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Chimeras and branching are two archetypical complex phenomena that appear in

many physical systems; because of their different intrinsic dynamics, they delineate

opposite non-trivial limits in the complexity of wave motion and present severe

challenges in predicting chaotic and singular behavior in extended physical systems.

We report on the long-term forecasting capability of Long Short-Term Memory (LSTM)

and reservoir computing (RC) recurrent neural networks, when they are applied to

the spatiotemporal evolution of turbulent chimeras in simulated arrays of coupled

superconducting quantum interference devices (SQUIDs) or lasers, and branching in

the electronic flow of two-dimensional graphene with random potential. We propose

a new method in which we assign one LSTM network to each system node except

for “observer” nodes which provide continual “ground truth” measurements as input;

we refer to this method as “Observer LSTM” (OLSTM). We demonstrate that even

a small number of observers greatly improves the data-driven (model-free) long-term

forecasting capability of the LSTM networks and provide the framework for a consistent

comparison between the RC and LSTM methods. We find that RC requires smaller

training datasets than OLSTMs, but the latter require fewer observers. Both methods

are benchmarked against Feed-Forward neural networks (FNNs), also trained to make

predictions with observers (OFNNs).

Keywords: prediction, machine learning, chimera state, graphene, long short-term memory, reservoir computing,

branched flow

INTRODUCTION

Predicting the state of complex, non-linear dynamical systems as a function of time is an
important problem of great practical utility. Recent advances of artificial neural networks and
machine learning (ML) methods have made possible significant applications in science, industry,
and technology [1–15], with reliable prediction comprising one of the most promising areas
of research. In this report, we investigate the long-term forecasting capability of two widely
used ML methods, the Long Short-Term Memory (LSTM) and the reservoir-computing (RC)
recurrent neural network architectures, to predict the spatiotemporal evolution of two distinct
complex dynamical phenomena: (i) multi-clustered turbulent chimera states, that is collective,
self-organized patterns of coexisting coherence and incoherence in coupled oscillators systems;
and (ii) the onset of branching singularities in electronic flow in two dimensional disordered
materials. These two phenomena represent opposite ends in complex spatiotemporal evolution
with chimeras relating to dynamic self-organization and branching relating to the stochastic onset
of singular motion.
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LSTM networks [4] have proven to be successful in predicting
sequence-involving tasks such as speech recognition [5], machine
translation [6], and human dynamics [7] among others. While
they have the ability to learn and reproduce long, isolated
sequences, they do not seem to provide robust predictions in
complex physical systems that involve chaotic behavior or to
capture dependencies between multiple correlated sequences
[8–14]; in many cases they are outperformed by simpler
methods, such as residual multilayer perceptrons [8], while in
other cases their predictions diverge [10, 14]. Recently, hybrid
LSTM models have been proposed to improve forecasting in
applications ranging from chaotic systems [8–10], to pedestrian
trajectories [11], particle tracking in high-energy physics [12],
and anomaly detection in the post-mortem time series of
superconducting magnets [13]. For example, in the method
of predicting human trajectories by “social LSTMs” [14], one
LSTM network is assigned to each pedestrian, but in order to
improve the prediction, each LSTM network is not independent
of all other LSTMs, but are connected to those corresponding to
nearby pedestrians’ sequences by the introduction of a “social”
pooling layer which allows the LSTMs of spatially proximal
sequences to share their hidden-states with each other. In
another approach, aiming at improving the forecasting of higher-
dimensional chaotic systems, a hybrid architecture extends the
global LSTM applied to the system with a mean stochastic model
(MSM-LSTM) in order to ensure convergence to the invariant
measure [10].

