
REVIEW
published: 11 February 2019

doi: 10.3389/fphy.2019.00011

Frontiers in Physics | www.frontiersin.org 1 February 2019 | Volume 7 | Article 11

Edited by:

Jorge Bernardino De La Serna,

United Kingdom Research and

Innovation, United Kingdom

Reviewed by:

Dylan Myers Owen,

King’s College London,

United Kingdom

Jesse Goyette,

University of New South Wales,

Australia

*Correspondence:

Florian Baumgart

baumgart@iap.tuwien.ac.at

Gerhard J. Schütz

schuetz@iap.tuwien.ac.at

Specialty section:

This article was submitted to

Biomedical Physics,

a section of the journal

Frontiers in Physics

Received: 29 September 2018

Accepted: 17 January 2019

Published: 11 February 2019

Citation:

Baumgart F, Schneider M and

Schütz GJ (2019) How T Cells Do the

“Search for the Needle in the

Haystack”. Front. Phys. 7:11.

doi: 10.3389/fphy.2019.00011

How T Cells Do the “Search for the
Needle in the Haystack”
Florian Baumgart*, Magdalena Schneider and Gerhard J. Schütz*

Institute of Applied Physics, TU Wien, Vienna, Austria

In the body, a T cell is confronted with millions of antigen-presenting cells (APCs) in the

search for potentially harmful antigen. To elicit an appropriate immune response, this

search has to be performed as fast and as precise as possible. These two requirements,

however, are at odds with each other: fast searches lack accuracy, whereas high fidelity

decisions are typically time-consuming. Here, we use the archetypical search for the

needle in the haystack as an analogy for the T cell’s search problem. We provide a

statistical framework to quantitatively estimate the constraints of search strategies for rare

instances. Particularly, we propose a solution for balancing the demand for high speed

with low error rates. It takes advantage of a two-phase search process, which combines

a first rapid scan with a second high-fidelity check. Finally, we provide arguments that

support a two-phase search model for identification of antigen-positive APCs by T cells.

Keywords: T cells, antigen-presenting cells, T cell antigen recognition, adaptive immune response, search for rare

events, error rates, data mining, information retrieval

INTRODUCTION

T cells have evolved to launch specific immune responses when they detect peptides derived from
potentially harmful intruders. Such peptides are displayed to T cells on the surface of antigen-
presenting cells (APCs) via the major histocompatibility complex (MHC) [1]. A particular cognate
peptide-loaded MHC (pMHC) might be present on only very few APCs out of tens of millions in
the whole body [2]; conversely only very few down to even single T cells specific for a particular
cognate antigen are present in an individual [3, 4]. T cells have thus the need (i) to detect very rare
instances against immense background, and (ii) to scan as many APCs as possible in a short time,
so that the immune system can react to the intruder as fast as possible.

In other words, T cells are challenged with the classical search problem of a rare event, often
referred to as the search for the needle in the haystack. What is more, they have to do their job fast
enough to avoid that potentially harmful intruders inflict significant damage on the body.

On the molecular level, a specific T cell receptor (TCR), which is expressed exclusively on
the surface of one particular T cell clone, has to bind a given pMHC in order to elicit a T cell
response. Binding is then translated into biochemical events in the T cells and eventually into an
immune response [1]. Notably, only a small fraction of pMHC molecules—as few as 1 to 5 single
molecules—on the surface of APCs actually contains peptides from dangerous intruders; the vast
majority of peptides—as many as 200,000 [5, 6]—stems from endogenous components that have
been captured and processed by APCs along with foreign ones. Identifying cognate antigen at high
fidelity hence imposes a huge challenge: if this process was performed at high speed, it could lead
to spurious decisions; on the other hand, if it was performed at high precision it would take a long
time.
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Here, we want to elaborate on some of the conceptual
constraints of this statistical search problem. We show that the
search for the needle in the haystack massively benefits from a
two-phase search approach, which combines a first rapid scan
with a second high-fidelity check. This sheds some light on why
certain observed features of the T cell’s search for antigen might
have evolved in particular ways.

