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The rise and spread of antibiotic resistance causes worsening medical cost and

mortality especially for life-threatening bacteria infections, thereby posing a major threat

to global health. Prescribing behavior of physicians is one of the important factors

impacting the underlying dynamics of resistance evolution. It remains unclear when

individual prescribing decisions can lead to the overuse of antibiotics on the population

level, and whether population optimum of antibiotic use can be reached through an

adaptive social learning process that governs the evolution of prescribing norm. Here

we study a behavior-disease interaction model, specifically incorporating a feedback

loop between prescription behavior and resistance evolution. We identify the conditions

under which antibiotic resistance can evolve as a result of the tragedy of the commons in

antibiotic overuse. Furthermore, we show that fast social learning that adjusts prescribing

behavior in prompt response to resistance evolution can steer out cyclic oscillations

of antibiotic usage quickly toward the stable population optimum of prescribing. Our

work demonstrates that provision of prompt feedback to prescribing behavior with the

collective consequences of treatment decisions and costs that are associated with

resistance helps curb the overuse of antibiotics.

Keywords: evolutionary dynamics, game theory, antibiotic resistance, public health, cooperation

1. INTRODUCTION

Antibiotics have been used primarily as human medicine for the treatment and prevention of
bacterial infections for about 80 years; later as a growth promoter applied in animal feeds, for
about 65 years [1, 2]. In this period, it has proved itself incredibly powerful to benefit individual
patients, to suppress the overall epidemic of diseases and also to expand livestock production [3–5].
However, the wide use of antibiotics in our society is tagged along by the development of resistance,
first identified in the 1940’s [3, 6–19].

In recent years, the number of new antibiotics approved by the U.S. Food and Drug
Administration (FDA) has been dramatically reduced, suggesting an “EROOM” law (a
phenomenon in contrast to the Moore’s law) [11, 20, 21]. Even worse, the time period of an
antibiotic’s effectiveness from its introduction to first resistance identified becomes increasingly
short (Figure 1A; see data sources in section 1 of the SI, Data Sheet 1). Moreover, superbugs
(multi-drug resistant bacteria) such asMethicillin-resistant S. aureus (MRSA) seem to outsmart our
efforts to treat infectious diseases [6–8, 12, 13, 16, 22–25]. Antibiotic resistance is associated with
worsening mortality and medical costs [26]. As a consequence, we are confronted with antibiotic
resistance crisis, at the risk of running out of effective antibiotics for infection treatments [19].
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FIGURE 1 | Problem of antibiotic resistance. (A) Timeline plot of resistance emergence for common antibiotics. The time period of an antibiotic’s effectiveness from its

introduction to first resistance identified becomes increasingly short. (B) Prescribing behavior is one of the driving factors contributing to the fast emergence of

resistance. The interaction between resistance evolution and prescripting behavior plays an important role in determining the timeline of resistance emergence.

One of the important factors contributing to the the fast
emergence of resistance is overprescribing [27–30]. High demand
for antibiotics driven by individual self-interest is not necessarily
aligned with the social optimum of antibiotic consumption.
Under certain conditions, the overuse of antibiotics can lead
to the tragedy of the commons [24, 31–34]. Therefore, it is
of significant public health interest to understand and manage
antibiotic resistance from this behavioral perspective.

Here, we focus on the interaction of prescription behavior
and resistance evolution through a feedback loop (Figure 1B):
collective outcomes of prescribing decisions affect the underlying
resistance evolution, which in turn influences prescription
behavior. The behavior-disease interaction model of this kind
is simple yet proof of concept [35–38], and sheds light on
how social learning of prescription behavior in response to
the underlying evolutionary dynamics of resistance can render
population optimum of antibiotic use.

2. MODEL

Previous work demonstrates that social learning promotes the
emergence of institutions for governing the commons [39, 40].
Inspired by this, we will explore how social learning
of prescription behavior in response to the underlying
evolutionary dynamics of resistance can promote population
optimum of antibiotics usage. We will study a behavior-
disease interaction model that incorporates a feedback loop
between prescription behavior and resistance evolution:
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Here, b denotes the birth rate per capita, which is set equal to
the death rate d; βs and βm are the transmission rates of the
two strains; γ 0

s , γ
t
s , γ

0
m, and γ t

m are the respective recovery rates
of different infection cases (infected with sensitive or resistant
strain; untreated or treated); ǫs and ǫm are the effectivenesses
of the antibiotics for treating sensitive and resistant infections,
respectively. S, I and R are the fractions of susceptible, infected
and recovered individuals in the population with I0s , I

t
s , I

0
m, and

Itm denoting the four infection cases (infected with sensitive or
resistant strains, and untreated or treated); Rs and Rm the two
recovery cases, respectively. The two parameters µs and µm

indicates the mutation rates between the two strains.
As given in the last equation (Equation 1), prescription norm

changes in response to the actual payoffs of individual prescribing
vs. non-prescribing behavior (fA vs. fB), which are determined
by disease prevalence and resistance evolution on the population
level [41]. This feedback loop between prescription behavior
and resistance evolution constitutes an adaptive social learning
process in which the society adjusts antibiotic use in response to
the underlying resistance evolution.

