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The photophysical properties of some monomeric and dimeric BODIPY systems were
investigated at the density functional theory level and herein reported. In particular,
the absorption spectra were fully characterized, low energy singlet and triplet excited
states were discussed also focusing on the energy difference gaps between them
and computing the spin-orbit couplings values for the possible intersystem crossing
channels. The heavy atom effect of iodine substituents on the photophysical properties
of a monomer and on a dimer under investigation was also estimated. Results obtained
on the considered compounds allow us to predict which is the most promising candidate
to be suggested as a photosensitizer in photodynamic therapy.
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INTRODUCTION

In the last decade the BF2-chelated dipyrromethenes, known as BODIPYs, have been proposed
for many applications in materials science and biotechnology because of their excellent stability,
arising from the strongly electron-withdrawing BF2 group, intense absorption band in the
near-infrared region, sharp emissions and quantum fluorescence yields [1–3]. Through appropriate
modifications which permit a strong reduction in the fluorescence quantum yields while enhancing
singlet-to-triplet intersystem crossing, BODIPY and their aza-derivatives have emerged as excellent
photosensitizers in photodynamic therapy (PDT) [4–7]. PDT is a very old medical practice,
especially employed in dermatology, but it is only recently being developed as a minimally invasive
therapy in the treatment of different kinds of tumors [8–12]. Moreover, its clinical efficiency
is currently under exploration for other diseases such as infections, cardiovascular and wounds
healing [13–15]. The main cytotoxic agent in PDT is the excited singlet molecular oxygen 11g

generated in situ through the so-called photodynamic process. In the medical practice, after the
administration and selective accumulation of the photosensitizer (PS) in the target tissue, the region
is locally irradiated with an appropriate light source able to promote the excitation of the PS from
the ground (S0) to an excited singlet electronic state Sn. In systems with low fluorescence quantum
yield, the energy of the S1 can be transferred to an excited triplet state, T1, through a non-radiative
S1 → T1 intersystem crossing (ISC) process. If the energy of that state is greater than that required
to excite the oxygen, instead of decaying in the ground state S0, the T1 can transfer its energy to
trigger the O2

3Σg → 11g conversion (the so-called type II reaction). Consequently, the ability
of a photosensitizer to generate singlet oxygen is strictly related to the generation of a high energy
lying excited triplet T1 able to excite the molecular oxygen (0.98 eV) and to the occurrence of an
efficient singlet-triplet ISC process. To satisfy these criteria, BODIPY dyes proposed for PDT can
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be modified following two ways: (i) including a heavy atom
(I, Br, or a nontoxic metal) in their structures; (ii) performing
a covalent dimerization. The first strategy exploits the heavy
atoms to enhance the efficiency of the intersystem crossing whose
constant depends on the amplitude of the spin-orbit couplings
between the singlet and triplet states (the so-called heavy atom
effect).

As for the second class of strategy, the mechanism through
which the dimers should work is not clear from the few
investigations hitherto appeared in the literature [16–19]. Very
recently, BODIPY monomers and dimers with and without
heavy atom in their structures were synthetized and their
photophysical properties were accurately measured [16]. Using
the experimental evidences given in that article as a starting point,
we have undertaken a careful theoretical study of the structural
and electronic characteristics of these systems (see Scheme 1) by
using the density functional theory (DFT) and its time-dependent
formulation (TDDFT). In particular, we determined the
geometries of ground and excited states, the absorption features,
the singlet-triplet energy gaps, and the spin orbit coupling matrix
elements.

COMPUTATIONAL DETAILS

The investigation was performed by using the Density Functional
Theory level (DFT) and its time-dependent density functional
linear response formulation (TDDFT) as implemented in
Gaussian09 code [20]. Geometry optimization (without imposing
constrains) and harmonic vibrational frequencies were done
by using the B3LYP [21, 22] exchange-correlation functional
in conjunction with the 6-31G∗ basis set for all the atoms
excepts Iodine, for which the SSD pseudopotential [23]

SCHEME 1 | Chemical structures of the studied systems.

was employed. The lowest 20 vertical excitation energies
were calculated by TDDFT on the previously optimized
geometries by adding a diffuse function to the basis set.
Solvent effects were evaluated by using the non-equilibrium
implementation [24] of the polarizable continuum model [25].
The dichloromethane (ε = 8.93) in which the experimental
UV-Vis spectra were measured [16], was considered as
solvent.