FORMULATING THE STOCHASTIC
PROBLEM

In analogy to the search for the needle in the haystack, let us
suppose a barn full of hay, and the task is to find the proverbial
needle. People may come up with different strategies to perform
this search: on one end of the spectrum, there are the structured
personalities, who start on one corner and search their way
through the whole haystack; on the other end, we have the
intuitive searchers who randomly start somewhere, without any
clear search strategy. But is there an optimum search strategy?
This depends on (i) the search question, (ii) the cost function,
and (iii) whether there is prior information available, e.g., on the
position of the needle.

i) The search question

Before starting the search, the underlying search question has to
be specified. As a matter of fact, there is a variety of questions
which may be asked in the context of the needle in the haystack
problem. Examples include:

• Is there a needle in the haystack?
• How many needles are in the haystack?
• Is there a specific spatial arrangement of needles within the

haystack?

The type of question affects the search strategy: for example, it
does not make sense to continue the search after finding the
needle, if the first question should be answered. In case of T cell
activation, we are just beginning to understand how to phrase
the search question: while it is undoubted that T cells integrate
signals over time and modulate their response accordingly, the
underlying mechanisms are not well-understood [7]. Also the
recruitment of APCs into the lymph node [8] as well as potential
clustering of pMHC at the cell surface [9] will affect a T cell’s
search process. In this paper, we restrict ourselves to the analysis
of the question about the presence of APCs presenting cognate
antigen.

ii) The cost function

Optimization problems can be reduced to the task of minimizing
or maximizing the cost function. In our case, there is a variety of
cost functions which may be considered:

• The total search time
• The rate of false positives or false negatives
• The precision of the counting result

The search problem gets more complicated, if two or more
cost functions should be optimized at the same time. In such a

multi-objective optimization problem, there is typically no single
solution that simultaneously optimizes all cost functions. In other
words, the different cost functions may be conflicting. In many
cases, however, it is not important to find the global minima of all
cost functions; a value below a certain thresholdmay be sufficient.
This multi-objective optimization problem becomes important
below, where we discuss the T cell’s challenge to harmonize
the conflicting needs for both specific and fast identification of
antigen.

iii) Additional information

Prior information helps to focus a search. For example, we may
ask the owner of the barn about the number of needles in
the haystack, their position, how they are spatially distributed,
etc. Also during the search, we may learn more about the
organization of the haystack, which allows for updating the
prior information and modify our search strategy accordingly.
Finally, it could be the case that—during our search—additional
needles are thrown into the haystack, making the problem

FIGURE 1 | The needle in the haystack problem. Terms and statistical

concepts referred to in the text are shown for the hypothetical search of the

needle in the haystack (Left) and for the search of a T cell for cognate antigen

on APCs (Right).
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TABLE 1 | Statistical parameters.

GENERAL PARAMETERS

p… probability of an individual haybale to contain a needle (i.e., to be a relevant instance)

n…number of checked haybales

k…number of detected relevant instances

PROBABILITY FOR A SINGLE HAYBALE TO CONTAIN A NEEDLE

p =
M
N

The probability of an individual haybale to be a relevant instance is given by the number of bales M that contain a needle divided by

the total number of bales N.

GLOBAL AND LOCAL TRUE POSITIVE RATES (TPR, tpr)

TPR =
TP
Rel. =

TP
TP+FN

The global true positive rate (TPR) is the probability of correctly identifying a haystack that contains a needle as a relevant case. It is

given by the number of true positives (TP) divided by the number of all relevant instances, which is equal to the sum of true positives

and false negatives (TP+ FN).

tpr =
tp
rel. =

tp
tp+fn

The local true positive rate (tpr) is the probability of correctly identifying an individual haybale containing a needle as a relevant case. It

is calculated analogously to TPR.

