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Capon’s minimum variance projection for the multi-point measurements is revisited using

the method of likelihood function to derive the minimum variance projection and a

simplified error estimate analytically. Theoretical construction of the minimum variance

projection assumes a Gaussian form of the likelihood function and also regards the

data covariance as a proxy of the noise covariance. The minimum variance projection

is extended to the problem of two-spacecraft mode decomposition in the Mercury

magnetosphere in which the magnetic field is a superposition of the constant field from

the current sheet and the dipolar field from the planet. The extension of the Capon

estimator (the data-variance projection) can identify the signal amplitudes of the different

fields with a sufficient accuracy when the statistical averaging is properly done. The

Capon estimator serves as a powerful analysis tool when the spatial resolution is limited

to only a few points.

Keywords: adaptive filter theory, Capon estimator, multi-spacecraft data analysis, waves and turbulence, mode

decomposition

1. CAPON’S MINIMUM VARIANCE PROJECTION

Minimum variance projection introduced by Capon [1] has a wide range of applications in the
geophysical and space physical research fields whenever multi-point measurements are available.

Various formations are possible in the multi-point measurements (Figure 1): the THEMIS
mission in a one-dimensional array aligned with a magnetic field line [2], the Swarm mission
spanning a plane with three spacecraft [3, 4], and the Cluster mission [5] the MMS mission [6]
forming a tetrahedron.

The projection works with various kinds of shape vectors (or models for the data) byminimizing
the projection error without changing the amplitude of the signal amplitude. The minimum
variance projection is, after Capon [1] or Haykin [7], obtained by imposing a constrained
optimization:

minimize EwREw subject to EwEh = 1, (1)

or, by formulating into a variational problem using the variation operator δ[· · · ] and the Lagrangian
multiplier λ,

δ

[

EwREw− λ

(

EwEh− 1
)]

= 0. (2)

Here Ew is the weight vector operating on the measurement covariance matrix R = 〈EdEd〉, Ed the

measurement data in a vectorial form, 〈· · · 〉 the operation of ensemble averaging, Eh the shape
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vector. The problem (Equation 2) can analytically be solved.
The solution is, blue by treating the shape vector as a complex-
number vector,

Ew = R−1Eh
Eh†R−1Eh

. (3)

See, for example, Haykin [7] for the derivation. The projected
power (squared signal amplitude) is

P = Ew†REw =
[

Eh†R−1Eh
]−1

. (4)

A larger set of algorithms has so far been developed in the
frame of direction-of-arrival estimation in the adaptive filter
theory. Many algorithms are recently reviewed by Khmou
et al. [8], including beamforming method, Bartlett method,
Capon method, linear prediction method, maximum entropy
method, Pisarenko harmonic decomposition, minimum norm,
MUSIC algorithm, propagator method, and partial covariance
matrix method. In the multi-spacecraft wave-field analysis,
three methods are most relevant: beamforming method, Capon
method, and MSR method [9].

• The beamforming method can easily be implemented to
the data analysis, but on the other hand provides a lower
resolution of the signal-to-noise ratio in the spectral analysis
compared to the Capon method when only few data points are
used in the analysis [10, 11]

• The Capon method is versatile in the multi-spacecraft data
analysis because the method can be extended in various ways,
e.g., to the vectorial data set (the wave telescope technique)
[12, 13] to different field types (e.g., electric field and magnetic
field used in the k-filtering technique) [14], and to the mode
decomposition (this paper).

• The MSR method [11] uses both the Capon (or the wave
telescope) method and the eigenvector-based method (the
extended MUSIC algorithm), and provides an improved
signal-to-noise ratio in the wavevector spectrum. The MSR
method is optimized in the estimate of the total fluctuation
energy (i.e., trace of the spectral density matrix) but not to the
matrix elements. Also, the MSR method is constrained to the
isotropic noise assumption.