Spin–orbit matrix elements were computed with DALTON
code [26] by using B3LYP functional and cc-pVDZ basis set for all
the atoms except iodine, for which the coupled pseudopotential
was considered. The atomic-mean field approximation [27] was
used for the systems without iodine atoms while, for those
in which this heavy atom is present, the Spin–Orbit Coupling
Operators for Effective Core Potentials with an effective nuclear
charge [28] was employed.

The spin–orbit couplings (SOCs) were evaluated according to
the following formula:
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where ĤSO is the spin–orbit Hamiltonian.

RESULTS AND DISCUSSION

The main geometrical parameters resulting from the
optimization process of examined systems, are shown in
Table 1, while the coordinates of the obtained minima are listed
in the Supplementary Information section (Tables S1–S6). For
TMBDP-dimer, a comparison is possible with the X-ray structure
recently reported [19]. The agreement with the experimental
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counterparts for bond lengths and valence angles, which do
not vary significantly among the studied compounds, is very
satisfactory. The more interesting parameter is the torsional
angle Ψ that determines the position of the two linked BODIPY
moieties. Values of 36.8, 86.9, and 75.3◦ for BDP-dimer, TMBDP-
dimer and I2-TMBDP-dimer were obtained, respectively. This
trend accounts for the high steric hindrance of the four methyl
groups that force the two BODIPY sub-units to be almost
orthogonal to each other in both TMBDP and I2-TMBDP
dimers. This means that in these two molecules the electron
delocalization is practically precluded as also confirmed by the
shape of computed HOMO and LUMO orbitals, which shows a
lack of mixing between the two orthogonal π moieties. Similar
results were previously obtained, at CASSCF level of theory, for
the TMBDP-dimer [19].

The computed TDDFT excitation energies for singlet and
triplet states are collected in Table 2 together with the available
experimental and previous theoretical results. As a general trend,
we note that the TDDFTmethod underestimates the wavelengths
of the singlet excited states by about 80 nm. This behavior was
previously observed in other previous studies on BODIPY-like
systems [29–32]. In a recent work, Le Guennic et al. have
discussed the possible sources of this error and proposed a
correction based on coupled cluster computations [33]. The
agreement seems to be satisfactory for the T1 energies. In fact,
the available experimental transition energy value determined
for I3-TMBDP-dimer [16] is close to that obtained at TDDFT
level (1.59 vs. 1.50 eV). On the other hand, the S1 and T1

excitation values, computed at CASSCF level, for TMBDP-dimer,
are significantly overestimated with respect to the experimental
ones (see Table 2). From that table, one can readily see that
in proceeding from the monomeric to the dimeric systems,
the absorption wavelength is red-shifted. Also, the iodinated
compounds suffer a small red shift in comparison with the
analogs without iodine substituents. The S1 oscillator strength
in the monomeric systems assumes high values, while in the
dimeric structures, it seems to be almost silent. The electronic
structure of S1 was previously studied at both DFT [16] and
CASCF [19] levels. In the former study, a photo induced
electron transfer is suggested on the basis of the HOMO and
LUMO orbital composition of the S0 optimized ground state,
while in the latter study, S1 wave function is proposed to
derive by a double substitution and natural orbital occupation
numbers show four odd electrons in four similar orbitals. Our
computed S1 frontier orbital picture is very similar to that
reported by Zhang [16] for the ground state. Of course, we

TABLE 1 | Selected bond lengths [Å] and angles [deg] calculated at the
B3LYP/6-31G* level for the dimers studied.

Cmpd B-F B-N F-B-F F-B-N ψ

BDP-dimer 1.388 1.565 111.1 110.0 42.7

TMBDP-dimer 1.401 1.551 109.6 110.1 86.9

I3-TMBDP-dimer 1.394 1.563 110.2 109.9 75.3

Exp a (TMBDP-dimer) 1.422a 1.560a 111.3a 109.9a

aFrom Cakmak et al. [19].

cannot exclude that the higher level Interaction Configuration
computations might better characterize the electronic structure
of these systems. The lowest lying T1 excitations are due
to HOMO→ LUMO transitions in the monomeric systems
(BDP, TMBDP and I2- TMBDP) while, in the dimers, also
other Gouterman molecular orbital play an important role (see
Table 2).