We focus on quantifying the extent to which the (over)use
of antibiotics would cause the emergence of resistance in the
long run (see section 4). To do so, we introduce the parameter
θ to denote the presentation rate of infected individuals who
bring their condition to a physician’s attention and seek antibiotic
treatment for their illness (In this regard, the θ value is
determined by individual disease awareness and health-seeking
behavior). To account for prescribing norm of physicians, we
use p to denote the likelihood that each patient at presentation
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is prescribed antibiotic treatment, 0 ≤ p ≤ 1. Thus, the
overall prescribing rate, pθ , mediates the selection pressure
on resistance that is attributed to collective consequence of
prescription behavior.

3. RESULTS AND DISCUSSION

We use the next-generation approach to calculate basic
reproductive ratios for both strains, Rs and Rm in closed-
form (see section 2 of the SI for details, Data Sheet 1). We
assume that resistance is costly in the absence of treatment,
but confers an advantage in the presence of treatment; that is,
resistance compromises the efficacy of treatment, 0 ≤ ǫm < 1.
ComparingRs andRm allows us to answer questions of interest,
such as predicting whether resistance can evolve in the long
run.

For simplicity, we first consider resistance evolution under full
treatment (p = 1), in which infected individuals, once seen by
medical professionals at their presentation, unvaryingly receive
antibiotic treatment. As shown in Figure 2A, we characterize
the conditions for resistance evolution in the parameter space
(θ , ǫm). For small θ values below a threshold (blue region
in Figure 2A), neither can the disease be eradicated, nor can
resistance evolve. Disease can be eradicated for high θ and
ǫm (yellow region in Figure 2A). However, for combinations
of intermediate θ and low ǫm (red region in Figure 2A),
resistance evolves and leads to disease escape despite full
treatment.

To further gain intuitive understanding of how resistance
evolution depends on antibiotic use, we plot the disease
prevalence with respect to treatment probability p, corresponding
to the three scenarios as colored in Figure 2A. The sensitive
strain is predominant for all 0 ≤ p ≤ 1, whereas the resistant
strain is maintained at low frequency purely by the mutation-
selection equilibrium (Figure 2B). Disease can be eradicated for
sufficiently high treatment rate and resistance has no chance
to evolve (Figure 2C). In Figure 2D, disease eradication is
impossible due to the emergence of resistance that greatly
comprises the efficacy of treatment; resistance can be selected
for p above a critical threshold p > ph (see section 3 of the SI,
Data Sheet 1), and as a consequence, the predominant incidence
of infections switches from sensitive to resistant strains.

Let us now turn our attention to this last scenario where
resistance evolution is inevitable for p > ph. Empirical
evidence shows that there exists a threshold in prescription rate
above which sustained resistance can cause huge public health
crisis [42]. To determine the population optimum of antibiotic
use, we need to take into account the impact of resistance on the
cost-benefit analysis of antibiotic treatment (Figure 3). The cost
of sensitive infection, if treated, can be mitigated. In contrast,
resistant infections may greatly exacerbate the overall cost for
both treated and untreated cases [43]. Under these conditions,
the overall social burden of the disease can be minimized at p =

ph (i.e., population optimum). Although the disease prevalence
and thus the risk of infection for susceptible individuals can
be lowered by overprescribing beyond ph (Figure 3A), the cost

associated with resistance is much greater than the benefit, if any,
that full treatment could provide (Figure 3B).

Despite these population-level considerations, individual self-
interest can cause antibiotic overuse, thereby leading to a
tragedy of the commons. This is largely due to the disconnect
between individual behavior and population-level resistance
in prescribing decision-makings. Therefore, curbing antibiotic
overuse requires provision of feedback to individual prescribing
behavior with the social costs and consequences of their collective
action. In light of this, we investigate whether population
optimum of antibiotic use can be reached if the society learns
from the collective consequences of treatment decisions and
costs that are associated with resistance and accordingly adjusts
prescription behavior.