So far, three shape vectors for the Capon method have
successfully been applied to the multi-spacecraft data analysis
blue in the field of space physics

1. Plane waves [1, 12, 14]:

hi(kx, ky, kz) = exp
[

i
(

kxrxi + kyryi + kzrzi
)]

, (5)

where {kx, ky, kz} are the three components of the wavevectors,
{rxi, ryi, rzi} the spatial coordinates of the i-th sensor, and i the
imaginary number unit.

2. Spherical waves [15, 16]:

hi(k, rxc, ryc, rzc) =
[

n
∑

i=1

1

|Eri − Erc|2

]−1/2
exp

[

ik|Eri − Erc|
]

|Eri − Erc|
,

(6)

where k is the wavenumber, and Erc = [rxc, ryc, rzc] the
coordinate of the spherical wave center. The summation in the
normalization constant runs over the number of sensors n.

3. Phase-shifted waves [17]:

hi(8, rxc,1x, ky) = exp

[

i

(

8 arctan

(

rxi − rxc

1x

)

+ kyryi

)]

,

(7)
where 8 is the amount of phase jump, rxc the x-coordinate of
the phase jump center, 1x the x-width (or range in x) of the
phase jump around the center, and ky the y-component of the
wavenumber.

Capon’s minimum variance projection uses the measurement
data to guide the projection by minimizing the estimated power
during the projection (in spirit of minimizing uncertainty) yet
keeping the gain. We address the question here, “Why is the
inversion of the data covariance matrix R−1 used in the Capon
projection (Equation 3) and in the spectrum (Equation 4)?” In
this paper, we offer an answer to this question, that is, the Capon
method uses the measured data as a proxy of the noise property
upon the optimization procedure. The method of the likelihood
function is introduced to give an alternative and more instinctive
derivation of Capon’s method. Moreover, by revisiting Capon’s
minimum variance projection through the likelihood function
method, it becomes clear that one may project the measurement
data not only onto a single shape vector but also onto a multitude
of shape vectors, which will enhance the capability of the multi-
spacecraft data analysis.

It is worthwhile to note that the maximum likelihood and the
minimum variance aspects of the Capon estimator are already
covered in detail in the original paper by Capon et al. [18] for
a seismic array problem. In this paper, the essence of the Capon
estimator is reviewed (in section 2) and the estimator is extended
to the problem of mode decomposition. As an application, a
new method is constructed (in section 3) for two-spacecraft
measurements in the magnetosphere to identify the magnetic
field of the current sheet origin and the dipolar field from the
planet, which is relevant to the BepiColombo mission.

2. A VIEW FROM LIKELIHOOD FUNCTION

2.1. Scalar Field
Minimum variance projection can be formulated using the
likelihood function L as follows (see also [19]). Consider a model
for the observational data as

di = his+ ηi, (8)

where di is the data element at the i-th sensor (i = {1, 2, · · · , n},
so n is the number of sensors), hi the shape vector given a priori
as a model, s the signal (in which we are interested), and ηi the
noise at the i-th sensor. The noise is characterized by the n × n
noise matrix N

Nij = 〈ηiηj〉. (9)

Again, the angular bracket 〈· · · 〉 denotes the ensemble averaging
over different realizations. The averaging is important because
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FIGURE 1 | Multi-point spacecraft configurations.

FIGURE 2 | Likelihood function on linear and logarithmic scales. Likelihood

function is approximated to a Gaussian curve around the maximum (or the

minimum of χ2 = − lnL in the parameter space k.

otherwise the determinant of the matrix vanishes and the matrix
cannot be inverted.

We minimize the squared deviation between the model and
the data, i.e., we minimize χ2 constructed (Figure 2) because
of the steeper gradient toward the minimum (or the extremum)
than that of the Gaussian curve as follows,

χ2 =
〈

n
∑

j=1

n
∑

i=1

(di − his)N
−1
ij (dj − hjs)

〉

(10)

with respect to the signal s. We now assume a Gaussian shape for
the likelihood function,

L ∝ exp

[

−χ2

2

]

. (11)

The likelihood function L represents the probability of finding
the true signal value for s under the given data set di.

