravity and cartan integrable systems. Phys Rev. (1982) D26:1481.

doi: 10.1103/PhysRevD.26.1481

11. Green MB, Schwarz JH, Supersymmetrical string theories. Phys Lett. (1982)

109B:444–8. doi: 10.1016/0370-2693(82)91110-8

12. Townsend PK, Covariant quantization of antisymmetric tensor gauge fields.

Phys Lett. (1979) 88B:97–101 doi: 10.1016/0370-2693(79)90122-9

13. Curtright TL. Available online at: http://www.physics.miami.edu/~curtright/

artifacts/GHOSTS79.GIF

14. Thierry-Mieg J. BRS structure of the antisymmetric tensor gauge theories.

Nucl Phys. (1990) B335:334–46. doi: 10.1016/0550-3213(90)90497-2

15. Siegel W. Hidden ghosts. Phys Lett. (1980) 93B:170–2.

doi: 10.1016/0370-2693(80)90119-7

16. King RC. Branching rules for classical lie groups using tensor and spinor

methods. J Phys. (1975) A8:429–49. doi: 10.1088/0305-4470/8/4/004

Frontiers in Physics | www.frontiersin.org 6 December 2018 | Volume 6 | Article 137

https://lib-extopc.kek.jp/preprints/PDF/1982/8208/8208027.pdf
https://doi.org/10.1016/0550-3213(78)90218-3
https://doi.org/10.1016/0370-2693(78)90894-8
https://doi.org/10.1016/0370-2693(80)90212-9
https://www.amazon.com/High-Energy-Physics-1980-International-Conference/dp/B000OV7B7U/ref=sr_1_1?s=books&ie=UTF8&qid=1530920078&sr=1-1&keywords=Durand+and+Pondrom
https://www.amazon.com/High-Energy-Physics-1980-International-Conference/dp/B000OV7B7U/ref=sr_1_1?s=books&ie=UTF8&qid=1530920078&sr=1-1&keywords=Durand+and+Pondrom
https://www.amazon.com/High-Energy-Physics-1980-International-Conference/dp/B000OV7B7U/ref=sr_1_1?s=books&ie=UTF8&qid=1530920078&sr=1-1&keywords=Durand+and+Pondrom
https://www.amazon.com/High-Energy-Physics-1980-International-Conference/dp/B000OV7B7U/ref=sr_1_1?s=books&ie=UTF8&qid=1530920078&sr=1-1&keywords=Durand+and+Pondrom
https://doi.org/10.1016/0370-2693(85)91235-3
https://doi.org/10.1016/0550-3213(80)90174-1
https://doi.org/10.1016/0370-2693(81)90203-3
https://doi.org/10.1103/PhysRevLett.48.1704
https://doi.org/10.1103/PhysRevD.26.1481
https://doi.org/10.1016/0370-2693(82)91110-8
https://doi.org/10.1016/0370-2693(79)90122-9
http://www.physics.miami.edu/~curtright/artifacts/GHOSTS79.GIF
http://www.physics.miami.edu/~curtright/artifacts/GHOSTS79.GIF
https://doi.org/10.1016/0550-3213(90)90497-2
https://doi.org/10.1016/0370-2693(80)90119-7
https://doi.org/10.1088/0305-4470/8/4/004
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Curtright Fundamental Supermultiplet in Twelve Dimensions

17. Wybourne BG. Symmetry Principles and Atomic Spectroscopy. New York, NY:

John Wiley (1970).

18. Marcus N, Schwarz JH. Field theories that have no manifestly

lorentz invariant formulation. Phys Lett. (1982) 115B:111–4.

doi: 10.1016/0370-2693(82)90807-3

19. Nielsen NK. Supergravity. Freedman DZ, van Nieuwenhuizen P, editor (1979).

Available online at: http://www.worldcat.org/title/supergravity-proceedings-

of-the-supergravity-workshop-at-stony-brook-27-29-september-1979/oclc/

5941493

20. Curtright TL, Thorn CB. Symmetry patterns in the mass spectra of dual

string models. Nucl Phys. (1986) B274:520–58. doi: 10.1016/0550-3213(86)

90525-0

21. Curtright T. Counting symmetry patterns in the spectra of strings. In:

String Theory, Quantum Cosmology and Quantum Gravity, Integrable and

Conformal Invariant Theories: Proceedings of the Paris-Meudon Colloquium.