Reservoir computing (RC), first proposed by Jaeger and Haas
[15], comprises a linear input layer, a recurrent non-linear
reservoir network and a linear output layer. This approach
has recently been applied to inference problems in chaotic
systems [1, 16, 17]. Specifically, “observers” trained by RC (the
reservoir observers), provide continual “ground truth” system
state measurements as input to the prediction method, deducing
the state of the chaotic dynamical system as a function of
time from the limited number of the concurrent system state
measurements. At each time step, RC estimates the desired
unmeasured variables from the measured variables and predicts
the evolution the physical system. Lu et al. [3] have recently
demonstrated the effectiveness of the method by applying it to
the Rössler system, the Lorenz system, and the spatiotemporally
chaotic Kuramoto–Sivashinsky equation, carefully pointing out
that the method addresses the inference of unmeasured state
variables rather than their prediction.

INTRODUCING A NEW METHOD:
“OBSERVER LSTM” (OLSTM)

LSTM networks have proven successful in learning and
generalizing sequential tasks from isolated sequences, such as
handwriting and speech. Inspired by this success, we first
considered a model with a single LSTM network assigned to
each system node, which is independent of all other LSTMs.
The prediction error for this approach turned out to be very
large. This is not surprising since chimera states are collective
phenomena and the simplistic use of one LSTM network per
node, independent of all others, does not capture well the

interaction between the nodes; the sequences of different nodes
are not isolated but correlated.

In order to address the independent LSTMs’ limited ability
to capture dependencies between multiple correlated sequences,
we propose and demonstrate a new method, which we call
“Observer LSTM (OLSTM),” based on the extension of the notion
of “reservoir observers” to the LSTM networks. In the OLSTM
method, we assign one LSTM to each (non-observer) system
node but also assign “observer” status to certain system nodes
(“LSTM observers,” taken at equidistant positions for simplicity)
which provide continual “ground truth” measurements as input
to the prediction method. We demonstrate that their presence
even in small numbers (of order <10% of the total number of
nodes) greatly improves the long-term data-driven forecasting
capability of the LSTM networks and provides the framework for
a consistent comparison between the RC and LSTMmethods.

Time-series data are used to train each network while no
knowledge of the underlying system equations is required. Each
individual LSTM network is trained by taking as input a number
of past values (denoted as Np) for the node at hand, plus the
ground-truth values provided by all observers. Thus, the OLSTM
method generates a generalized sequence, which combines theNp

past values and the time-varying systemic interaction. Using the
trained networks, long-term predictions are made by iteratively
predicting one step forward for each node, using as input the
node’s previous values and the values provided by the relatively
very small number of observers.

We study the networks’ long term forecasting capability as
a function of the number of observers and as a function of
training-set size, and we compare the OLSTM performance with
that of “reservoir observers” trained by RC, which utilizes a
single (“global”) network for the entire system. We benchmark
both methods against a standard Feed-Forward neural network
(FNN) method, with the same number of observers (OFNN). We
compare quantitatively the networks’ performance by calculating
the normalized root mean square error (RMSE) at each time
step, for all system nodes, over the predicted time steps, as in
[3], Equation (22), without counting observer nodes and training
time steps, since they do not contribute to the prediction error.

RESULTS AND DISCUSSION

We structure our study of predicting complex dynamics in
extended physical systems with ML approaches in two parts:
the first part concerns chimeras and the second concerns
branching in flows. Together, these two cases capture extremes
of complex spatiotemporal behavior that severely challenge any
method aspiring to predict the long-term behavior. Chimera
states challenge the ML methods to predict partial, self organized
coherence while the stochastic onset of branching challenges the
ML methods to predict stochastic yet singular events.