TABLE 2 | Vertical excitation energies, 1E (eV), λmax (nm), oscillator strengths f
and main transitions for studied compounds computed in dichloromethane by
using B3LYP/6-31+G*.

Cmpd State 1E λ f Transitions λ exp

BDP S1 2.97 417 0.537 H→ L, 94%

T1 1.60 773 H→ L,100%

BDP-dimer S1 2.39 520 0.035 H→ L,92%

S2 2.65 467 0.743 H−1→ L,86%

T1 1.63 763 H−1→ L,40%

H→ L, 28%

H→ L+1, 23%

TMBDP S1 2.84 436 0.643 H→ L, 98% 507a

T1 1.48 836 H→ L,100%

TMBDP-
dimer

S1 2.38 520 0.002 H→ L, 99%

S2 2.53 491 0.006 H−1→ L+1, 97%

S3 2.82 440 0.813 H−1→ L,94% 511a/354b

T1 1.51 822 H→ L+1, 99% 689b

I2-TMBDP S1 2.67 464 0.636 H→ L, 98% 540a

T1 1.53 813 H→ L, 97%

I3-TMBDP-
dimer

S1 2.39 518 0.045 H→ L,77%

H→ L+1,22%

S2 2.40 516 0.168 H−1→ L,70%

H−1→ L+1,28%

S3 2.64 469 0.537 H→ L+1,72%

H→ L,20%

S4 2.73 454 0.668 H−1→ L+1,67% 538a

H−1→ L,25%

T1 1.50 828 H→ L, 53% 782a

H→ L+1, 43%

Experimental value is taken from Zhang [16]a, Cakmak et al. [19]b.

TABLE 3 | Spin–orbit matrix elements (cm−1) and singlet-triplet energy gaps (eV)
calculated at the B3LYP/6-31G(d) level of theory.

Cmpd
∣
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∣

〈

9S1

∣
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∣
Ĥso

∣

∣

∣
9T1

〉∣

∣

∣
1E S1-T1 Φ1

BDP 0.00 1.37

TMBDP 0.02 1.36 0.076

I2-TMBDP 9.44 1.14 0.960

BDP-dimer 1.08 0.76

TMBDP-dimer 0.45 0.87 0.450

I3-TMBDP-dimer 8.67 0.89 0.840

Singlet Oxygen quantum yields (Φ1) are taken from Zhang [16].
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FIGURE 1 | Molecular orbital composition for the excited states involved in the singlet and triplet excitation for TMBDP-dimer, I2-TMBDP, and I3-TMBDP-dimer
systems.
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FIGURE 2 | Computed SOCs (cm−1) for S1-T1 radiationless transitions and
measured Φ1 (from [16]) for the investigated systems.

As previously mentioned, an efficient PDT photosensitizer
must possess a1ES0−T1 energy gap higher than 0.98 eV to excite
the molecular oxygen from its ground to the highly cytotoxic
11g excited singlet state. All the studied molecules have energy
gaps sensibly higher than 0.98 eV and hence are in principle good
candidates as PDT drugs (see Table 2).

The computed spin-orbit coupling constants for the
transitions involving the S1 and the T1, together with the
corresponding singlet-triplet energy gaps and the available
singlet oxygen quantum yields (Φ1) are reported in Table 3. For