De Vega HJ, Sanchez N, editor. World Scientific (1987). pp. 304–33,

22–6. Available online at: http://www.worldcat.org/title/string-theory-

quantum-cosmology-and-quantum-gravity-integrable-and-conformal-

invariant-theories-proceedings-of-the-paris-meudon-colloquium-22-26-

september-1986/oclc/15654980; http://inspirehep.net/record/234762/files/

CountingStringStates.pdf

22. Grisaru MT, Schnitzer HJ. Bound states in N=8 supergravity and N=4

supersymmetric Yang-mills theories. Nucl Phys. (1982) B204:267–305.

doi: 10.1016/0550-3213(82)90148-1

23. Duff MJ, Townsend PK. The Deteriorated Stress Tensor. Available online at:

https://lib-extopc.kek.jp/preprints/PDF/1981/8110/8110241.pdf

24. Heckman JJ. Particle physics implications of F-Theory. Ann Rev Nucl Sci.

(2010) 60:237–65. doi: 10.1146/annurev.nucl.012809.104532

25. Weigand T. F-theory. In: Proceedings of Science (2018). p. 16.

doi: 10.22323/1.305.0016

26. Cvetic M, Lin L. TASI lectures on abelian and discrete symmetries in F-theory.

(2018). doi: 10.22323/1.305.0020

27. Bars I. Survey of two-time physics. Class Quant Grav. (2001) 18:3113–30.

doi: 10.1088/0264-9381/18/16/303

28. Didenko VE, Misuna NG, Vasiliev MA. Lorentz covariant form of

extended higher-spin equations. J High Energy Phys. (2018) 1807:133.

doi: 10.1007/JHEP07(2018)133

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Curtright. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 7 December 2018 | Volume 6 | Article 137

https://doi.org/10.1016/0370-2693(82)90807-3
http://www.worldcat.org/title/supergravity-proceedings-of-the-supergravity-workshop-at-stony-brook-27-29-september-1979/oclc/5941493
http://www.worldcat.org/title/supergravity-proceedings-of-the-supergravity-workshop-at-stony-brook-27-29-september-1979/oclc/5941493
http://www.worldcat.org/title/supergravity-proceedings-of-the-supergravity-workshop-at-stony-brook-27-29-september-1979/oclc/5941493
https://doi.org/10.1016/0550-3213(86)90525-0
http://www.worldcat.org/title/string-theory-quantum-cosmology-and-quantum-gravity-integrable-and-conformal-invariant-theories-proceedings-of-the-paris-meudon-colloquium-22-26-september-1986/oclc/15654980
http://www.worldcat.org/title/string-theory-quantum-cosmology-and-quantum-gravity-integrable-and-conformal-invariant-theories-proceedings-of-the-paris-meudon-colloquium-22-26-september-1986/oclc/15654980
http://www.worldcat.org/title/string-theory-quantum-cosmology-and-quantum-gravity-integrable-and-conformal-invariant-theories-proceedings-of-the-paris-meudon-colloquium-22-26-september-1986/oclc/15654980
http://www.worldcat.org/title/string-theory-quantum-cosmology-and-quantum-gravity-integrable-and-conformal-invariant-theories-proceedings-of-the-paris-meudon-colloquium-22-26-september-1986/oclc/15654980
http://inspirehep.net/record/234762/files/CountingStringStates.pdf
http://inspirehep.net/record/234762/files/CountingStringStates.pdf
https://doi.org/10.1016/0550-3213(82)90148-1
https://lib-extopc.kek.jp/preprints/PDF/1981/8110/8110241.pdf
https://doi.org/10.1146/annurev.nucl.012809.104532
https://doi.org/10.22323/1.305.0016
https://doi.org/10.22323/1.305.0020
https://doi.org/10.1088/0264-9381/18/16/303
https://doi.org/10.1007/JHEP07(2018)133
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Fundamental Supermultiplet in Twelve Dimensions
	Introduction
	Candidate Local Fields
	Dimensional Reduction
	Ghost Arrays and Maximal Gauge Invariance
	Possible Applications and Open Questions
	Added Comments
	Author Contributions
	Acknowledgments
	References