GLOBAL AND LOCAL FALSE POSITIVE RATES (FPR, fpr)

FPR =
FP
Irr. =

FP
TN+FP

The global false positive rate (FPR) is the probability of incorrectly classifying a haystack that does not contain any needle as a

relevant case. It is given by the number of false positives (FP) divided by the number of all irrelevant instances, which is equal to the

sum of true negatives and false positives (TN + FP).

fpr =
fp
irr. =

fp
tn+fp

The local false positive rate (fpr) is the probability of incorrectly classifying an individual haybale that does not contain any needle as a

relevant case. It is calculated analogously to FPR.

GLOBAL AND LOCAL TRUE NEGATIVE RATES (TNR, tnr)

TNR =
TN
Irr. =

TN
TN+FP

The global true negative rate (TNR) is the probability of correctly identifying a haystack that contains no needle as an irrelevant case. It

is given by the number of true negatives (TN) divided by the number of all irrelevant instances, which is equal to the sum of true

negatives and false positives (TN + FP).

tnr = tn
irr. =

tn
tn+fp

The local true negative rate (tnr) is the probability of correctly identifying an individual haybale containing no needle as an irrelevant

case. It is calculated analogously to TPR.

GLOBAL AND LOCAL FALSE NEGATIVE RATES (FNR, fnr)

FNR =
FN
Rel. =

FN
FN+TP

The global false negative rate (FNR) is the probability of incorrectly classifying a haystack that contains a needle as an irrelevant case.

It is given by the number of false negatives (FN) divided by the number of all relevant instances, which is equal to the sum of false

negatives and true positives (FN + TP).

fnr = fn
rel. =

fn
fn+tp

The local false positive rate (fpr) is the probability of incorrectly classifying an individual haybale that contains a needle as an irrelevant

case. It is calculated analogously to FPR.

dynamic. For the T cells’ search problem, priors such as co-
stimulating and co-inhibiting signals [10], or cytokines [11]
convey additional information about the nature of potential
antigens. This modulates the functional outcome of TCR
signaling. In addition, the architecture of lymph nodes and T
cell migratory patterns have evolved in a way that maximizes
the chances of antigen encounter [4, 12]. Despite their
importance in the real live scenario, we will neglect such
priors in our discussion, as they would further complicate
the line of argumentation without affecting the principal
arguments.

DIFFERENT SEARCH PROBLEMS

Following our analogy further, the T cell would correspond to
the person, who is searching for the needle—i.e., the cognate
antigen—and all APCs together make up the haystack; the body
corresponds to the barn (Figure 1). As APCs are separate entities,
however, we can modify our search problem by splitting the
haystack into smaller haybales, each corresponding to a single
APC. The task is now tomove through the barn, and to test—bale
by bale—whether it contains a needle. The average probability

of finding an APC bearing agonist pMHC is given by p =
M
N ,

with M the number of APCs bearing agonist pMHC and N the
total number of APCs. It should be mentioned here that different
mechanisms exist that direct T cells and APCs to lymph nodes
during infections [4]; i.e., T cells in lymph nodes have to deal
only with a subsample of all APCs in the body. However, since T
cells roam multiple lymph nodes during their search for antigen
and still interact with a great number of APCs, our assumption
appears realistic.

In the following, we formulate a statistical approach to solve
the search for the needle in the haystack. In the main text we
confine ourselves to a discussion of the main results; derivations
of the formulas are provided as Supplementary Information.
During the text, we introduce statistical parameters that are
important to quantify the different problems (see Table 1 for an
overview). We call a “relevant instance” a scenario which would
be detected by an ideal test, and “irrelevant instances” all other
cases. Depending on the task, a single haybale—but also the
whole haystack—carrying a needle could be a relevant instance.