Our goal is to estimate the signal amplitude (denoted as s̃) for
the shape vector for the given data set by finding a maximum
of the likelihood function or equivalently by minimizing the
deviation χ2.

We differentiate χ2 with respect to the signal s,

∂χ2

∂s
= −2

〈

n
∑

i=1

n
∑

j=1

hiN
−1
ij

(

dj − hjs
)

〉

. (12)

Requiring that the derivative be zero (which corresponds to the
extremum), ∂(χ2)/∂s, we obtain

〈

n
∑

i=1

n
∑

j=1

hiN
−1
ij

(

dj − hjs
)

〉

= 0. (13)

Equation (13) can be arranged into the following form,

〈

n
∑

i=1

n
∑

j=1

hiN
−1
ij hjs

〉

=
〈

n
∑

i=1

n
∑

j=1

hiN
−1
ij dj

〉

. (14)

Note that the part in the angular bracket on the left hand side of
Equation (14) is already statistically evaluated, so one may leave
the angular bracket out in the following discussion. For a scalar
quantity of s, one may obtain the estimator s̃ as

s̃ =





n
∑

i=1

n
∑

j=1

hiN
−1
ij hj





−1
〈

n
∑

i=1

n
∑

j=1

hiN
−1
ij dj

〉

(15)

= CN

〈

n
∑

i=1

n
∑

j=1

hiN
−1
ij dj

〉

, (16)

where CN is the noise covariance,

CN =





n
∑

i=1

n
∑

j=1

hiN
−1
ij hj





−1

. (17)

Or, in a matrix notation,

s̃ = CN

〈

EhN−1Ed
〉

(18)

and

CN =
(

hN−1h
)−1

(19)

The signal covariance (or the optimized power estimate) is (by
noting that the ensemble averaging is taken after the covariance
calculation)

CR = 〈s̃s̃〉 (20)

=
〈

CN
EhN−1EdEd

(

N−1
) EhCN

〉

(21)

= CN
EhN−1

〈

EdEd
〉

(

N−1
) EhCN. (22)

In general, the data covariance matrix R = 〈EdEd〉 and the noise
covariance matrix N must be evaluated separately, or the noise
covariance matrix needs to be known a priori to determine the
signal covariance CS. Capon’s minimum variance projection is
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obtained by imposing (or using) the data covariancematrix as the
noise covariance matrix, N → R. An explicit calculation yields

CR = CN
EhR−1EhCN (23)

=
(

EhR−1Eh
)−1 EhR−1Eh

(

EhR−1Eh
)−1

(24)

=
(

EhR−1Eh
)−1

(25)

2.2. Vector Field
The method with the likelihood function can be extended to the
vector field treatment in a straightforward fashion. We construct
the data model as follows.

Ed = HEs+ η. (26)

The data are arranged into a long vector, Ed =
[dx1, dy1, dz1, dx2, dy2, dz2, · · · dzN]. The signal amplitude vector is
Es = [sx, sy, sz].H is the shape-and-pointing matrix.

H =



























hx1 0 0
0 hy1 0
0 0 hz1
hx2 0 0
0 hy2 0
0 0 hz2

...
0 0 hzN



























. (27)

η is the noise with the same construction as that of Ed (with
3 × n elements). The essential difference from the scalar-field
treatment is that the covariance becomes a matrix, e.g., CS = 〈EsEs〉
for the signal covariance matrix. Repeating the same procedure
(by taking care of the vector and matrix operations), the signal
estimator for them-th component (k = {x, y, z}) is obtained as

s̃k =
x,y,z
∑

ℓ

n
∑

i=1

n
∑

j=1

(CN)ℓkHiℓN
−1
ij dj, (28)

where the summation on ℓ runs over the x, y, and z components,
and that on i and j over the number of sensors. The signal
estimator is given in a matrix notation as

Ẽs = CN

〈

HN−1Ed
〉

(29)

The noise covariance matrix CN is given by

(

C−1
N

)

