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How Nonassociative Geometry
Describes a Discrete Spacetime
Alexander I. Nesterov* and Héctor Mata

CUCEI, Department of Physics, University of Guadalajara, Guadalajara, Mexico

Nonassociative geometry, providing a unified description of discrete and continuum

spaces, is a valuable candidate for the study of discrete models of spacetime. Within the

framework of nonassociative geometry we propose a model of emergent spacetime. In

our approach, the evolution of spacetime geometry is governed by a random/stochastic

process. This leads to a natural appearance of causal structure and arrow of time.

We apply our approach to study a toy model of discrete (2+1)-D spacetime and

Friedmann-Robertson-Walker cosmological model. We show that in a continuous limit

the evolution of the discrete spacetime corresponds to a radiation epoch of the standard

cosmological model.
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1. INTRODUCTION

Any attempt to create a quantum gravitation theory faces the challenge of comprehension
the concept of quantizing of spacetime and of describing the quantum nature of space and
time [1–3]. As part of the general problem of time, one of the most challenging and open
problems is the origin of irreversibility in our universe, also known as the problem of the arrow
of time [1, 4–9].

One can distinguish two general strategies to achieve this goals [10, 11]. The first strategy consists
in quantizing a classical structure, that later is recovered as a limit of the quantum theory. The
second strategy assumes that the classical structures are emergent from the other theory, which is
more fundamental theory from the very beginning. In the second approach, a formulation of the
quantum theory may require omitting use of continuum concepts a priori. This means that at the
Planck scale the standard concept of spacetimemust be replaced by some discrete structure [10, 12].

The proposal that spacetime may be fundamentally discrete has been adopted by numerous
strategies [13, 14]. This discreteness is motivated by several heuristic arguments, but so far has
not been deduced rigorously. In Nesterov and Sabinin [15–18], we have proposed a new unified
approach, based on nonassociative geometry, for describing both continuum and discrete spacetime.
Among advancedmodels that propose discreteness, two that will be relevant to our work are Causal
Sets (CS)[19–21] and Causal Dynamical Triangulations (CDT)[14, 22–28]. These approaches are
based on the hypothesis that spacetime is discrete and causality is a fundamental principle.

Nonassociative geometry, being based on the theory of quasigroups and loops, provides a unified
algebraic description of manifolds. In the case of smooth manifolds it is equivalent to conventional
differential geometry [29, 30]. The main algebraic structures emerging in nonassociative geometry
may be described as follows. Let M be a manifold with an affine connection. Then, in a
neighborhood of an arbitrary point a ∈ M on one can introduce the geodesic local loop Qa with
a smooth partial ternary operation, Laxy, a being the neutral element of Qa, and a, x, y ∈ M. The
operation Laxy is uniquely defined through the parallel transport of the geodesic 〈ay〉, connecting
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the point a with the point y, along the geodesic 〈ax〉. The family
of local loops {Qa} constructed in this way satisfies some natural
algebraic identities and uniquely defines the space with affine
connection. Next, one can introduce the left-invariant metric,
gb(La

b
x, La

b
y) = ga(x, y), enriching the manifold M with a metric

structure. In nonassociative geometry, the (nonlocal) equivalent
of curvature is elementary holonomy, ha

(x,y)
= L

y
a ◦ Lxy ◦ Lax.

In the present paper, we introduce a discrete model of
emergent spacetime based on nonassociative geometry. In our
approach events, being “atoms” of spacetime, are elements
of a local loop with a partial operation. We assume that
time is quantized and the distance between two neighboring
atoms can not be less than the fundamental length, ℓp.
The evolution of spacetime geometry is governed by a
random/stochastic process conserving spacetime geometry. The
result is a partially ordered set of events, and spacetime geometry
is encoded in the nonassociative structure of spacetime. We
apply our approach to study a toy model of (2 + 1)-D
discrete spacetime and a discrete Friedmann-Robertson-Walker
(FRW) cosmological model. We show that the evolution of
the discrete spacetime corresponds to a radiation era in the
continuous limit with the scale factor growing as ∼

√
t. The

irreversibility of evolution is governed by a random process
and by information loss as a consequence of the fundamental
Planck length.

The paper is organized as follows. In section 2 we survey
the foundations of the theory of smooth quasigroups and loops.
In section 3, we give a brief introduction to nonassociative
geometry, with detailed examples and applications to the
de Sitter and Friedmann-Robertson-Walker (FRW) models of
spacetime. In section 4 we introduce nonassociative discrete
geometry. In section 5 we present a discrete model of
spacetime based on nonassociative geometry with applications
to (2+1)-D spacetime and the FRW model. In section 6 we
discuss the results of numerical simulations and theoretical
models for the implementation of our framework. In the
Supplemental Material, we present technical details of our
method and algorithms.

2. SMOOTH QUASIGROUPS AND LOOPS

During the last five decades, nonassociative structures have
appeared in various fields of physics, and nowadays they play
an important role in modern physics. Among others, one
may mention the employment of octonions, Lie groupoids,
and algebroids in the context of Yang-Mills theories and
gauge theories on commutative but nonassociative fuzzy
spaces [31–37], and attempts to create nonassociative quantum
mechanics [38–42].

The nonassociative objects, such as 3-cocycles, emerge in
quantum mechanics with the Dirac monopole and quantum
field theory with chiral anomalies [43–55]. The chiral anomalies
appear as the Schwinger terms in current algebra [53–56]. These
terms, having a cohomological nature, are related to the failure
of the Jacobi identity, J(A,B,C) = 0, where for a given triple of

operators (A,B,C) we define

J(A,B,C) = [[A,B],C]+ [[B,C],A]+ [[C,A],B]. (1)

In particular, it has been shown that electric fields in chiral gauge
theories satisfy the fourth-order identity, J(Ei,Ej, [Ek,Ei]) =
[J(Ei,Ej,Ek),Ei], instead of the Jacobi identity, and form the
so-called Mal’cev algebra [53–57]. The Mal’cev algebra, being a
tangent algebra of the analytic Moufang loop, generalizes the
concept of Lie algebra, and for a given tangent Mal’cev algebra
there exists a unique simply connected analytical Moufang loop.

Failure of the Jacobi identity implies violation of associativity
and forces one to make use of nonassociative generalization of
the Lie groups, such as smooth quasigroups and loops. The
nonassociative algebraic structures, such as smooth quasigroups
and loops, are of considerable potential interest for modern
physics. Recently, the theory of smooth loops has been employed
for description of Thomas precession, coherent states and
geometric phases in quantum mechanics [58–61]. In general
relativity, unlike special relativity, the Poincaré group does
not exist in general spacetime. However, this problem can be
overcome by introducing the Poincaré quasigroup [62, 63].

The theory of fiber bundles, being one of the important
applications of Lie groups not only in mathematics but in
physics as well, leads to gauge field theory. The nonassociative
generalization of Lie groups allows us to construct nonassociative
gauge theories with higher “nonassociative gauge symmetries" by
using the theory of smooth loops [64–66]. In general terms, a
consequence of nonassociativity is that the structure constants of
the gauge algebra have to be changed by structure functions.