Predicting Turbulent Chimeras in
Coupled Arrays
Chimera states are collective, self-organized patterns of
coexisting coherence, and incoherence in coupled oscillator
systems. Following the first discovery of chimeras for
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symmetrically coupled Kuramoto identical oscillators in
2002 [18], this counterintuitive symmetry breaking of partially
coherent and partially incoherent behavior has received
enormous attention. Many recent theoretical works have focused
on the study of chimera states in a variety of physical systems
such as superconducting metamaterials [19–21] quantum
systems [22], and laser arrays [23, 24], to mention only a few.
Chimeras have also been studied in models addressing neuron
dynamics in hierarchical and modular networks [25, 26]. It
has been suggested that chimera states may be related the
phenomenon of unihemispheric sleep observed in mammals and
birds [27], epileptic seizures [28], and blackouts in power-grids
[29]. For finite systems, chimera states are known to be chaotic
transients [30], can be stabilized by various newly developed
control schemes [31–33]. Following the theoretical predictions,
chimera states were experimentally verified for the first time in
populations of coupled chemical oscillators [34] and in optical
coupled map lattices realized by liquid-crystal light modulators
[35] and, later on, in mechanical [36], electronic [37], and
electrochemical oscillators [38]; for a recent review see [39].

Chimeras can be stationary or turbulent. Turbulent chimeras
have been observed experimentally [35] and have been classified
in numerical studies of large arrays of SQUIDs (Superconducting
QUantum Interference Devices) and in arrays of lasers with
various types of interactions [19–21, 23], among other physical
systems. Their actual trajectories are highly non-linear and
comprise an immense challenge to predicting their occurrence.
In the following sections, we present the long-term prediction
results of the ML methods applied on turbulent chimeras in
simulated SQUID and semiconductor laser arrays.

SQUID metamaterials constitute a subclass of
superconducting artificial media whose function relies
both on the geometry and the extraordinary properties of
superconductivity and the Josephson effect [40, 41]. Recent
experiments on SQUID metamaterials in the superconducting
state have demonstrated their wide-band tuneability, significantly
reduced losses, and dynamic multistability [42, 43]. The simplest
version of a SQUID consists of a superconducting ring
interrupted by a Josephson junction [44]; the device is a highly
non-linear resonator with a strong response to applied magnetic
fields. SQUIDmetamaterials exhibit peculiar magnetic properties
including negative diamagnetic permeability that were predicted
both for the quantum [45] and the classical [46, 47] regime.

We investigate the long-term prediction capability of the
ML methods under study on turbulent single-headed and
double-headed chimeras (“head” stands for incoherent cluster)
observed numerically in an array of N identical rf SQUIDs
coupled together magnetically through dipole-dipole forces. In
this system, the magnetic fluxΦn threading the n-th SQUID loop
is given by:

Φn = Φext + LIn + L
∑

m 6=n

λ|m−n|Im,

where the indices n and m run from 1 to N, Φext is the external
flux in each SQUID, λ|m−n| =

M|m−n|

L is the dimensionless

coupling coefficient between the SQUIDs at positions m and n,
M|m−n| being their corresponding mutual inductance, and

−In = C
d2Φn

dt2
+

1

R

dΦn

dt
+ Ic sin

(

2π
Φn

Φ0

)

is the current in the n-th SQUID given by the resistively
and capacitively shunted junction (RCSJ) model [48], with
80 the flux quantum and Ic the critical current of the
Josephson junctions. Each individual SQUID is a highly non-
linear oscillator exhibiting multistability in a certain parameter
regime. This is crucial for the occurrence of the chimera states
when considering the coupled system. The number of possible
states in a SQUID metamaterial is not merely the sum of the
combinations of individual SQUID states, since their collective
behavior provides many more possibilities. Depending on the
choice of initial conditions, various space-time flux patterns may
be obtained. “Wild” turbulent chimeras are important for testing
the prediction methods because they offer non-trivial dynamical
evolution (trajectories) upon which we can test the long-term
data-driven (model-free) forecasting of the ML methods. Such
chimeras have been generated in Hizanidis et al. [20] (see
their Figure 4d for a double-headed chimera with large size of
incoherent clusters and Figure 4e for a single-headed chimera,
in which the largest part of the metamaterial is occupied by an
incoherent cluster with varying size and position in time), where
the evolution of the individual SQUID fluxes Φn is monitored.