ℓk
=

n
∑

i=1

n
∑

j=1

HiℓN
−1
ij Hjk (30)

or, in a matrix notation,

CN =
[

HN−1H
]−1

. (31)

The signal covariance matrix, when using the data covariance
matrix again as the noise covariance matrix, is

C
(vec)
R = CNHN−1R

(

N−1
)t
HCN (32)

→
[

HR−1H
]−1

. (33)

2.3. Mode Decomposition
The minimum variance projection can be extended to multiple
shape vectors. By doing so, it is possible to decompose the
measurement data set into a spectrum of m different modes or
shapes. We construct a model for the measurement data (scalar
field) with a multitude of modes and a noise.

di =
m

∑

α=1

hα
i s

α + ηi, (34)

where di is the measured field at the i-th sensor,m the number of
the modes introduced into the model, Ehα = {Eh(1), Eh(2), · · · , Eh(m)}
is a set of shape vectors for modes α = {1, 2, · · · ,m}, the symbol
sα is the signal amplitude at each mode, and ni the noise at the
i-th sensor.

Derivation of the minimum variance estimator is essentially
the same as that for the single mode χ2 minimization. The
estimator for the signal amplitude at the α-th mode is obtained
as

s̃α =
〈

m
∑

β

n
∑

i=1

n
∑

j=1

(CN)αβ h
β
i N

−1
ij dj

〉

. (35)

The noise covariance matrix is a projection of the inverse noise
matrix N−1 onto different modes (hα and hβ ),

(

C−1
N

)αβ =
n

∑

i=1

n
∑

j=1

h
(α)
i N−1

ij h
β
j . (36)

The signal covariance matrix for the Capon-type projection is
obtained as

(C)αβ = CN
EhαN−1RN−1EhβCN (37)

→
[

EhαR−1Ehβ
]−1

. (38)

The diagonal elements in the signal covariance matrix are the
power (squared signal amplitude) of each mode.

2.4. Error Estimate
A useful form for the one-sigma error (68% confidence) for
the minimum variance estimator can be evaluated from the
likelihood function. Ideally, the inverse of the noise matrix N−1

must be known, but the error estimate requires the knowledge
on the noise property. Still, we obtain an insight by considering
a special case, that is, we model the noise matrix N as diagonal
with a value of each diagonal element CS+CN (which is a scalar).
The likelihood function for a simplified error estimate is again
modeled as Gaussian (see, e.g., Equation 11.21 in Dodelson [19]),

L ∝ 1

(CS + CN)n/2
exp

[

−1

2

〈
∑n

i=1(di − his)
2
〉

CS + CN

]

(39)
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One-sigma error is obtained as the second-order derivative of the
logarithm of the likelihood function (which is essentially χ2 in
the Gaussian likelihood model):

σS =
[

− ∂2

∂C2
S

(

lnL
)

]−1/2

(40)

=
√

2

n
(CS + CN) (41)

→

√

8C2
S

n
. (42)

Here Equation (40) is evaluated at the peak of the likelihood
function to obtain (Equation 41), and the signal covariance
CS is used as a proxy of the noise covariance CN for Capon’s
minimum variance projection in deriving (Equation 42). Thus,
the simplified error of the Capon-estimated signal power is σ 2 =
8C2

S/n. See Appendix for derivation of Equation (40).

3. APPLICATION

Mode decomposition using the minimum variance projection
serves as a powerful analysis tool when the measurements are
limited to only few spatial points. A test using a synthetic data set
is presented with two-spacecraft measurements in the Mercury
magnetosphere in view of the BepiColombo mission [20].