In what follows we outline the theory of smooth quasigroups
and loops. While there is not a consensus about the birth date of
the theory of smooth loops, one can consider the seminal work by
Mal’cev [57] as a starting point for the development of this theory.
General results on the subject, including reviews, may be found
in [30, 67–69], Kikkawa [70], Belousov [71], Pflugfelder [72], and
Batalin [73] (see also references therein). The point of departure
is an identity of quasiassociativity leading to the infinitesimal
theory of smooth loops.

Definition 2.1. Let 〈Q, ·〉 be a groupoid, i.e., a set with a binary
operation (a, b) 7→ a · b. A groupoid 〈Q, ·〉 is called a quasigroup
if each of the equations a·x = b, and y·a = b has a unique
solution, x = a\b and y = b/a, defining left (“\”) and right
(“/”) division. A loop is a quasigroup with a two-sided identity,
a·e = e·a = a, where e is a neutral element. A loop that is
also a differentiable manifold and in which the operation a·b is
a smooth map is called a smooth loop.

One can show that the following identities hold:

a·(b·c) = (a·b)l(a,b)c, r(b,c)a·(b·c) = (a·b)c, (2)

l(a,b) = L−1
a·b

◦ La ◦ Lb, r(b,c) = R−1
b·c

◦ Rc ◦ Rb, (3)

where l(a,b) is a left associator, r(b,c) is a right associator, La is a
left translation and Rb is a right translation. The left and right
translations are defined as follows: Lab = Rba = a·b. As one
can see, the loop becomes a group, if the associator is the identity
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operator. Thus, the associator can be considered as a measure of
nonassociativity of the operation in the loop.

Let Te(Q) be the tangent space at the neutral element e ∈ Q.
Then, for each Xe ∈ Te(Q), one can define a smooth vector field
on Q as

Xb = Lb∗Xe, b ∈ Q, Xe ∈ Te(Q), Xb ∈ Tb(Q),

where Lb∗ :Te(Q) 7→ Tb(Q) is the differential of the left
translation.

Definition 2.2. A vector field X on Q which satisfies the relation
La∗Xb = l̂(a,b)∗Xa·b for any a, b ∈ Q is called a left fundamental
or left quasi-invariant vector field.

Let Ŵi = R
j
i∂/∂aj, i = 1, 2, . . . , r, be a basis of left

quasi-invariant vector fields. Then, for the commutator, [Ŵi,Ŵj],
we obtain

[Ŵi,Ŵj] = C
p
ij(a)Ŵp, (4)

where C
p
ij(a) are the structure functions. They satisfy the modified

Jacobi identity,

C
p
ij,nR

n
k + C

p

jk,n
Rni + C

p

ki,n
Rnj + Cl

ijC
p

kl
+ Cl

jkC
p

il
+ Cl

kiC
p

jl
= 0. (5)

Comment 2.1. The infinitesimal theory of Lie groups is based on
the associativity of the operation, a·(b·c) = (a·b)·c. In a similar
way, the quasiassociativity identity,

La ◦ Lbc = L(a·b) ◦ l(a,b)c, (6)

yield the infinitesimal theory of smooth loops [66].

2.1. Examples
Example 2.1. Loop 〈Q(R/Z), ∗〉. The analytical loop Q(R/Z) is
a loop with the binary operation given by [74, 75]

x ∗ y = x+ y+ f (x)+ f (y)− f (x+ y), (7)

where f (x) = (1− cos 2πx)/4.

Example 2.2. Loop QC. Let C be the complex plane. It becomes
the loop QC, if we define the following nonassociative operation:

Rηζ = Lζ η = ζ · η = ζ + η

1− ζη
, ζ , η ∈ C, (8)

L−1
ζ η = η − ζ

1+ ζη
, ζ , η ∈ QC, (9)

where the bar denotes complex conjugation. The associator l(ζ ,η)
is found to be

l(ζ ,η)ξ = 1− ζη

1− ηζ
ξ . (10)

The basis of left quasi-invariant vectors and 1-forms is given by

Ŵ1 = (1+ |η|2)∂η, Ŵ2 = (1+ |η|2)∂η̄ (11)

θ1 = dη

1+ |η|2 , θ2 = dη̄

1+ |η|2 (12)

The computation of the commutator results in:

[Ŵ1,Ŵ2] = η̄Ŵ2 − ηŴ1, (13)

and for the structure functions we find that C1
12 = −η, C2

12 = η̄.
One can show that the metric based on the left fundamental

basis forms, ds2 = θ1θ2, is a left invariant metric. As one can see,
this is also the Fubini-Studi metric:

ds2 = dη dη̄

(1+ |η|2)2 . (14)

Comment 2.2. The loopQC is locally isomorphic to the Bol loop
QS2 [16, 30]. The latter is related to the two-sphere S2, which
admits a natural quasigroup structure induced by the operation
(8). The isomorphism is established by using the stereographic
projection from the south pole of the sphere: ζ = eiϕ tan(θ/2).

Example 2.3. Loop QSU(2). Consider a set of the unitary
matrices QSU(2) ⊂ SU(2). An arbitrary element Uη ∈ QSU(2)
is given by

Uη = 1
√

1+ |η|2

(

1 η

−η̄ 1

)

, Uη ∈ QSU(2). (15)

We introduce the binary (nonassociative) operation on QSU(2)
as follows:

Uη ∗ Uζ = UηUζ 3(η, ζ ), (16)

where

3(η, ζ ) =
(

eiϕ 0

0 e−iϕ

)

, ϕ = 2 arg(1− η̄ζ ).

The matrix loopQSU(2) forms the nonassociative representation
of the loop QC ≃ QS2. Indeed, writing the result of
multiplication of two elements, Uη,Uζ ∈ QSU(2), as

Uη ∗ Uζ = 1
√

1+ |η·ζ |2

(

1 η·ζ

−η·ζ 1

)

, (17)

we find (see example 2.2)

Lηζ = η + ζ

1− ηζ
, l(η,ζ )ξ = 1− ηζ

1− ηζ
ξ , ζ , ξ , η ∈ C. (18)

Example 2.4. Loop QH2. Let D ⊂ C be the open unit disk,
D = {ζ ∈ C : |ζ | < 1}. Then, the set of complex numbers with
the operation [58, 59, 64, 65]

ζ ∗ η = ζ + η

1+ ζ̄ η
, ζ , η ∈ D. (19)

forms the two-sided loop QH2. The associator, l(ζ ,η), on QH2 is
defined by

l(ζ ,η)ξ = 1+ ζη

1+ ηζ
ξ . (20)
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The basis of left quasi-invariant vectors and 1-forms is given by

Ŵ1 = (1− |η|2)∂η, Ŵ2 = (1− |η|2)∂η̄ (21)

θ1 = dη

1− |η|2 , θ2 = dη̄

1− |η|2 . (22)

The computation of the commutator yields

[Ŵ1,Ŵ2] = ηŴ1 − η̄Ŵ2. (23)

Using the left fundamental basis forms, we obtain the hyperboloic
(left invariant) metric

ds2 = θ1θ2 = dηdη̄

(1− |η|2)2 . (24)

The loop QH2 is isomorphic to the geodesic loop of two-
dimensional Lobachevsky space. The isomorphism is established
by using the relation ζ = eiϕ tanh(θ/2), where (θ ,ϕ) are inner
coordinates on the upper part of two-sheeted hyperboloid, H2.