Let us consider the search question, whether the barn contains
haybales with needles. Let the null hypothesis be that there are
no haybales with needles; this null hypothesis shall be tested.
A straight-forward approach would be an unbiased random
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search, in which the haybales are classified as needle-positive or
-negative. The procedure is stopped after n haybales; if we find
k ≥ 1 relevant instances, we reject the null hypothesis, otherwise
we keep it.

In order to provide statistically quantifiable arguments,
multiple search experiments of this kind shall be performed:
we assume many (ideally infinite amounts of) haystacks, some
containing haybales with needles, others do not; this experiment
allows to determine the four key figures of merit (Figure 1):

• True positives (TP): relevant instances that were correctly
detected

• False negatives (FN): relevant instances that were erroneously
rejected

• False positives (FP): irrelevant instances that were erroneously
detected

• True negatives (TN): irrelevant instances that were correctly
rejected

Since no errors for the classification step of single haybales were
included up to now, this approach cannot yield any false positive
results: if there are no needles, no needles will be detected. In
contrast, wemightmiss haybales containing needles, in particular
if they are rare and we do not search long enough. An appropriate
measure of the search fidelity is the true positive rate (TPR),
also called sensitivity or recall. Maximizing TPR is equivalent
to minimizing false negatives, with maximum sensitivity being
given by zero false negatives. In other words, at maximum TPR
we will find the needle without doubt.

In Figure 2 we show the true positive rate as a function of
the number of checked haybales, n, for different values of the
probability of finding a relevant instance, p. We neglected here
correlations between the haybales, which allowed us to assume
a Binomial distribution of events. Naturally, TPR increases with
increasing n. Detection becomes unlikely for p≪1, in which case
we can approximate TPR ≈ n ·p. In other words, for rare relevant
instances one needs more checks n, and—hence—longer time for
the overall search to reach a similar value of the TPR.

Up to now the search problem was unrealistically simple:
difficulties arising from the classification of each haybale were not
considered so far. In our T cell activation scenario, however, it
may well occur that a T cell erroneously classifies irrelevant APCs
as relevant or vice versa. To consider such local mistakes, the
model gets slightly more complicated: every haybale itself may
belong to the group of true positives (it contains a needle, and was
correctly detected), false negatives (it contains a needle, but was
erroneously rejected), false positives (it does not contain a needle,
but was erroneously detected), and true negatives (it does not
contain a needle and was correctly rejected). To avoid confusion,
we denote with upper case letters the figures of merit of the global
search problem (the haystack), with lower case letters the figures
of merit of the local search problem (the haybales).

Let us consider the situation, where there are needles present
in the haystack. A true positive result of the global search problem
is defined as the correct identification of such a haystack, and
the true positive rate as the probability to correctly detect such
haystacks as being relevant (i.e., containing needles). We can
improve the global TPR by increasing the number of local true

FIGURE 2 | True positive rate (TPR) for one-phase search strategy assuming

no errors in the classification of individual haybales. The global true positive

rate (TPR) of the search problem as a function of the number of examined

haybales for different values of p is shown (see Equation 2 of

Supplementary Information). p is the fraction of relevant instances present

in the haystack.

positives: high numbers of haybales containing needles, and a
high yield of correctly detecting them would suffice. On the
other hand, however, we can also improve the global TPR by
increasing local false positives: the more erroneous detections
of needles, the more likely is a positive result of the global
search. Let us look at this seemingly contradictory statement
in more detail: Apparently, TPR is not the only parameter,
which has to be considered when assessing the quality of our
search process. For illustrating the diagnostic properties of a
binary classifier system, statistics often uses receiver operating
characteristic (ROC) curves. For this, a second figure of merit,
the false positive rate, is calculated. It captures the likelihood of
a global positive detection for the irrelevant case (no needles in
the haystack). The idea of a good classifier system is achieving
reasonably high TPR, while keeping FPR reasonably low.