We apply RC, OLSTM, and OFNN methods for long-
term prediction of the dynamics of these single-headed and
double-headed chimeras. Prediction snapshots for the single-
headed chimera are presented in Figure 1A as insets on the
actual (ground-truth) spatiotemporal evolution of the fluxes. In
predicting the evolution of this chimera, 17 “observers” were
used in the positions marked by the tips of the arrows. The
predicted time series for the flux of SQUID #223 is being shown
(Figure 1A, right vertical inset) as well as the predicted fluxes
for all SQUIDs (entire metamaterial) at time step tn = 11,000
(Figure 1A, bottom inset). Similar results for the double-headed
chimera are presented in Figure 1B, also for 17 observers; the
predicted time series for the flux of SQUID #163 is being shown
in Figure 1B (right vertical inset) along with the predicted fluxes
for all SQUIDs at time step tn = 12,000 (Figure 1B, bottom inset).
The specific SQUID nodes (#223 and #163) have been chosen
in order to depict the long-term forecasting capability of the
ML methods in challenging regimes that include both coherent
and incoherent behavior. We emphasize that in both cases these
are very long-time predictions, not just short-term prediction of
just a few time steps beyond the training time; specifically, these
predictions comprise more than twice (for OLSTMs andOFNNs)
and three times (for RC) the training time. Nevertheless, the ML
methods produce non-divergent predictions.

In our implementation of OLSTMs we found that a large value
of the number of past steps Np is not necessary, and in fact
even with Np= 1 the results are quite satisfactory; this implies
that the presence of observers more than compensates the need
for a short memory to guide the predictions. Thus, our results
demonstrate that the “neighborhood” of the node is important; it
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FIGURE 1 | Spatiotemporal plots of single- and double-headed chimeras and predicted time series and fluxes. (A) Spatiotemporal plot of a single-headed chimera

state, generated in the 1-dimensional SQUID array of Hizanidis et al. [20] Figure 4e, depicting the evolution of the fluxes (values are color-coded), for the one-headed

chimera observed in a large array of 256 coupled SQUIDs by dipole-dipole moments, which has been studied numerically for a nonlocal coupling scheme. In

predicting the spatiotemporal evolution of this chimera, 17 “observers” have been placed in the positions marked by the tips of the arrows. The thick horizontal black

line marks the end of the RC training time, while the dotted horizontal black line marks the end of the OLSTM (and OFNN) training time. Right, vertical inset: predicted

time series for the flux of SQUID #223: shaded blue color depicts the actual (ground-truth) data, red line depicts prediction by OLSTM, green line depicts prediction by

RC, blue line depicts prediction by OFNN. Bottom inset: predicted fluxes for all SQUIDs (entire metamaterial) at time step tn = 11,000: symbols are the same as in the

right inset, but with pink depicting the actual (ground-truth) data. (B) same as in part (a), but for a double-headed chimera state generated in the 1-dimensional linear

SQUID array of Hizanidis et al. [20] Figure 4d. Right, vertical inset: the predicted time series for the flux of SQUID #163. Bottom inset: the predicted fluxes for all

SQUIDs (entire metamaterial) at time step tn = 12,000.

changes dynamically and the assistance of observers in predicting
the future values is more appropriate to process the temporal
variation of the “neighborhood” state. The same considerations
apply to both SQUID-array and laser-array chimeras.