Example 2.5. Loop QSU(1, 1). Consider a set of the unitary
matrices QSU(1, 1) ⊂ SU(1, 1). An arbitrary element, Uη ∈
QSU(1, 1), is given by

Uη = 1
√

1− |η|2

(

1 η

η̄ 1

)

, η ∈ D, Uη ∈ QSU(1, 1), (25)

where D ⊂ C is the open unit disk, D = {ζ ∈ C : |ζ | < 1}. We
introduce the nonassociative operation as follows:

Uη ∗ Uζ = UηUζ 3(η, ζ ), (26)

where

3(η, ζ ) =
(

eiϕ 0

0 e−iϕ

)

, ϕ = 2 arg(1+ η̄ζ ).

The loop QSU(1, 1) forms the nonassociative representation of
the loop QH2. Indeed, writing Equation (26) as

Uη ∗ Uζ = 1
√

1− |η·ζ |2

(

1 η·ζ

η·ζ 1

)

, (27)

we find (see Example 2.4)

Lηζ ≡ η·ζ = η + ζ

1+ ηζ
, l(η,ζ )ξ = 1+ ηζ

1+ ηζ
ξ , ζ , ξ , η ∈ D.

(28)

Example 2.6. Loop QHR (De Sitter loop). Let us consider the
algebra of quaternions, HC, over a complex field C(1, i),

HC = {α + βi+ γ j+ δk | α,β , γ , δ ∈ C}. (29)

The multiplication of quaternions is defined by the following
rules for (i, j, k):

i2 = j2 = k2 = −1, jk = −kj = i, ki = −ik = j, ij = −ji = k.
(30)

For a given quaternion, q = α + βi + γ j + δk, the quaternionic
conjugation is defined as

q+ = α − βi− γ j− δk. (31)

Further, we restrict ourselves to consideration of the set of
quaternions HR ⊂ HC:

HR = {ζ = ζ 0 + i(ζ 1i+ ζ 2j+ ζ 3k) : i2 = −1, i ∈ C,

ζ 0, ζ 1, ζ 2, ζ 3 ∈ R}, (32)

with the norm defined as ‖ζ‖2 = ζ ζ+ = (ζ 0)2− (ζ 1)2− (ζ 3)2−
(ζ 4)2.

We introduce the binary operation

ζ ∗ η =
(

ζ + η
)/(

1+ K

4
ζ+η

)

, ζ , η ∈ HR, (33)

where / denotes right division and K is constant. The set of
quaternions HR with the binary operation (77) forms the loop
QHR. The associator is given by

l(ζ ,η)ξ =
(

1+ K

4
ζη+

)

ξ
/(

1+ K

4
ζ+η

)

. (34)

Comment 2.3. For K > 0 the loop QHR is isomorphic to the
geodesic loop of spacetime of constant positive curvature (de
Sitter space) [16].

Example 2.7. Loop QH
F
R
. Consider the set of quaternions:

H
F
R

= {x = ζ 0 + a(ζ 0)ζ , ζ = i(ζ 1i+ ζ 2j+ ζ 3k)}, (35)

where a(ζ 0) is a smooth function. We introduce a binary

operation Lxy = x ∗ y, x, y ∈ H
F
R
as

Lxy =ζ 0 + η0 + a(ζ 0 + η0)
(

ζ + η
)

/(

1+ K

4
ζ+η

)

, (36)

L−1
x y =η0 − ζ 0 + a(η0 − ζ 0)

(

η − ζ
)

/(

1− K

4
ζ+η

)

, (37)

where x = ζ 0 + a(ζ 0)ζ , y = η0 + a(η0)η, and / denotes the right
division. It is easy to show that e = 0 is the neutral element, so
that Lex = x. The associator is defined by

l(x,y)z = ξ 0 + a(ξ 0)
(

1+ K

4
η+ζ

)

ξ
/(

1+ K

4
ζ+η

)

, (38)

where we set z = ξ 0+a(ξ 0)ξ . The set of quaternions,HF
R
with the

binary operation ∗, forms a loop, which will be denoted as QH
F
R
.

Example 2.8. Moufang loop. A loop Q is a Moufang loop if, for
all a, b, c ∈ Q, the following identities hold:

c(a(cb)) =((ca)c)b), a(c(bc)) = ((ac)b)c), (39)

(ca)(bc) =(c(ab))c, (ca)(bc) = c((ab)c). (40)

In particular, the sphere S7, identified with the unit octonions,
may be considered a smooth Moufang loop with the binary
operation defined by the octonionic algebra. Other examples of
the analytical Moufang loops associated with octonions are the
spaces S3 × R4 and S7 × R7.
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3. NONASSOCIATIVE GEOMETRY IN BRIEF

In this section we outline the algebraic foundations of
nonassociative geometry (For details see [29, 30, 76–78]).

Definition 3.1. Let 〈M, ·, e〉 be a partial groupoid with a binary
operation (x, y) 7→ x · y and a neutral element e, x · e = e · x = x.
Consider M to be a smooth manifold (at least C1-smooth) and
the operation of multiplication (at least C1-smooth) to be defined
in some neighborhood Ue. Then, 〈M, ·, e〉 is called a partial loop
onM.

Remark 3.1. The operation of multiplication is locally invertible.
This implies that in some neighborhood of the neutral element e
one has

La(L
−1
a x) = x, Ra(R

−1
a x) = x,

where x · y = Lxy = Ryx,
The vector fields Aj and Bj defined on Ue as

Aj(x) =
(

(Lx)∗,e
)i

j

∂

∂xi
= Lij(x)

∂

∂xi
, (41)

Bj(x) =
(

(Rx)∗,e
)i

j

∂

∂xi
= Rij(x)

∂

∂xi
(42)

are called the left basic fundamental fields and right basic
fundamental fields, respectively.

The solution of the equation

df i(t)

dt
= Lij(f (t))X

j, f (0) = e, (43)

can be written as f (t) = Exp tX and defines the exponential map,

Exp :X ∈ Te(M) −→ ExpX ∈ M.

Employing the exponential map, one can define a new operation,
tx = Exp(tExp−1x), called the left canonical unary operation.

Definition 3.2. A smooth loop 〈M, ·, e〉 equipped with its
canonical left unary operations is called the left canonical
preodule 〈M, ·, (t)t∈R, e〉.

Introducing one more operation,

x+ y = Exp(Exp−1x+ Exp−1y), (44)

we obtain the canonical left prediodule of a loop, denoted as
〈M, ·,+, (t)t∈R, e〉.

Definition 3.3. A canonical left preodule (prediodule) is called
the left odule (diodule) if themonoassociativity property, tx ·ux =
(t + u)x is satisfied.