In a ROC plot, TPR is plotted vs. FPR for various parameters
of the test. In principle, if a test has no discriminative
power, the curve follows the diagonal (also called the line
of no discrimination). The better the test gets, the further
the points locate in the upper half of the plot, with the
point (TPR = 1, FPR = 0) representing perfect classification. In
contrast, points below the diagonal correspond to classifications
worse than random. The ROC curve for our problem is shown
in Figure 3A, where we used the number of checked haybales
n as parameter. Curves are shown for p = 10−4 and various
values of the local false positive rate fpr. For fpr = 10−4 the
classifier is doing reasonably well, with all data being above the
diagonal (blue line). If the local false positive rate is increased,
the performance of the classifier declines and the test loses its
discriminative power (red line). In contrast, the test performs
better when fpr is further reduced. Ultimately, if there were no
local false assignments at all (fpr = 0), the curve would follow
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FIGURE 3 | One-phase search strategy, considering errors in classification of individual haybales. (A) Receiver operating characteristic (ROC) curve showing the

global true positive rate TPR as a function of the global false positive rate FPR (see Equations 5 and 8 of Supplementary Information). Curves were calculated for

p = 10−4 and various values of local false positive rates fpr by varying the parameter n (the number of checked haybales). The line of no discrimination, i.e., where the

test has no discriminative power, is shown as dashed gray line. (B) Global true or false positive rates as a function of search time T (see Equation 16

of Supplementary Information, 1t = 1) are shown for various values of local false positive rates fpr. Global true positive rates (TPR) are shown as solid lines, global

false positive rates (FPR) as dotted lines.

the y-axis, which would be identical to the case discussed above
in the context of Figure 2.

Taken together, an appropriate search strategy keeps the local
false positive rates low while checking as many haybales as
possible. While this strategy appears reasonable, it is not realistic.
High global true positive rates do not come for free: we need a
considerable number of tested haybales n and hence a rather long
overall search time to achieve an appropriate TPR. Even more so,
keeping fpr low is not simple in practice: too fast local searches
will likely increase fpr.

In the final step of our statistical model, we will now include
the search time in our considerations. For the sake of simplicity,
let us assume that the time for testing a single haybale scales
with fpr−1. This reflects the idea that more time allows for
more TCR-pMHC encounters, which improves the fidelity of the
decision. Hence, the total time for testing n haybales is given by
T = n · 1t/fpr, where 1t denotes the time needed to check
a single haybale. Figure 3B shows the resulting global true and
false positive rates as a function of time T for different values of
the local fpr. On the one extreme, for fpr = 10−3 (red curve)
the TPR rapidly approaches 1, however, there is no discriminative
power against FPR. In other words, the test cannot discriminate
between true and false positive events and is therefore useless.
On the other end of the spectrum, for fpr = 10−5 (green curves)
discrimination works very well. However, we need more than 5
orders of magnitude longer to achieve the same TPR.

From these considerations, it becomes apparent that in case

of extremely low relevant instances, a two-phase search strategy

could make sense (Figure 4). In a first quick test phase, TPR
is optimized without investing time to keep fpr low. In our

picture, n1 haybales are first superficially screened; the negatives

are disregarded, whereas the positives are kept for a second phase,
in which the hits of the first phase are scrutinized. The first phase,

hence, contains all instances, the second phase only the positives
of the first phase.

The huge difference to the situation before, however, is the
altered total time required for coming up with a decision. The
duration of the first phase is calculated in the same way as before,
T1 = n1 · 1t/fpr1, however, it is performed now at much
higher false positive rate and hence carried out much faster.
For phase 2, more time has to be invested for keeping the false
positive rate low, however, only the positives of phase 1 have to
be considered. The two-phase search approach is thus massively
faster than the one phase search approach, if we compare the
time required for achieving the same figures of merit for TPR
and FPR (Figure 5). As an example, we compared the search
times of the one-phase and two-phase approaches using the
parameters p = 10−4, fpr1 = 10−2, and fpr2 = 10−4 (two-
phase approach), which corresponds to fpr = fpr1 · fpr2 =

10−6 for the one-phase approach. The time improvement is
an impressive factor of ∼5,000 (see Equations 22 and 23 of
Supplementary Information).