In laser systems, chimeras were first reported both
theoretically and experimentally in a virtual space-time
representation of a single laser system subject to long delayed
feedback [34]; small networks of globally delay-coupled lasers
have also been studied and chimera states were found for both
small and large delays. In the present report, we apply the ML
methods to predict the trajectories of the turbulent chimeras
presented in Figure 4V of the recent work of Shena et al.
[23] on multi-clustered chimeras in a large array of coupled
semiconductor lasers with non-local coupling. This array is a
ring of M = 200 semiconductors lasers of class B. Each node
j is symmetrically coupled with the same strength to its R
neighbors on either side (non-local coupling). The evolution of
the slowly varying complex amplitudes Ej = Ej exp(iϕj), with Ej
is the amplitude and φj the phase of the electric field, and the
corresponding population inversions Nj are given by equations

dEj

dt
= (1+ ia) EjNj +

ke−i2Cp

2R

j+R
∑

l=j−R

El,

dNj

dt
=

1

T
[ p− Nj −

(

1+ 2Nj

)

|E j|
2], j = 1, · · · , M,

where all indices have to be taken modulo M. T is the ratio of
the lifetime of the electrons in the excited level and that of the
photons in the laser cavity. Lasers are pumped electrically with
the excess pump rate p = 0.23 [23]. The linewidth enhancement
factor a models the relation between the amplitude and the

phase of the electrical field; a value of a = 2.5 was used,
typical for semiconductor lasers. The coupling strength k and
the phase Cp are the control parameters that are used to tune
the collective dynamics of the system. As a measure for phase
and amplitude synchronization, the characterization of the phase
synchronization of the system can be calculated by means of the
Kuramoto local order parameter [49]:

Zj =

∣

∣

∣

∣

∣

∣

1

2ζ

∑

|l−j|≤ζ

eiϕl

∣

∣

∣

∣

∣

∣

Shena et al. [23] have used a spatial average with a window size
of ζ = 3 elements (a Zj value close to unity indicates that the j-
th laser belongs to the coherent regime, whereas Zj is closer to
0 in the incoherent part). This quantity can measure only the
phase coherence and gives no information about the amplitude
synchronization of the electric field, and for this reason the
authors have used the classification scheme presented in Kemeth
et al. [50] for spatial coherence, based on the calculation of the
so called local curvature at each time instance, by applying the
absolute value of the discrete Laplacian |DE| on the spatial data
of the amplitude of the electric field:

|DE|j (t) =
∣

∣Ej+1 (t) − 2Ej (t) + Ej−1 (t)
∣

∣ , j = 1, · · · , M.

In the synchronization regime the local curvature is close to zero
while in the asynchronous regime it is finite and fluctuating.

Since our objective is to obtain “wild” turbulent chimeras in
order to test the long-term predictions of the ML methods, we
have chosen the turbulent chimera of Shena et al. [23] Figure 4V,
generated with the choice of parameter values: R= 64,Cp = 0.4π,
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FIGURE 2 | Spatiotemporal plot of a turbulent chimera state [as is generated

in the 1-dimensional semiconductor Class B laser array of Shena et al. [23]

Figure 4V], depicting the evolution of the local curvature for each laser (values

are color-coded), studied numerically for a non-local coupling scheme.

Seventeen “observers” have been placed in the positions marked by the tips

of the arrows. The thick horizontal black line represents the size of the training

dataset used for training the reservoir observers with RC, while the dotted

horizontal black line represents the size of the training dataset for training the

OLSTM (and OFNN) observers. Right, vertical inset: the predicted time series

for laser #145: shaded blue color depicts the actual (ground-truth) data, red

line depicts prediction by OLSTM, green line depicts prediction by RC, blue

line depicts prediction by OFNN. Bottom inset: snapshot of the spatial profile

of the predicted local curvatures for the entire array at time step tn = 1,500:

color code is as in the right inset, but with pink color depicting the actual

(ground-truth) data.

k = 0.225, T = 392, p = 0.23, a = 2.5. Prediction snapshots
are presented in Figure 2, as insets on the actual (ground-truth)
spatiotemporal evolution of the local curvature for the flux of
laser #145 and for all lasers, for similar choices as in Figure 1,
that is, with 17 “observers” and at time step tn = 1,500. These
are extremely long-time predictions, with time horizons almost
five times the training time (for OLSTMs and OFNNs) and
ten times (for RC) the training time. In this case, as in that
of the SQUID system, all ML methods under study produce
non-divergent predictions.