Definition 3.4. Let M be a smooth manifold and L :(x, y, z) ∈
M 7→ L(x, y, z) ∈ M be a smooth partial ternary operation, such
that xȧy = L(x, a, z) defines in some neighborhood of the point
a the loop with the neutral a. Then, the pair 〈M, L〉 is called a
loopuscular structure (manifold).

Definition 3.5. A smooth manifold M with a smooth partial
ternary operation L and smooth binary operations ωt :(a, b) ∈
M × M 7→ ωt(a, b) = tab ∈ M, (t ∈ R), such that xȧy =
L(x, a, y) and taz = ωt(a, z) determine in some neighborhood of
an arbitrary point a the odule with the neutral element a, is called
a left odular structure (manifold) 〈M, L, (ωt)t∈R〉.

Let 〈M, L, (ωt)t∈R〉 and 〈M,N, (ωt)t∈R〉 be odular
structures. Then, we define a diodular structure (manifold)
as 〈M, L,N, (ωt)t∈R〉. If, in addition, x+

a
y = N(x, a, y) and

tax = ωt(a, x) define a vector space, the diodular structure is
called a linear diodular structure.

A diodular structure is said to be geodiodular if the following
identities hold:

Ltaxuax
◦ Latax = Lauax (Laxy = L(x, a, y)), (the first geoodular identity)

(45)

Lax ◦ ta = tx ◦ Lax , (the second geoodular identity)

(46)

LaxN(y, a, z) = N(Laxy, x, L
a
xz) (the third geoodular identity).

(47)

Definition 3.6. LetM be aCk-smooth (k ≥ 3) affinely connected
manifold, with the following operations given onM (locally):

Laxy = x ·
a
y = Expxτ

a
x Exp

−1
a y, (48)

ωt(a, z) = taz = ExpatExp
−1
a z, (49)

N(x, a, y) = x +
a
y = Expa(Exp

−1
a x+ Exp−1

a y), (50)

where Expx is the exponential map at the point x, and τ ax is
the parallel transport along the geodesic connecting the points
a and x. This construction equips a manifold M with the
linear geodiodular structure, called a natural linear geodiodular
structure of an affinely connected manifold (M,∇). In Figure 1,
the main operation (48) – (50) characterizing nonassociative
geometry are illustrated.

Remark 3.2. Any Ck-smooth (k ≥ 3) manifold with affine
connection can be considered as a geodiodular structure. A
geodiodular space M+

a = 〈M, +
a
, a, (ta)t∈R〉 plays the role of a

tangent space.

Definition 3.7. Let 〈M, L〉 be a loopuscular structure of a smooth
manifoldM. Then the formula

∇XaY =
{

d

dt

(

[(Lag(t))∗,a]
−1Yg(t)

)

}

t=0

, (51)

g(0) = a, ġ(0) = Xa, (52)

Y being a vector field in the neighborhood of a point a, defines
the tangent affine connection. In coordinates, the components of
the affine connection are

Ŵi
jk(a) = −

[

∂2(xȧy)
i

∂xj∂yk

]

x=y=a

. (53)
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FIGURE 1 | Main operations describing nonassociative geometry: (A) Multiplication of a “vector” (geodesic) by a scalar (parameter t); (B) Parallel translation of the

geodesic (ay) along the geodesic (ax); (C) Addition of “vectors" (geodesics on the manifold M); (D) Parallel translation of the geodesic (ax) along the geodesic

triangle (abc) .

Definition 3.8. Let 〈M, L〉 be a loopuscular structure. Then,

ha(b,c) = (Lac )
−1 ◦ Lbc ◦ Lab (54)

is called the elementary holonomy.
The elementary holonomy describes the parallel transport

along a geodesic triangle path (see Figure 1). Thus, it can be
considered as some integral curvature. In the smooth case,
differentiating (ha

(x,y)
)i at the point a ∈ M, we obtain (up to a

numerical factor) the curvature tensor as

Rijkl(a) = 2

[

∂3(ha
(x,y)

z)i

∂xl∂yk∂zj

]

x=y=z=a

. (55)

Remark 3.3. The curvature of a nonassociative space implies
non-trivial elementary holonomy, ha(x, y) 6= id. If ha(x, y) = id
for any a, x, y ∈ M, we obtain a space with absolute parallelism.
If in addition, the relationship x+

a
y = x ·

a
y holds, that means the

absence of torsion, and the space M becomes a classical affine
space (see chapter 3 in [30]).

Employing (54), one can show that the elementary holonomy
satisfies the so-called odular Bianchi identities:

ha(z,x) ◦ h
a
(y,z) ◦ h

a
(x,y) = (Lax)

−1 ◦ hx(y,z) ◦ L
a
x. (56)

These identities can be considered as a non-local form of the
usual Bianchi identities. In the linear approximation, from (56)
we obtain the Bianchi identities in their conventional form.

3.1. Examples
Example 3.1. Two-dimensional sphere S2R. The two-sphere S2R
with a radius R can be equipped by a natural loop structure, that
may be described as follows [58, 59, 64, 65]. Let C be a complex
plane and ζ , η ∈ C. Let us consider the loop formed by the

complex numbers with the non-associative multiplication (left
translation) given by

Lζ η = ζ + η

1− ζη/R2
, ζ , η ∈ C. (57)

This loop is isomorphic to the local loop related to S2R. The
isomorphism between points of the sphere, S2R, and of the
complex plane C can be established by using the stereographic
projection from the south pole of the sphere, writing ζ =
R tan(θ/2)eiϕ .

The computation of the associator yields

l(ζ ,η)ξ = 1− ζη/R2

1− ηζ/R2
ξ . (58)

One can show that for the sphere the elementary holonomy is
determined by the associator, h(ζ ,η) = l(ζ ,L−1

ζ η) [30, 76]. We

obtain

h(ζ ,η)ξ = 1+ ζη/R2

1+ ζη/R2
ξ . (59)

The left invariant metric on S2R can be defined as

g(ζ , ξ ) = 4|ξ − ζ |2
(1+ |ζ |2/R2)(1+ |ξ |2/R2) . (60)

The geodesic distance between two points on S2R is related to the
left invariant metric as follows:

cos
d12

R
= 1− ℓ212

2R2
, (61)

where

ℓ12 =
2|ξ1 − ξ2|

√

(1+ |ξ1|2/R2)(1+ |ξ2|2/R2)
. (62)
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For d12/R≪ 1 we obtain d12 ≈ ℓ12. Using spherical coordinates,
one can show that (61) can be recast as the cosine rule in spherical
trigonometry,

cos θ12 = cos θ1 cos θ2 + sin θ1 sin θ2 cosϕ12, (63)

where θ12 = d12/R, θ1 = 2 tan−1 |ξ1|, θ2 = 2 tan−1 |ξ2| and
ϕ12 = ϕ1 − ϕ2.