Note that one can further improve the speed of the search
by stopping, whenever a relevant case was detected in phase
1, and immediately proceed with phase 2. If phase 2 does not
confirm the result of phase 1, one continues with phase 1 on the
next haybale. While this analogy is closer to the real situation
a T cell experiences, there is no substantial difference in the
argumentation: The two-phase approach still outperforms the
one-phase approach by orders of magnitude.

FINDING COGNATE ANTIGENS ON APCs
INSTEAD OF NEEDLES IN HAYSTACKS

Let us now put our calculations into context with what we
know from experiments on the search of T cells for antigen
presented by APCs. A human body carries approximately 50
million dendritic cells [2], of which around 103 to 105 accumulate
per lymph node upon infection [13]. On the other hand, a given
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FIGURE 4 | Model of a two-phase search strategy. In a fast first scan (phase

1), candidate haybales are classified as positives (green boxes) or negatives

(red boxes). Negatives are discarded and positives are re-evaluated in phase

2. Note the substantial number of false positives after phase 1. However, since

much fewer candidates have to be scanned during phase 2, it is possible to

conduct a more precise yet still time-efficient scan in phase 2.

T cell is specific for only one antigen-bearing APC out of ∼105-
106 [12]. Together, there is a need to identify approximately one
relevant APC out of 104, as we assumed in our calculations by
setting p = 10−4. Also our assumption of a random search
appears justified, as T cell migratory behavior within lymph
nodes is essentially random [14].

In the lymph node, the typical dwell time of a T cell on a
dendritic cell is on the order of 1min, if no cognate antigen
is presented on a dendritic cell [15, 16]. In our terminology,
this would correspond to phase 1, where TPR is maximized and
fpr is neglected. This process can be achieved at rather high
speeds. In practice, for a single T cell-APC encounter we should
consider three contributions to this time: (i) the time needed
for the T cell to move to the next dendritic cell, which is less
than a second [17] and can hence be neglected here. (ii) The
time for the TCR to encounter cognate pMHC, which can be of
the order of seconds to minutes, depending on TCR and pMHC
concentrations and diffusion coefficients. Note that the average
encounter time is lowest for purely random TCR distributions.
(iii) The time required for reaching a preliminary decision during
phase 1. In the model formulation, we assumed this time to be
given by 1t/fpr1.

It is interesting to discuss which approach is used by T
cells to make the initial search (phase 1 in our model) most
efficient and fast. A number of models are currently discussed,
which address how T cells come up with a first decision during
phase 1: they include cooperative effects [18, 19], conformational
changes of TCR subunits [20, 21], kinetic segregation of the
phosphatase CD45 [22, 23], kinetic proofreading [24, 25], and
pulling forces [26–28]. In addition, the Krummel lab recently
proposed that microvilli on the T cell palpate an APC in search
of cognate pMHC [15]. The dynamic nature of these microvilli
would facilitate 98% coverage of the APC surface within 1min.
Such a palpating search strategy would be beneficial if pMHC
was quite immobile. Of course, the spatial distribution of the

FIGURE 5 | Time comparison of one-phase and two-phase search strategy.

True positive rate (TPR, solid line) or false positive rate (FPR, dotted line) for

one-phase and two-phase search strategy as a function of the search time T

(see Equations 16 and 21 of the one-phase and two-phase search,

respectively; 1t = 1). Curves were calculated for p = 10−4, local false positive

rates were set to fpr1 = 10−2 and fpr2 = 10−4 for the two-phase search and

fpr = fpr1 · fpr2 = 10−6 for the one-phase search, yielding the same figures of

merit for TPR and FPR. For the calculation of the total search time T we set

1t = 1. Clearly, less time is needed in case of the two-phase search for the

same level of discrimination between TPR and FPR.