3.1. Setup
Magnetic fields are modeled as a superposition of two different
fields (or modes), B(a) and B(b) and noise η in the magnetosphere
at two sensor locations, r1 = 480 km (planetary orbiter) and
r2 = 590 km (magnetospheric orbiter) above surface (at a radius
of Rs = 2, 440 km for the planetary center). The measurement
data are thus

B(r1) = B(a)(r1)+ B(b)(r1)+ η1 (43)

B(r2) = B(a)(r2)+ B(b)(r2)+ η2, (44)

where the first mode is the magnetic field from the current sheet

B(a) = s(a) = const. (45)

and the second mode is the dipolar field from the planet

B(b) = s(b)
(

r

Rs

)−3

. (46)

Measurements are assumed to be on the magnetic equatorial
plane such that the magnetic fields have only one non-
vanishing component (say, the z component). The geometrical
configuration is illustrated in Figure 3. The true signal
amplitudes are s(a) = 20 nT and s(b) = 200 nT, respectively.
Noise is blue assumed to be Gaussian distributed with a standard
deviation of σn = 1 nT. The goal of the numerical test using the
synthetic data is to estimate the signal amplitudes for the two
modes, s̃(a) and s̃(b) using the noise-variance minimization and
the data-variance minimization.

FIGURE 3 | Superposition of a constant field from the current sheet (mode 1)

and a dipolar field from the planet (mode 2) in a region between the distance to

the current sheet (from the planetary center) Rc and the that to the planetary

surface Rs.

3.2. Analysis – Preparation
The shape vector for the first mode (a constant field) is

Eh1 =
[

1
1

]

(47)

and that for the second mode (decaying field) is

Eh2 =





(

r1
Rs

)−3

(

r2
Rs

)−3



 . (48)

The shape matrix is constructed as
[

Eh1Eh2
]

,

h =





1
(

r1
Rs

)−3

1
(

r2
Rs

)−3



 . (49)

The data matrices are averaged over different realizations or
samples,

R = 〈EdEd〉, (50)

using an averaging size of Ns. The measurement data vector is

averaged when using the minimum variance estimator as 〈Ed〉. We
study the minimum variance estimators for different sampling
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sizes Ns. The measurement noise matrix follows uncorrelated
Gaussian statistics,

N = 〈EηEη〉 =
[

σ 2
n 0
0 σ 2

n

]

. (51)

3.3. Analysis – Projection
The noise minimum variance estimator for each of the modes
α = {a, b} is

(

Ẽs(nv)
)

α
= (CN)αβ (h)βi

(

N−1
)

ij
〈Edj〉. (52)

The data minimum variance estimator for each of the modes
α = {a, b} is obtained by replacing the measurement noise

covariance N by the measurement data covariance R = 〈EdEd〉 and
also replacing the noise projection CN by the data projection CR

as
(

Ẽs(dv)
)

α
= (CR)αβ (h)βi

(

R−1
)

ij
〈Edj〉. (53)

The noise covariance matrix and the data covariance matrix are
essentially the Capon projection, namely,

CN =
[

hN−1h
]−1

(54)

CR =
[

hR−1h
]−1

. (55)

The noise minimum variance estimator needs the knowledge on
the noise property and does not require the measurement data
themselves. Therefore, the noise minimum variance estimator
can be applied without the presence of the data and may be
useful when planning a measurement of an experiment. For
an uncorrelated Gaussian noise statistics, the noise minimum
variance estimator computes the mode amplitude as a linear
combination. The data minimum variance estimator, in contrast,
requires the data but not the knowledge on the noise property.
Themode amplitude is computed in a non-linear fashion, i.e., the
measurement weight for each sensor is influenced by the data.

3.4. Results
Signal amplitudes for the two modes are obtained using the
noise variance projection (Equation 52) and the data variance
projection (Equation 52), and are graphically displayed as a
function of the averaging size (or the number of realizations or
samples) in Figures 4, 5 together with the one-sigma errors. The
both estimators can find the true signal amplitudes (20 nT for the
mode 1 and 200 nT for the mode 2) within the error bar, and
the analysis using a larger statistical sampling size is beneficial
in reducing the error. Yet, the accuracy is by far improved in
the data-variance projection. The error bar is about 10 nT for an
averaging size of 10–100 and becomes only a few nT or better
(cf. the noise amplitude is 1 nT) for an even larger averaging
size in the data-variance projection. The estimated amplitudes
sufficiently converge to the true values for averaging sizes above
10, too. In contrast, the noise-variance projection still exhibits
random deviations of the signal amplitudes from the true values
for a larger averaging size (for example, size of 1,000).