In Figure 3 we present the calculated values of the normalized
root mean squared error for long-term prediction (top inset) of
the RC, OLSTM, and the OFNN methods, and as a function
of the number of observers and the size of the training dataset
for a randomly selected time step for the chimera depicted in
Figure 2; similar results are obtained for all systems. The RMSE
values remain, on average, close to 10−1, for time horizons
up to 2,000 time steps in the future. This figure also presents
graphs of how the RMSE varies as a function of the number
of observers (given as percentage of the number of the system
nodes), and as a function of the size of the training datasets
(given as percentage of the entire ground-truth time series. In all
cases, low RMSE values are attained after a minimum number
of observers have been included in the system, comprising

about 5% of the total number of oscillators, and the size
of the training data reaches at least 15% of entire dataset.
These results demonstrate that, even very small numbers of
observers are very important for achieving non-diverging long-
term predictions. Furthermore, they show that RC achieves
low levels of RMSE with smaller size of training datasets,
whereas OLSTM achieves low levels of RMSE with smaller
number of observers.

Predicting Singular Events
Wave focusing due to refractive index variation is a common
occurrence in many physical systems, as, for example, in
optical media where the index of refraction changes in a
statistical way due to small imperfections or distributions of
defects in the medium through which the wave propagates.
Random spatial variability of the index leads to local focusing
and defocusing of the waves and the formation of caustics
(or wave “branches”) with substantially increased local wave
intensity [51, 52]. Quantum particles like electrons also
exhibit wave properties and as a result, electrons traveling in
disordered media can form coalescing trajectories and exhibit
phenomena similar to wave motion in optical random media.
A case in point, where branching may have implications for
technological applications, is the ultra-relativistic electronic flow
in a two-dimensional (2D) random potential as manifested
in graphene and other Dirac solids [52]. In these situations,
branching arises in the flow of electrons through a region
of inhomogeneous distribution of charge impurities in the
substrate, which create a random potential for the electrons
[53]. An additional bias voltage is introduced to induce the
electronic propagation. Recently, it was shown that the onset
of the electronic branched flow is determined by the statistical
properties of the random substrate potential, which is quantified
through a scaling-type relationship to capture the emergence of
branches [54].

It is a formidable challenge to predict singular events like
branching in wave propagation or electron flow because of the
stochastic nature of the onset of such events. An important
question is whether or not MLmethods can dissect the stochastic
nature of branching and “learn” the interactions that take place
among trajectories, thereby providing an accurate detection
mechanism for the caustics that mark the onset of branching. We
attempt to resolve this issue with results from the RC, OLSTM,
and OFNN methods, on singular branched flows in graphene
with random potentials. Our results demonstrate that the ML
methods we considered can adequately capture the stochastic
temporal dependencies of the time series in this prototypical
complex dynamical system.

Caustic event prediction in a 2D electron flow is facilitated
if we consider one of the spatial dimensions (we refer to it
as the “longitudinal” x-direction) as the “time-coordinate,” and
therefore, map the stationary phenomenon of caustic formation
onto a 1D spatio-temporal dynamical problem. In the framework
of this approach, we model the motion of electrons as individual
rays whose density matrix is transformed onto a vector of
time series with dimension N, the number of mesh points
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FIGURE 3 | Normalized RMSE (<R>) of RC, OLSTM, and the OFNN methods calculated for each time step over all system nodes at each predicted time step (top

panel) and over the predicted time steps and all system nodes (bottom 3-dimensional plots) as a function of the number of observers (given as percentage of the

entire number of system nodes) and the size of the training dataset (given as percentage of the entire ground-truth time series) for the chimera depicted in Figure 2.