Let ξ = ζ + dζ . Then, (60) leads to

g(dζ , dζ ) = 4dζdζ̄

(1+ |ζ |2/R2)2 ,

the well-known expression for the element of length of S2R.
Computation of the curvature tensor yields

Rζ
ζ ζ ζ̄ = 2

R2
(

1+ |ζ |2/R2
)2
, (64)

and using Equation (59) we obtain

Rζ
ζ ζ̄ ζ (0) = 2

[

∂3(h(ζ ,η)ξ )

∂ζ∂η̄∂ξ

]

ζ=η=ξ=0

,

which is consistent with Equation (55).

Example 3.2. Lobachevsky space. Using the isomorphism
established in Example 2.4 between the loop QH2 and
Lobachevsky space, one can consider the upper part the two-
sheeted unit hyperboloid, H2, as a nonassociative space with the
left translations defined by

Lζ η = ζ + η

1+ ζ̄ η
, ζ , η ∈ D. (65)

In terms of the inner coordinates (θ ,ϕ) on H2, an arbitrary
complex number ζ ∈ D can be written as ζ = eiϕ tanh(θ/2).

The computation of the elementary holonomy yields

h(ζ ,η)ξ = 1− ζη

1− ζη
ξ . (66)

We introduce the left invariant metric on H2 as

g(ζ , ξ ) = 4|ξ − ζ |
√

(1− |ζ |2)(1− |ξ |2)
. (67)

The Poincaré disk model is associated to the hyperbolic metric
d(ζ , ξ ), assigning to each pair of points ζ , ξ ∈ D the distance [79]

cosh d(ζ , ξ ) = 1+ 2|ξ − ζ |2
(1− |ζ |2)(1− |ξ |2) . (68)

Thus, the hyperbolic distance between two points onH2 is related
to the left invariant metric on D [see Equation (67)] as follows:
cos d = 1 + ℓ2/2, where we set ℓ = g(ζ , ξ ). For d ≪ 1 we
obtain d ≈ ℓ.

Example 3.3. De Sitter spacetime. De Sitter space, being a
spacetime of constant positive curvature with topology S3 × R,
can be treated as a hyperboloid embedded in five-dimensional
Minkowski space [80, 81],

ZaZ
a − Z0Z

0 = −1/K, a = 1, . . . , 4, K > 0, (69)

with metric given by

ds2 = (dZ0)2 − dZadZ
a. (70)

The induced metric of the de Sitter space can be written as

ds2 = dt2 − dx2 − dy2 − dz2

(

1− K
4 (t

2 − x2 − y2 − z2)
)2
. (71)

The de Sitter loop, QHR, introduced in section 2, is isomorphic to
the geodesic loop of de Sitter space. It has a natural geodiodular
structure induced by the quaternionic algebra. The left invariant
metric on QHR can be defined as follows [16]:

gζ (ξ , ξ ) = ‖ξ − ζ‖2

‖1− K
4 ζ+ξ‖2

. (72)

Letting ξ = ζ + dζ , this leads to the de Sitter metric (71):

g(dζ , dζ ) = (dζ 0)2 − (dζ 1)2 − (dζ 2)2 − (dζ 3)2

(

1− K
4 ((ζ

0)2 − (ζ 1)2 − (ζ 2)2 − (ζ 3)2)
)2
.

For symmetric spaces the elementary holonomy is determined
by the associator, h(ζ ,η)ξ = l(ζ ,L−1

ζ η)ξ [30, 76]. Taking this into

account, we obtain

h(ζ ,η)ξ = (1− K

4
ηζ+)ξ/(1− K

4
η+ζ ). (73)

Applying (55), we obtain the curvature tensor of de Sitter space:

Rµνλσ = −K

2
εµνκδε

κδ
λσ . (74)

Comment 3.1. De Sitter space can be obtained as a solution of
the diodular Einstein’s equations with a “3-term” [15].

Example 3.4. Friedmann-Robertson-Walker spacetime. The
metric of the general Friedmann-Robertson-Walker (FRW)
model may be written as [80, 81]

ds2 = dτ 2 − a2(τ )
(

dr2 + 62(r,K)
(

dθ2 + sin2 θdϕ2
)

)

, (75)

where 6(r,K) = sin r, r, or sinh r, respectively, if K = 1, 0, or
−1. It can be transformed to the form

ds2 = dτ 2 − a2(τ )
(dζ 1)2 + (dζ 2)2 + (dζ 3)2

(

1+ K
4

(

(ζ 1)2 + (ζ 2)2 + (ζ 3)2
))2

, (76)

which will be used below.
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We introduce a binary operation in the neighborhood of the

point τ ∈ HF
R

as

Lxy = x ∗ y
= ζ 0 + η0 − τ

+a(ζ 0 + η0 − τ )
(

ζ + η
)

/(

1+ K

4
ζ+η

)

, x, y ∈ H
F
R
,

(77)

where / denotes right division (see Example 2.7), x = ζ 0+a(ζ 0)ζ
and y = η0 + a(η0)η, with e = τ being the neutral element. The
inverse operation is found to be

L−1
x y = τ+η0−ζ 0+a(τ+η0−ζ 0)

(

η−ζ
)

/(

1− K

4
ζ+η

)

. (78)

The associator is given by

l(x,y)z = ξ 0 + a(ξ 0)
(

1+ K

4
η+ζ

)

ξ
/(

1+ K

4
ζ+η

)

, (79)

where z = ξ 0 + a(ξ 0)ξ . The set of quaternions, H
F
R
, with the

binary operation ∗ forms a loop, that will be denoted as QH
F
R
.

It is easy to show that the quaternionic algebra induces a natural

geoodular structure on QH
F
R
.

Finally, we define the left invariant metric on QH
F
R
as

g(ξ , ζ ) =
(

ζ 0 − ξ 0
)2 −

a2(τ + ζ 0 − ξ 0)
∥

∥ξ − ζ
∥

∥

2

∥

∥

∥
1− K

4 ξ+ξ

∥

∥

∥

∥

∥

∥
1− K

4 ζ+ζ

∥

∥

∥

, (80)

where ζ = ζ 0+a(ζ 0)ξ and ξ = ξ 0+a(ξ 0)ξ . If we let ξ = ζ +dζ
and ξ 0 = ξ 0 + dτ , then (80) yields the FRWmetric:

ds2 = dτ 2 − a2(τ )
(dζ 1)2 + (dζ 2)2 + (dζ 3)2

(

1+ K
4 ((ζ

1)2 + (ζ 2)2 + (ζ 3)2)
)2
.

4. NONASSOCIATIVE DISCRETE
GEOMETRY

Since in case of discrete spaces we lack a smooth structure, we
must use only algebraic structures to study them. Thus, it is
quite natural to employ nonassociative geometry as the adequate
algebraic approach (for details see [15–18]).