BDP and its tetrametilate analog (TMBDP), the
∣

∣
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spin orbit coupling matrix element has a negligible magnitude.
I In the corresponding dimeric form the coupling increases,
attaining a magnitude of about 1 cm−1. IIn the iodine containing
systems, the SOCs become 9.44 and 8.67 cm−1 for I2-TMBDP
and I3-TMBDP-dimer, respectively. The small variation of the
SOCs in proceeding from the monomeric (BDP, TMBDP) to
their respective dimeric forms (BDP-dimer, TMBDP-dimer),
is attributable to the slight variation of the molecular orbitals
involved in the transitions (see Figure 1). As in other systems
previously studied [34–41], the presence of the heavy atom
substantially increases the spin-orbit coupling matrix elements.
This is due to the so-called heavy atom effect. Looking at
the Figure 1, one can note that in the case of the compound
I2-TMBDP, the HOMO→ LUMO transition has a π-π nature,
while the one involved in T1 has a π-n nature since the LUMO
orbital is essentially composed by the iodine lone pairs. This is
in agreement with the El Sayed rules [42] for which spin-orbit
couplings increase if there is a change in the composition
of the molecular orbitals involved in a given transition. For
I3-TMBDP-dimer the situation is different since the excited
state T1 is due to two transitions: HOMO→ LUMO (53%)
and HOMO→ LUMO+1 (43%) (see Table 2). In the former
circumstance, HOMO and LUMO orbitals are localized each on
the BODIPY fragments and the resulting transition, thus, has a
π-π character (See Figure 2). Nevertheless, LUMO+ 1 is mainly
localized on the lone pairs of iodine atoms. Consequently, the

second transition is π-n in nature and, according to the El Sayed
rules, contributes to increasing the value of the relative SOC.

In order to verify whether our SOCs values agree with
the available experimental data, we have plotted (Figure 2) the
computed SOCs and the available experimental singlet oxygen
quantum yields [16]. Inspection of the Figure shows that the
correlation between the two set of data is quite good and the
behaviors are very similar. In fact, as the values of the spin-orbit
coupling constant increase, there is an increase in the production
of singlet oxygen. The only significant deviation was found for the
TMBDP-dimer, for which the calculated SOCs don’t follow the
same trend of the experimental singlet oxygen quantum yields.
Anyway, it is worth of note that, according to the Fermi Golden
Rule [43], the intersystem crossing kinetics is directly related to
the spin-orbit matrix elements but it also depends on the Franck–
Condon weighted density of states (FCWD), not considered in
our investigation. For the TMBDP-dimer, thus, we can speculate
that the missed FCWD could play a role in the determination of
the ISC kinetic constant.

According to the Kasha rule [44], the transition Si → S1 (with
i > 1) should be a very fast process, and triplet state population
should start from the lowest singlet exited state (S1). For those
systems for which different paths are possible, we can suggest the
most feasible ISC pathways for the population of the lowest triplet
states on the basis of the obtained SOC values. In all the examined
cases, the favored process implies the fast decay via IC in the low-
lying excited singlet state with subsequent ISC to the T1 triplet
states, as follows:

a)BDP, TMBDP, I2 − TMBDP : S0
A
→ S1

ISC
→ T1

b)BDP− dimer : S0
A
→ S2

ISC
→ T1; S0

A
→ S2

IC
→ S1

ISC
→ T1

c)TMBDP− dimer; I3 − TMBDP− dimer : S0
A
→ S3

IC
→ S2

IC
→

S1
ISC
→ T1; S0

A
→ S3

IC
→ S2

ISC
→ T1; S0

A
→ S3

ISC
→ T1

The fastest process occurs in iodinated systems for which high
SOC values were computed for the S1-T1 channel, which should
ensure an efficient S1-T1 intersystem crossing.

CONCLUSIONS

In this DFT-based investigation, the main photophysical
properties required to propose BODIPY dimers as possible
photosensitizers in photodynamic therapy were explored. On the
basis of our study, the following conclusions can be outlined:

- All the examined systems show absorption wavelengths that
fall in the lower part of the so-called therapeutic window
(500–600 nm).

- The spin-orbit coupling constants for BDP and TMBDP
dimeric compounds were found to be slightly higher than
those computed for their corresponding monomers. Their
magnitudes are close to that of FOSCAN R©, which is already
used in PDT medical protocols -The systems with the
largest SOC values are those containing iodine heavy atoms.
Because these structures possess a more efficient singlet-triplet
intersystem crossing, they are also expected to more efficiently
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produce the singlet O2 (11g) species, which is the main
cytotoxic agent in PDT based on type II reactions.

We hope that our investigation can stimulate further
experimental studies on these promising systems.
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