FIGURE 4 | Amplitudes for the mode 1 (constant field from the current sheet)

and the mode 2 (dipolar field at the planetary surface) estimated by the

noise-variance projection as a function of the averaging size.

FIGURE 5 | Amplitudes for the mode 1 and the mode 2 (the same format as

Figure 4) estimated by the data-variance projection.

4. OUTLOOK

Capon’s projection is a useful tool when the noise property is
unknown, and has a higher flexibility for various applications
and extensions compared to the beamforming or the MSR
methods. The extension of the minimum variance projection
onto a multitude of shape vectors in the data opens the door to a
decomposition method for the multi-point data. An application
is presented for a decomposition of the multi-point data into
a constant magnetic field and a dipolar field in view of the
Mercury magnetosphere. It is comforting that even two-point
measurements are capable of identifying the signal amplitudes
when a sufficient amount of data is obtained for the proper
averaging operation.

Another application is a decomposition into a set of
orthogonal function basis. Capon estimator and its extension
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to the mode decomposition can be applied to various wave
fields in the solar wind, the foreshock, the magnetosheath,
and the magnetotail regions as well as various static fields as
far as the spatial structure can be properly modeled (such as
the dayside magnetosphere as presented in this paper). For
example, the source locator uses the lowest-order spherical Bessel
function j0(x) = sin(x)/x and the lowest-order Neumann
function n0(x) = −j−1(x) = − cos(x)/x. The expansion into
a series of spherical Bessel functions or cylindrical functions
(presumably with a cutoff) is a possible application to the multi-
point measurements, e.g., identification or reconstruction of the
spherical propagation or the vortical shape or motion.

Capon’s minimum variance projection is not limited to
the search for wave propagations or mode decomposition
into different sources of the magnetic fields, but the
method can be applied to solitary, spatially-localized
structures. A useful example may be the KdV (Korteweg-
de Vries) soliton (or ion-acoustic solitons in the case

of plasmas) characterized by the following shape vector,
hi(A,D, c, x0) = Asech2

[

D(xi − ct + x0)
]

where c is the phase
speed of the propagation, A the amplitude, and D the width
of the soliton structure around the peak. The amplitude and
the width are determined by the phase speed. For ion-acoustic
solitons, the amplitude is given as A = 3c and the width
D = √

c/2 [21].
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APPENDIX: DERIVATIVE CALCULATION

Calculation for Equation 40 is as follows. The first-
order derivative of the Gaussian error likelihood function
(Equation 39) with respect to the variance CS is obtained:

∂L

∂CR
= n/2

(CR + CN)n/2−1
exp

[

−1

2

〈
∑n

i=1(di − his)
2
〉

CR + CN

]

+

1

2

1

(CR + CN)n/2

〈
∑n

i=1(di − his)
2
〉

(CR + CN)2
×

exp

[

−1

2

〈
∑n

i=1(di − his)
2
〉

CR + CN

]

(A1)

= L

[

− n

2(CR + CN)
+

〈
∑n

i=1(di − his)
2
〉

2(CR + CN)2

]

. (A2)

The second-order derivative of the logarithmic of the likelihood
function is:

∂2(lnL)

∂C2
R

= ∂

∂CR

[

1

L

∂L

∂CR

]

(A3)

= ∂

∂CR

[

−n/2

CR + CN
+ 1

2

〈
∑n

i=1(di − his)
2
〉

(CR + CN)2

]

(A4)

= n

2

1

(CR + CN)2
− n

(CR + CN)2
(A5)

= n

2

1

(CR + CN)2
. (A6)

Here the first-order derivative evaluated at the peak of the
likelihood function, ∂L/∂CR = 0, i.e.,

〈

n
∑

i=1

(di − his)
2

〉

= n(CR + CN) (A7)

is used in deriving Equation (A5). The one-sigma error
(Equation 40) is evaluated using Equation (A6).
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