Consider a nonassociative finite space M =
〈M, L,N, (ωt)t∈R〉 equipped with (partial) operations:
L(x, y, z) = x ·

y
z, N(x, y, z) = x+

y
z and ωt(x, y) = txy (t ∈ R). This

means that

• 〈M, ·
a
, (ta)t∈R〉 is an odule with a neutral a ∈ M, for any

a ∈ M,
• 〈M, +

a
, (ta)t∈R〉 is a n-dimensional vector space (with zero

element a ∈ M),

• The following geoodular identities are valid:

Ltaxuax
◦ Latax = Lauax (Laxy = L(x, a, y)), (the first geoodular identity)

(81)

Lax ◦ ta = tx ◦ Lax , (the second geoodular identity)

(82)

LaxN(y, a, z) = N(Laxy, x, L
a
xz) (the third geoodular identity)

(83)

A curve in discrete space can be introduced as an ordered set of
points, γ = (a1, a2, · · · as) and, further, we can define the vector
y (ofM+

as
) parallel to a vector x (ofM+

a1
) along this curve γ as

y = L
as−1
as · · · La2a3L

a1
a2
x (Labx

def= b ·
a
x), (84)

whereM+
a = 〈M, +

a
, a, (ta)t∈R〉. The curvature of a discrete space

manifests as a non-trivial elementary holonomy, ha(x, y) 6= id,

ha(x, y) = L
y
a ◦ Lxy ◦ Lax. (85)

Given a nonassociative space (in other words, a finite affinely
connected space) one can enrich it by adding a metric structure.
Specifically, we can define additionally the left invariant metric,
gb(L

a
b
x, La

b
y) = ga(x, y)[17].

In what follows we consider some examples of nonassociative
discrete spaces, including de Sitter space and FRW spacetime.

4.1. Lobachevsky Space
Here we consider a simple discrete model based on the loopQH2.
Let Hn ⊂ D be a triangulated discrete topological space, with n
being the number of vertices. Then Hn becomes a nonassociative
space if we define the partial nonassociative operation preserving
the geometry of finite space, Hn,

ζ n
pq =

ζ n
p + ζ n

q

1+ ζ̄ n
p ζ n

q

, ζ n
p , ζ

n
q , ζ

n
pq ∈ Hn ⊂ D. (86)

The “metric" and elementary holonomy are defined by

g(ζ n
p , ζ

n
q ) =

4|ζ n
p − ζ n

q |2

(1− |ζp|2)(1− |ζ n
q |2)

, (87)

h(ζ np ,ζ nq ) =
1− ζ n

p ζ
n
q

1− ζ̄ n
p ζ n

q

. (88)

Figure 2 depicts the discrete Lobachevsky space Hn for n =
5, 112.

4.2. The Nonassociative Discrete Geometry
of S2

Let n points be distributed randomly on the surface of the unit
sphere, S2. Consider the geodesic triangulation of the sphere,
with the 2D-simplex being a geodesic triangle. We assign to
each surface vertex, p, the polar coordinates (θp,ϕp). Without
loss of generality, assume that the central vertex [i.e., the neutral
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FIGURE 2 | (Left) The discrete space Hn in the Poincaré disk with 5,112

vertices. (Right) Three-dimensional representation of the same space.

element of the loop QS(2)] is located at the north pole. Using
stereographic projection, we obtain

ζp = tan

(

θp

2

)

eiϕp . (89)

The non-associative (partial) operation (86) now takes the form

ζpq =
ζp + ζq

1− ζ pζq
. (90)

Writing ζpq as

ζpq = tan

(

θpq

2

)

eiϕpq , (91)

one can rewrite (90) in spherical coordinates as follows:

θpq = 2 tan−1

(
∣

∣

∣

∣

ζp + ζq

1− ζ̄pζq

∣

∣

∣

∣

)

, (92)

ϕpq = arg(ζp + ζq)−
i

2
ln l(ζp, ζq), (93)

where l(ζp, ζq) stands for the associator

l(ζp, ζq) =
1− ζpζ q

1− ζ pζq
.

The computation of the elementary holonomy yields:

h(ζp ,ζq) =
1+ ζpζ q

1+ ζ pζq
. (94)

We define the left-invariant metric on S2 as

g(ζp, ζq) =
4|ζp − ζq|2

(1+ |ζp|2)(1+ |ζq|2)
. (95)

Comment 4.1. The finite loop contains hidden information
concerning the geometry of the sphere. The spherical symmetry
is determined by the relation between the elementary holonomy
and the associator, h(ζp ,ζq) = l(ζp,L−1

ζp
ζq)
. The smooth sphere can be

regarded as a result of passage to the limit of n → ∞.

4.3. Discrete de Sitter Space
Consider a finite set M = Z

4
n = {p = (pµ) | pµ ∈ Zn,µ =

0, . . . , 3, n ∈ N} where Zn = {p = −n, . . . , n} are integers. A
partial loop QHZ4

n
is defined as a set of quaternions

HZ4
n
= {ζp = ℓ(p0 + i(p1i+ p2j+ p3k)) : ℓ = const,

i2 = −1, i ∈ C; p ∈ Z
4
n} (96)

with the indefinite norm ‖ζp‖2 = ℓ2pµpµ and the binary
operation HZ4

n
× HZ4

n
7→ HZ4

n
defined by

ζp ∗ ζq = ζpq =
(

ζp + ζq

)/(

1+ K

4
ζ+
p ζq

)

, ζp, ζq ∈ HZ4
n
. (97)

We define a partial geodiodular finite space Mn at the neutral
zero as follows:

• QHZ4
n
is the odule with the multiplication operation induced

by the quaternionic algebra over Z,
• M+ = HZ4

n
is the vector space induced by the quaternionic

algebra over Z.

The left-invariant metric and elementary holonomy are given by

g(ζp, ζq) =
‖ζp − ζq‖2

‖1− K
4 ζ+

p ζp‖‖1− K
4 ζ+

q ζq‖
, (98)

h(ζp,ζq)ζm =
(

1− K

4
ζqζ

+
p

)

ζm

/(

1− K

4
ζ+
q ζp

)

. (99)

Taking q = p+ δ, |δ| ≪ n, we obtain ζq = ζp + 1ζq, where
1ζq = ℓ(δ0 + i(δ1i + δ2j + δ3k)). Then, the metric (98) can be
recast as

gζp (ζq, ζq) =
‖1ζq‖2

‖1− K
4 ζ+

p ζp‖2
+ O(Kℓ2), (100)

and

gζp (ζq, ζq) −→ ds2 = (dζ 0)2 − (dζ 1)2 − (dζ 2)2 − (dζ 3)2

(1− K
4 ((ζ

0)2 − (ζ 1)2 − (ζ 2)2 − (ζ 3)2)2
,

as ℓ → 0, n → ∞. A similar consideration of the elementary
holonomy yields

h(ζp,ζq)ζm = ζm + K

4
1(ζp, ζq, ζm)+ O

(

Kℓ2
)

, (101)

where 1(ζp, ζq, ζm) = ζmζ+
q ζp − ζqζ

+
p ζm. Approaching the limit

ℓ → 0 and n → ∞, one recovers the curvature tensor of de Sitter
space:

Rµνλσ = −K

2
εµνκδε

κδ
λσ . (102)

Thus, smooth de Sitter space could be regarded as the passage to
the limit of ℓ → 0, n → ∞ and ℓn = const. We see that, to some
extent, the information about the geometry of de Sitter spacetime
is hidden in the finite loop QHZ4

n
.
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4.4. Discrete Friedmann-Robertson-Walker
Spacetime
Consider a finite set M = Z

3
n = {p = (pi) | pi ∈ Zn, i =

1, 2, 3, n ∈ N}, where Zn = {p = −n, . . . , n} are integers. We
denote by QHZ3

n
a partial loop defined as a set of quaternions,

HZ3
n
= {ζp = iℓ(p1i+ p2j+ p3k) : ℓ = const,

i2 = −1, i ∈ C; p ∈ Z
3
n}, (103)

with the norm ‖ζp‖2 = ℓ2pipi = −ℓ2
(

(p1)2 + (p2)2 + (p3)2
)

and
the binary operation HZ3

n
× HZ3

n
7→ HZ3

n
given by

ζp ⋆ ζq = ζpq =
(

ζp + ζq
)

/(

1+ K

4
ζ+
p ζq

)

, ζp, ζq ∈ HZ3
n
.