The black dots in each of the 3-dimensional plots represent the normalized RMSE for each ML method, respectively, at a randomly picked time step, calculated

overall system nodes and previous time steps, but not counting observer nodes and training time steps. Red: OLSTM, green: RC, blue: OFNN. Axes, tick marks, tick

labels, and grid lines are the same in all 3-dimensional plots.

of the remaining spatial dimension (the “transverse,” or y-
direction). In the system we studied, N = 210, spanning a
total length of 84 nm [54]. Our goal is to predict the onset
of branching in time and its location in the electronic flow.
Figure 4 presents prediction snapshots of the onset of branching
in electronic flows in graphene with random potentials, depicting
the intensity of the flows, using 10 different “observers”
along the “time” axis of the flows at different positions on
the transverse axis. These results demonstrate that the RC,
OLSTM, and OFNN methods are able to predict well the
branching in the electronic flows in this system, even at
very long prediction times. In these methods, observers are
very important to achieve long-term forecasting capability;
they act as real-time sensors that help predict the future
values of the flows.

CONCLUSIONS AND OUTLOOK

The issue of predicting complex spatiotemporal behavior using
ML approaches is one of central importance for their potential
applications in the physical sciences and beyond. Here, we
attempted to address this issue by considering two distinct
prototypical phenomena, viz. partially coherent chimera states
and the stochastic onset of branching in 2D wave flows, as these
are realized in coupled arrays of SQUIDs or lasers, and in the flow
of electrons in graphene with random potentials, respectively.
We find that ML approaches like LSTM and RC recurrent neural
networks can perform well in predicting complex dynamics in
extended physical systems when they involve “observers” that
monitor the system evolution throughout its time dimension.
The presence of observers is an inherent requirement of the
second approach (RC), but not of the first (LSTM). Accordingly,
we proposed a new method, which we call “Observer LSTM
(OLSTM),” to address the limitations of single, independent

LSTM networks in capturing dependencies between multiple
correlated sequences. We have also considered an observer-
enhanced Feed-Forward network (OFNN) and tested the long-
term prediction performance of the three approaches, OLSTM,
OFNN, and reservoir observers trained by RC, on the two
difficult problems of turbulent chimeras and 2D branching
flows. Our results quantify how the prediction error (root
mean squared error, RMSE, of the predicted values) varies as
a function of the number of observers and of the size of the
training datasets.

We conclude that “observers” comprise sine qua non elements
for robust data-driven (model-free) long-term forecasting
capability of the LSTM and FNN networks, and they provide
the framework for a consistent comparison between the LSTM
and RC methods. Thus, observer-enhanced ML methods,
like OLSTM, acting as high-level “intelligent” interpolation
schemes, are capable of successfully predicting the non-linear
spatiotemporal evolution of complex dynamical systems. Many
issues remain to be evaluated and questions to be answered
in establishing the robustness and efficiency of the observer-
enhanced approaches. An example of such issues is the extent
to which the presence of observers, while enhancing long-term
predictability, affects the chaotic behavior of the system. A
thorough investigation of such issues is the focus of on-going and
future research.

METHODS

The RC network architecture used in predicting turbulent
chimeras comprises of 1,000 reservoir nodes, with spectral
radius ρ = 1.0, average degree D = 80, scale of inputs weights
σ = 1.5, bias constant ξ = 0.0, leakage rate α = 0.9, ridge
regression parameter β = 0.5, and time interval 1t = 0.01. The
RC network applies to the system as a whole (single network
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FIGURE 4 | Branching in electronic flows in graphene with random potentials

(intensity values are color-coded); the graphene sheet has size 176 (vertical) ×

84 nm (horizontal). The snapshots in insets depict the intensity of the flows as

found in the simulation and predicted by the ML methods. In predicting the

time evolution of the flows, 10 “observers” have been placed in the positions

marked by the tips of the arrows, monitoring the entire “time” (vertical) axis.