We assume disease dynamics coevolves with a social norm
that governs prescription behavior (see section 4 of the SI,
Data Sheet 1). We use evolutionary game theory to study the
evolution of prescription norm [39, 41]. Prescription norm
changes in response to the actual payoffs of individual prescribing
vs. non-prescribing behavior, which are determined by disease
prevalence and resistance evolution on the population level.
This feedback loop between prescription behavior and resistance
evolution constitutes an adaptive social learning process in which
the society adjusts antibiotic use in response to the underlying
resistance evolution.

We find that how swiftly the society responds to the
underlying resistance evolution has an impact on the
coevolutionary dynamics (Figure 4). Slow social learning
leads to prolonged oscillatory dynamics of overprescribing
and underprescribing, and thus gives chance for resistance to
accumulate and build up in the population, causing resurgences
of marked resistance prevalence alternated with sensitive
infections (Figure 4A). In stark contrast, fast social learning
can help the population steer out cyclic oscillations of antibiotic
use due to overcorrection. In this latter case, the society adapts
prescription norm so quickly that resistance has no chance
to grow into pronounced prevalence as it is outpaced by the
change in prescribing behavior. Besides, fast social learning helps
the society settle on a social norm that reaches the population
optimum of antibiotic use (Figure 4B).

We demonstrate that social learning without centralized
institutions can maneuver the population toward a socially
optimal policy of prescribing, therefore helping curb the overuse
of antibiotics. Our theoretical results are in line with recent trial
findings that highlight the importance of provision of social norm
feedback in reducing antibiotic overuse [29]. Taken together,
in order to reach sustainable use of antibiotics, it is important
to promote awareness of the population problem of resistance
by providing prompt feedback to prescribing behavior with the
social cost of resistance.

Owing to the drastic slowdown of new drug discoveries [21,
44], managing resistance evolution with an emphasis on human
factors, as we demonstrate here, seems to be necessary and
feasible [45]. Prior studies suggest that the consumption of
antibiotics and the patterns in which different agents are
deployed directly impact the frequency of resistance and the
number of ineffective antibiotics [42, 46, 47]. To inform rational
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FIGURE 2 | Resistance evolution and antibiotic usage. (A) Shown is the parameter region of presentation rate θ and efficacy against resistance ǫm under which

antibiotic resistance can emerge. (B–D) plot the prevalence of sensitive and resistant strains as a function of treatment probability p. Resistance can be favored under

sufficiently high treatment coverage and as a consequence, the tragedy of the commons in antibiotic overuse can occur. Parameters: b = 0.1, βs = 0.3, βm = 0.26,

γ 0
s = γ 0

m = 0.1, γ ts = 0.3, γ tm = 0.2, ǫs = 1, (A) ǫm = 0, (B) ǫm = 0.6, θ = 0.05, (C) ǫm = 0.8, θ = 0.6, (D) ǫm = 0, θ = 0.2, (B–D) µs = µm = 10−6.

use of antibiotics, efforts should be focused on developing
new diagnostic technologies and strategies for reducing the
inappropriate use of antibiotics [48], determining the optimal
timing of deployment sequence for existing drugs [49, 50], and
optimizing combination therapies [51, 52]. Moreover, promoting
and enforcing infection control procedures in hospitals can
prevent the spread of resistance and mitigate the impact of
resistance on society [9, 15, 16, 27, 45, 48, 50, 53, 54]. Along
these lines, it is worthwhile for future study to incorporate
population structure [55, 56] and multiple drugs [57–59] in the
coevolutionary dynamics of prescribing behavior and multi-drug
resistance.

The socially optimum use of antibiotics implies a second order
of dilemma—not every sickness should be treated, but who on
earth deserves the treatment and who would have to forgo?
This consideration leads to the ethics dilemma of accessibility of
antibiotics, an important topic worthy of further investigation.
Reducing antibiotics usage via national guidelines has been found
to lead to significant decreases in resistance [46, 47], yet denials
or approvals of antibiotic treatment seem to be determined
by an arbitrary trade-off between preventing resistance and
treating infected patients [20]. With multiple interest groups
such as pharmaceutical industry, public institutions as well as
patients themselves involved in the problem, it is of fundamental
interest to look into the issues of supervising the common pool

resources [60–62] and enhancing collaborative efforts through
the behavioral perspective [18, 24].

4. METHODS AND ANALYSIS

We begin our analysis with characterizing the conditions for
resistance evolution for given levels of antibiotic use p in the long
run.