(104)
A partial geodiodular finite space Mn at the neutral element
e = 0 is defined as

• QHZ3
n

is the odule with multiplication induced by the
quaternionic algebra over Z,

• M+
n = HZ3

n
is the vector space induced by the quaternionic

algebra over Z.

Let H
F
Z3
n×Tn

be a set of quaternions,

H
F
Z3
n×Tn

= {xnp = τn + a(τn)ζp, p ∈ Z
3
n, },

where Tn = {τn : n ∈ N} and τn is a discrete parameter. We

define the partial loop QH
F
Z3
n×Tn

≃ QHZ3
n
× Tn as the loop with

the operation ∗ given by

xnp ∗ xnq = τn + a(τn)ζ p ⋆ ζ q. (105)

For the associator we have

l(ζp ,ζq)ζm =
(

1+ K

4
ζ+
q ζp

)

ζm

/(

1+ K

4
ζ+
p ζq

)

. (106)

We introduce the nonassociative discrete FRW spacetime as

MF =
⋃

n∈N MF
n , where a partial geodiodular finite spaceMF

n

consists of

• QH
F
Z3
n×Tn

, the odule with multiplication induced by the

quaternionic algebra,
• M+

n = HZ3
n
× Tn, the vector space with structure induced by

the quaternionic algebra over Z,

• the partial binary operation for the given xnp ∈ MF
n and

xn
′

q ∈ MF
n′ is defined as

xnp ∗ xn
′

q = τn + τn′ + a(τn + τn′ )ζp ⋆ ζq. (107)

Thus, τn can be interpreted as a “discrete time” in our model .
The computation of the elementary holonomy yields

h(ζp ,ζq)ζm =
(

1− K

4
ζqζ

+
p

)

ζm

/(

1− K

4
ζ+
q ζp

)

. (108)

One can introduce the discrete left invariant metric on MF in
the same way as in Equation (98),

g(xp, x
′
q) = (τn′ − τn)

2 −
a(τn)a(τn′ )‖ζp − ζq‖2

‖1− K
4 ζ+

p ζq‖‖1− K
4 ζ+

q ζp‖
. (109)

Finally, we obtain the metric for FRW spacetime in the
continuous limit,

g(ζp, ζq) → ds2 = − (dζ 1)2 + (dζ 2)2 + (dζ 3)2

(

1+ K
4

(

(ζ 1)2 + (ζ 2)2 + (ζ 3)2
)

)2
. (110)

5. EMERGENCE OF SPACETIME

We are now ready to propose a discrete model of spacetime
based on nonassociative geometry. In our approach we consider
a triangulated topological space, where the vertices are “points"
of discrete spacetime, and form the elements of the loop with
a partial operation. The edges are identified as the “geodesics"
connecting vertices. In contrast to the Regge model (for details
and a review, see [82–85]), in nonassociative geometry the
curvature does not reside at the vertices, but is defined by the
elementary holonomy associated with 2-faces of simplices.

Our approach is based on the following assumptions:

• Vertices of the simplices are considered as partially ordered
“atoms" of discrete spacetime.

• The distance between two neighboring atoms can not be less
than the fundamental length, ℓp.

• Interaction between atoms of spacetime, being nonlocal and
nonassociative, defines the spacetime geometry.

• Spacetime geometry is encoded in the nonassociative structure
of spacetime.

• The foliation of spacetime consists of space-like slices joined
by time-like edges.

• Time is quantized and the evolution of spacetime geometry is
governed by a random/stochastic process.

• The spacetime dimension may be dynamical.

Let Mn be a triangulated topological space, with n being the
number of vertices. We identify the elements xp ∈ Mn as
the vertices of simplices and introduce a partial nonassociative
operation, xp ∗ xq. Since the introduced operation is partial, for
some elements xp, xq ∈ Mn the result of multiplication may not
belong to Mn: xp ∗ xq 7→ x′p 6∈ Mn. Adding the point x

′
p to the

setMn as a new vertex, we obtainMn+1. This leads to the partial
ordering

· · · ≺ Mn ≺ Mn+1 ≺ · · · ≺ Mn′ . . . , (111)

and the nonassociative discrete spacetime, M =
⋃

n∈NMn,
becomes a partially ordered finite set or causal set ([20, 86], see
section 6 for details). The evolution of spacetime geometry is
interpreted in terms of the sequence: · · · → Mn → Mn+1 →
· · · → Mn′ . . . .

Comment 5.1. Albeit the fundamental length, ℓp, is not
necessarily equal to the Planck length, we will take it to be so
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FIGURE 3 | (Left) The average radius, 〈R〉, as a function of iteration number, n, for a 103 × 104 trial (runs ×iterations; error bars are omitted for clarity). The red curve

corresponds to Equation (115). (Right) The average simplex area as a function of iteration number, n, for a 20×15. It slowly approaches the area of the equilateral

triangle ≈ 0.43.

from this point forward. The known problem of “many-fingered
time” [4–8] is overcome in our model as follows. In contrast
to CDT, in our approach edges are allowed to be longer than
the Planck length. This implies that the local “time” between
two slices depends on the ‘coordinates’ (vertices), and each
realization of the random process yields different results. Thus,
history becomes foliation dependent (i.e., the many-fingered
time problem). However, actual physical quantities are defined
by probabilities, which are foliation independent. Since in our
approach the evolution of the spacetime geometry is governed by
a stochastic dynamical process, we avoid the foliation dependence
problem.

To illustrate our approach, below we consider a cosmological
toy model of (2+1)-D discrete spacetime and a discrete FRW
cosmological model.

5.1. Toy Model of (2+1)-D Discrete
Spacetime
In this section we consider a simple model based on the non-
associative compact space S(τn) ≃ QS(τn), obtained by
triangulation of the partial loop, QS(τn), defined as follows.
An arbitrary element, ζ n

p ∈ QS(τn), takes the form ζ n
p =

Rnζp, where Rn = R(τn) is the “radius” of S(τn), τn is
the discrete intrinsic time, a quantum of time is 1τn =
τn+1 − τn = 1 in Planck units, and ζp ∈ C is the p-th
complex number.