TCR also plays an important role in making phase 1 as fast as
possible. It was hypothesized for some time that the TCR could be
organized in nanoscopic clusters in resting T cells [29–32]. This
would lead to cooperativity between TCRs upon ligand binding
and/or enhanced rebinding of cognate pMHC within a cluster.
However, such a clustered organization would decrease the on-
rate of TCR to cognate pMHC and hence the speed to find
potentially harmful antigen. Clustering of the TCR is therefore
unexpected considering that fast scanning of an APC is one of
the main tasks of a T cell. In this respect, we recently provided
evidence that the TCR is essentially distributed as monomers
and at random on the plasma membrane of T cells interacting
withmodel surfaces [33, 34]. Such a configuration would increase
the probability and speed to find cognate pMHC on APCs and
thus enhance phase 1. TCR enrichment at the tips of microvilli
as the sites of first contact with APCs would further improve
recognition at the onset of synapse formation [35].

One of the remaining questions is how phase 2, i.e.,
scrutinizing the first decision, is brought about. As soon as the
T cell discovers cognate antigen on a dendritic cell, massive
rearrangements of the surface molecules take place, leading
to the formation of the immunological synapse [36], and
the cell to cell contact becomes prolonged to hours [37–39].
According to our terminology, we have now entered phase 2:
The T cell has encountered antigen of interest, which shall be
further scrutinized. Microclusters containing TCR and signaling
molecules are formed now [40, 41], which are believed to
constitute the basic signaling unit in T cells [42]. They are
densely packed with a diverse set of proteins, including, besides
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the TCR, Lck, the costimulatory molecule CD28, and ZAP-70.
According to our model, T cells may occasionally enter phase
2 erroneously after classifying APCs as positive, although they
actually lack cognate antigenic peptide; in other words, we would
expect non-zero false positive rates. Recent literature indicates
that such scenarios indeed happen: TCR microcluster formation
was also observed under non-activating conditions [43], and
premature interruption of the T cell-APC contact might lead to
reversal and/or alteration of T cell commitment to differentiation
[7, 44, 45]. Notably, parts of these processes likely start already
during phase 1 and acquire additional fidelity via multiple rounds
of checks and rechecks during phase 2.

Taken together, considering both the principal search
requirements and experimental data it appears likely that T
cells do not do the search for the needle in the haystack in a
single phase, but rather in several phases. One consequence of
our model is the occurrence of false positive classifications at
early stages of T cell signaling, which do not progress to full
activation. In principle, this could be tested experimentally in
single-T cell activation measurements, where T cells are allowed
to screen mixtures of APCs with very few relevant and a huge
excess of irrelevant APCs. The idea would be to compare the
read-out of proximal T cell signaling such as phosphorylated
ITAMs (e.g., via quantifying ZAP-70 recruitment to the plasma
membrane), TCR or LATmicrocluster formation or the presence
of Ca2+ signals with later signaling events such as transcription
factor translocation, cytokine production (e.g. IL-2) [39] and
the expression of CD69 [46] or CD25 [47]. According to our
model, we would expect T cells to react occasionally with the
onset of proximal signaling events, even if an irrelevant APC

was contacted. This would allow to determine the local true and
false positive rates of the first phase, tpr1 and fpr1. The global
true and false positive rates TPR and FPR could be determined
from the late activation markers. If our proposed model was
correct, improved ROC plots for the global rates compared to
the local rates should be obtained; particularly, we would expect
FPR ≪ fpr1. In conclusion, the proposed two-phase search
approach offers a plausible framework to conceptualize the search
for antigen by T cells. Experiments such as the one described
above should provide the means to test the proposed hypothesis
and possibly help to understand the molecular mechanisms
underlying the T cell’s search problem.
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