The thick horizontal white line marks the end of the RC training, while the

dotted white line marks the end of the OLSTM (and OFNN) training. Inset

outlined in pink: the actual and predicted time series for the entire system at

“time coordinate” point xn = 100 nm, corresponding to 501 time steps. The

pink-shaded curve represents the actual (ground-truth) data, red line is the

OLSTM prediction, green is the RC prediction and blue the OFNN prediction.

Inset outlined in blue: same as for the other inset, but at “time coordinate”

point xn = 160 nm, corresponding to 801 time steps, and with blue-shaded

curve depicting the actual (ground-truth) data.

architecture). For branching, the RC network used comprises of
3,000 reservoir nodes, with spectral radius ρ= 0.9, average degree
D = 50, scale of inputs weights σ = 1, bias constant ξ = −0.4,
leakage rate α = 0.5, ridge regression parameter β = 0.05, and
1t = 0.05. The network applies to the system as a whole (single
network architecture).

The OLSTM network architecture used in this study
constitutes 400 LSTM cells with RELU activation functions
(one hidden layer). A single LSTM network is applied to
each (non-observer) system node (SQUID or laser oscillator
or electron flow). Similarly, a single fully-connected (dense)
Feed Forward network (OFNN), with RELU activation functions,
is applied to each (non-observer) system node (SQUID or
laser oscillator or electron flow). Optimization for LSTMs
during training is performed using the Adam stochastic

optimization method [55] with a learning rate of 0.001 as
implemented in Keras 1.

In case of the SQUIDs system (Figure 1), the OLSTM and
OFNN models were trained with 5,900 time steps (40% of the
total 14,750 time steps) and RC with 3,000 time steps (about
20% of the total number of time steps). In case of the Laser
Chimeras system (Figure 2), the OLSTM and OFNN models
were trained with 400 time steps (20% of the total number of
time steps and RC model with 200 time steps (10% of the total
number of time steps). Finally, in case of branching (Figure 4),
OLSTM and OFNN were trained with 352 time steps (40%
of the total number of time steps) and RC with 300 time
steps (about 34%).

The data of the time series used (chimeras and electronic
flows in graphene) was preprocessed as in [3] Equation (15)
and smoothed by means of Matlab’s 2D Gaussian Smoothing
Kernel with standard deviation σ = 3.5 for chimeras and
σ = 2.5 for the electronic flows in graphene. The time series
data have been divided into two separate sets, the training
dataset and the validation dataset. The data is stacked in batches
(of size 50 data points) in order to form the training (and
validation) input and output of the networks. These training
batches are used to optimize the parameters of the networks
(weights and biases). The training proceeds by optimizing
the network weights iteratively for each batch. The training
loss function is a weighted version of the root mean square
error. When the network parameters have been optimized once
for all training data batches, one epoch is completed. After
every epoch the RMSE in the validation data set is computed.
Training is stopped after 200 epochs and the OLSTM (OFNN)
network with the smallest validation error is selected in order to
avoid over-fitting.

Each trained OLSTM network is then used to forecast the
node’s state in the next time step in an iterative fashion (getting
also input from the observers). All the hyper-parameters in
OLSTM and OFNN models including the number of training
epochs, the number of training batches, the number of neurons
and the number of hidden layers are optimized so that
they are leading to the smallest RMSE. Similarly, for RC we
optimized the parameters with criterion the smallest value
for RMSE.

As a comparison measure for the networks’ performance, we
use the (normalized) root mean square error calculated at each
time step, for all system nodes and over the predicted time steps
(unless otherwise specified).

DATA ACCESSIBILITY

The machine learning library Keras in python 3.6 was used for
the implementation of the OLSTM and OFNN architectures
(utilizing the “Metropolis” Supercomputing Facility of the Center
for Quantum Complexity and Nanotechnology of the Physics
Department of the University of Crete) while our code written
on Matlab was used for the RC architectures.

1Available online at: https://keras.io (Accessed February 15, 2018).
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