4.1. Basic Reproductive Ratios
The competition dynamics of sensitive vs. resistant strains is
described by the evolutionary epidemiological model, as given
in Equation (1). The basic reproductive ratios Rs and Rm of the
two strains can be determined by the spectral radius of the next-
generation operator FV−1, where F is the reproduction matrix
and V the state transition matrix [63–65]. We obtain that

Rs =
βs(γ

t
s + b)+ βs(1− ǫs)pθ

(γ t
s + b)(pθ + γ 0

s + b)
, (2)

Rm =
βm(γ

t
m + b)+ βm(1− ǫm)pθ

(γ t
m + b)(pθ + γ 0

m + b)
. (3)

We assume that resistance incurs a fitness penalty, so that
the transmission rates βs > βm. Despite the fact that
laboratory studies revealed a scenario where compensatory
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FIGURE 3 | Cost-benefit analysis of antibiotic usage. (A) From the perspective of susceptible individuals, their infection risk reduces with increasing treatment

probability (coverage) p, but there exists a threshold of treatment coverage, ph, above which the risk of infection almost exclusively comes from resistant strain instead

of sensitive stain. (B) Accounting for the differing costs of treating patients infected with sensitive and resistant strains, the threshold ph corresponds to the social

optimum of antibiotic usage: the total societal disease burden is decreasing with p for p < ph, but followed by a surge in the total cost of infection due to resistance.

Parameters: (A,B) b = 0.1, βs = 0.3, βm = 0.26, γ 0
s = γ 0

m = 0.1, γ ts = 0.3, γ tm = 0.2, ǫs = 1, ǫm = 0, θ = 0.2, µs = µm = 10−6, (B) relative social burden of the

disease: CIs = 1, CTs = 0.2, BTs = 0.3, CIm = 2, BTm = 0.1.

evolution (resistant bacteria ameliorating the costs by acquiring
fitness-compensatory mutations) and cost-free resistances can
slow down the primary driver for reversibility and that
co-selection between the resistance mechanism and other
selected markers can delay any latent reversibility driven
by fitness costs in vitro [66], clinical studies have found
that the compensatory adaptation is not effective in vivo,
which is in line with our assumption [67]. Theoretical
arguments and experimental results, in addition, provide
basis for that the fitness costs of resistance is critical to
the displacement of resistant strains with sensitive ones [66,
67].

Both Rs(p) and Rm(p) are decreasing functions of p under
our model assumptions (see SI, Data Sheet 1). We demonstrate
that the graphs of the two basic reproductive numbers will
vary with values of their endpoints Rs(1) and Rm(1) (see
the SI for details). Without loss of generality, we scrutinize
the following three cases: (I) Rs > 1; (II-a) Rs(1) < 1
and Rm(1) < 1; (II-b) Rs(1) < 1 < Rm(1). The case
noteworthy in practice is the last one, in which resistant strains
predominate and even full treatment can not eradicate the
disease.

For a better understanding of the disease dynamics in case
(II-b), we perform a further investigation of the relations among
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FIGURE 4 | Social learning impacts antibiotic usage. The antibiotic usage behavior can be adjusted in response to the underlying dynamics of resistance evolution.

The convergence of optimum antibiotic usage is determined by how promptly the society learns from the collective consequences of treatment decisions and costs

that are associated with resistance. (A) Slow learning leads to oscillatory dynamics of antibiotic usage (between overuse and lesser use) together with alternating

dominance of resistant and sensitive strains. (B) Fast learning can steer out cyclic oscillations of antibiotic usage due to overcorrection, and therefore helps the society

quickly reach socially optimal usage. Parameters: b = 0.1, βs = 0.3, βm = 0.26, γ 0
s = γ 0

m = 0.1, γ ts = 0.3, γ tm = 0.2, ǫs = 1, ǫm = 0, θ = 0.2, µs = µm = 10−6,

relative social burden of the disease: CIs = 1, CTs = 0.2, BTs = 0.3, CIm = 2, CTm = 20, BTm = 0.1, (A) ω = 0.001, (B) ω = 0.1.

those parameters, where the presentation rates θs and θm for the
two infected cases are seen as independent. Substituting p = 1
into (2) and (3) and combining with the inequality Rs(1) < 1 <

Rm(1), we derive an equivalent condition for case (II-b) to occur:

{

0 ≤ ǫs ≤ 1, if θs > θ∗s ,

ǫ∗s < ǫs ≤ 1, if θs < θ∗s .
and

{

0 ≤ ǫm ≤ 1, if θm < θ∗r ,

0 ≤ ǫm < ǫ∗r , if θm > θ∗r .

(4)
The values of θ∗s , ǫ∗s , θ∗r and ǫ∗r are given in the SI. Therefore,
to get the basic reproductive ratio below 1 and thus control the
disease, we need θm to be greater than θ∗m or ǫm greater than
ǫ∗m. The two solvents correspond to either patients presenting
promptly after infection or introducing potent antibiotics in
treatment.

Moreover, let ph be the critical prescribing probability (which
can be translated into treatment coverage, namely, the proportion
of patients that are prescribed antibiotic treatment) at which the
dominance of the two strains switches in case (II-b). For γ 0

s =

γ 0
m, we derive a simplified form

ph =
βs − βm

θ[βm(1−ǫm)
γ t
m+b

−
βs(1−ǫs)

γ t
s +b

]
, (5)

where ph is referred to as the social optimum of antibiotic use (see
details in section 3 of the SI,Data Sheet 1).

4.2. Cost-Benefit Analysis
When p < ph, the sensitive strain dominates and the
system converges to an equilibrium, of which we derive a

closed form approximation (Ŝ, Î0s , Î
t
s , R̂s); when p > ph, the

resistant strain dominates, with the system converging to another

equilibrium, approximated by (Ŝ, ˆI0m,
ˆItm, R̂m). We prove in the

SI (Data Sheet 1) that S is increasing while I0 and I0 + It are
decreasing with respect to p for both equilibria.
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For susceptible individuals, if the sensitive strain dominates,
the infection probability at equilibrium is approximately

ϕs =
βs[Î

0
s + (1− ǫs)Î

t
s]

βs[Î0s + (1− ǫs)Îts]+ b
, (6)

which can be simplified as 1 − Ŝ = 1 − 1
Rs

. Analogously, if the
resistant strain prevails, the infection probability at equilibrium
is approximately

ϕm =
βm[Î

0
m + (1− ǫm)Î

t
m]

βm[Î0m + (1− ǫm)Îtm]+ b
= 1−

1

Rm
. (7)

Although the actual treatment cost can be determined only
after treatment outcomes, it is expected that (1) sensitive strain
claims lower sickness and treatment costs while it redounds
to greater treatment benefit (CIs < CIm , BTs > BTm and
CTs < CTm ), (2) treatment of patients with sensitive strains
can mitigate the overall cost of infection (CTs − CIs < BTs ),
and in contrast (3) treatment of patients with resistant strains
may exacerbate the overall cost of infection (CTm − CIm >

BTm ) [43].
When it comes to the population, the total social cost is a

piecewise function

Csocial =

{

(CTs − BTs )(Î
0
s + Îts )+ (CIs + BTs−CTs )Î

0
s , when p < ph

(CTm − BTm )(Î
0
m + Îtm)−(CTm−CIm−BTm )Î

t
m. when p > ph.

(8)
Invoking themonotonicity of Î0s and Î

0
s +Îts , it is easy to verify that

the total social cost Csocial is decreasing when p < ph. However,
Csocial may not be monotonic when p > ph (see detailed analysis
in section 3 of the SI,Data Sheet 1).

4.3. Social Learning
We consider that prescription behavior coevolves with disease
dynamics. We regard the problem as a two strategy game,
prescribing (denoted as A) vs nonprescribing (B). The evolution
of prescribing behavior can be described by:

ṗ = ωp(1− p)(fA − fB), (9)

where p is the frequency of prescribingA and ṗ is referred to as
the rate of prescription norm evolution, driven by the time scale
parameter of social learning, ω.

The expected payoffs fA and fB are

fA = λs(BTs − CTs )+ λm(BTm − CTm ), (10)

fB = λs(−CIs )+ λm(−CIm ), (11)

with

λs =
βs[I

0
s + (1− ǫs)I

t
s]

βs[I0s + (1− ǫs)Its]+ βm[I0m + (1− ǫm)Itm]
, (12)

λm =
βm[I

0
m + (1− ǫm)I

t
m]

βs[I0s + (1− ǫs)Its]+ βm[I0m + (1− ǫm)Itm]
. (13)

Here λs and λm are the conditional probabilities of individuals
being infected with sensitive or resistant strains, respectively.

Denote the fractions of individuals infected with sensitive and
resistant strains by Is and Im, respectively (Is = I0s + Its and Im =

I0m + Itm). The behavior of the disease dynamics are described
by Is and Im while the prescribing norm is presented by p, all as
functions of the time t.
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