The partial nonassociative operation preserving the geometry
of spacetime is given by

ζ n
pq =

ζ n
p + ζ n

q

1− ζ̄ n
p ζ n

q /R2n
, ζ n

p , ζ
n
q , ζ

n
pq ∈ QS(τn), (112)

ζ n+1
pq =Rn+1

Rn
ζ n
pq, ζ n+1

pq ∈ QS(τn+1). (113)

We assume that evolution of the discrete spacetime geometry is
a stochastic process. The radius Rn is defined by a random walk
with step ℓp and reflecting barrier R0 at n = 0 [87–89]. After n

steps and for n≫ 1, the expectation value of the scale factor will
grow as

〈R〉 = R0 + ℓp

√

2

πn

∞
∫

0

xe−x2/2n. (114)

The computation yields

〈R〉 = R0 +
√

2n/πℓp. (115)

In Figure 3 we present the results of our numerical simulations.
As one can see (left panel) the analytical formula (115) is in good
agreement with our numerical results. We find that, for large n,
the average area of each 2D-simplex converges to the area of the
equilateral triangle, A =

√
3/4 ≈ 0.433. (see Figure 3, right

panel.)
Assume that S(τn) has m points. The map QS(τn) 7→

QS(τn+1) defined by Equation (113) yields m2 points belonging
to QS(τn+1). To obtain S(τn+1) one should triangulate the
set QS(τn+1). During the triangulation only the points with
distance ℓ ≥ ℓp between closest neighbors will survive. After
triangulation, we are left with the two space-like slicesS(τn) and
S(τn+1). Next, we triangulate the set S(τn)

⋃

S(τn+1), joining
the vertices of the spatial slices by time-like edges. Repeating
this procedure, we obtain a partially ordered discrete spacetime,
S =

⋃

nS(τn):S(τ0) ≺ · · · ≺ S(τn) ≺ S(τn+1) ≺ . . . .
In Figures 4–7we present the results of numerical simulations

showing a particular realization of the random process. As an
initial state at the moment τ0 = 0, we take a discrete space S(0)
defined by the tetrahedron formed by 2-dimensional equilateral
simplices of the same size, with distance ℓp between neighboring
vertices and R0 =

√
3/8ℓp. As the number of iterations increases,

the triangulation of S(τn) becomes finer and its elements
approach equilateral 2D-simplices (see Figure 4). As one can see,
with growing n the simplicial complex is approximated by S2. The
results of our numerical simulations illustrating the evolution
of spacetime geometry are presented in Figure 5. In Figure 6

the triangulation of the spacetime, S =
⋃

nS(τn) for n = 5

Frontiers in Physics | www.frontiersin.org 11 March 2019 | Volume 7 | Article 32

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Nesterov and Mata Nonassociative Geometry

is presented. The spatial foliation of the spacetime geometry
is depicted in Figure 7. The correspondence between simplicial
complexes in the complex plane, C, and S(τn) is shown on the
right side of the figure. The surfaces τn = const and τn+1 = const
represent adjacent two-dimensional spaces. The timelike edges
are omitted for clarity.

5.2. Discrete Spacetime: FRW
Cosmological Model
Here we consider a cosmological discrete spacetime model based
on the discrete nonassociative FRW geometry described in
section 4.4. We start with the partial loop QHZ3

n
based on the set

of quaternions

HZ3
n
= {ζp = iℓp(p

1i+ p2j+ p3k) :

i2 = −1, i ∈ C; p = (p1, p2, p3), p ∈ Z
3
n}. (116)

Let ζ n
p = R(τn)ζ p be an element of the loop QHZ3

n
, where τn is a

discrete intrinsic time, R(τn) = a(τn)ℓp with a(τn) being the scale

FIGURE 4 | (Left) Initial simplicial space S(0). (Right) Dynamical triangulation

yielding S(τn) .

factor. We define the partial binary operation in QHZ3
n
as follows:

ζ n
pq =R(τn)

(

ζ p + ζ q

)

/(

1+ K

4
ζ+
p ζ q

)

, ζ p, ζ q ∈ HZ3
n
,

(117)

ζ n+1
pq =R(τn+1)

R(τn)
ζ n
pq, ζ n

pq ∈ QHZ3
n
, ζ n+1

pq ∈ QH
Z
3
n+1

, (118)

where “/” denotes the right division of the quaternions.
Let M(τn) be a triangulated topological space obtained by

triangulation of QHZ3
n
. Assume that M(τn) has m points. Then

the map M(τn) 7→ M(τn+1) defined by Equation (118) yields
m2 points belonging to QH

Z
3
n+1

. However, only the points with

distance ℓ ≥ ℓp between closest neighbors survive during

FIGURE 6 | The triangulation of the spacetime S =
⋃

nS(τn) (n = 5).

FIGURE 5 | Evolution of spacetime geometry for a particular realization of the random process.
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FIGURE 7 | Spacetime evolution after n = 15 steps. Timelike links between vertices of neighboring slices are omitted for clarity.

FIGURE 8 | (Left) Initial 3D simplex M(τ0). (Right) The average radius as a function of iteration number, n, for a 200×25 trial (runs× iterations; error bars are omitted

for clarity).

the triangulation of QH
Z
3
n+1

. After triangulation, we obtain

two space-like slices, M(τn) and M(τn+1). The next step is to
triangulate the set M(τn)

⋃

M(τn+1), joining the vertices of
spatial slices by time-like edges. Repeating this procedure, we
obtain a partially ordered discrete spacetime: M(τ0) ≺ · · · ≺
M(τn) ≺ M(τn+1) ≺ . . . . Since some information is lost during
triangulation in the form of “missing” vertices (those that would
have been closer than ℓp), the evolution is irreversible. Thus,
in our approach the arrow of time, being related to the partial
ordering, appears naturally [18].

We assume that evolution of the discrete spacetime geometry
is a stochastic process. The scale factor, Rn, is defined by a random
walk with a step ℓp and reflecting barrier R0 at n = 0. After n
steps, the average scale factor will grow as 〈Rn〉 = R0+

√
2n/πℓp

(see Figure 8, right panel).
After ∼ 108 steps in Planck units of time, which corresponds

to pre-inflationary time, ti ∼ 10−35 sec (time of the beginning
of inflation), the size of the universe in our model would be
Rpr ∼ 10−29cm. The size of the pre-inflationary universe in the
standard FRW-model can be estimated using the relationship

between the redshift and the cosmological scale factor, zi =
a(t)/a(ti) − 1, where t denotes the actual age of the universe.
To estimate the redshift, we use the 3CDM model. For the dark
energy dominated era the redshift is given by Ryden [90] and
Frieman et al. [91]

1+ z = a(t)

a(tm)
=

sinh2/3
(

3
2H0

√
�3 t

)

sinh2/3
(

3
2H0

√
�3 tm

) , (119)

where �3 = 3/(3H2
0). This expression is quite accurate for

t > tm = 10Myr(107 y) = 3.15 · 1014 sec. For a radiation-
dominated era, we have a(t) ∝

√
t, and for a matter-dominated

universe, a(t) ∝ t2/3. During inflation the universe is blown up to
enormous size, and the changes in the cosmological scale factor
are of order a(ti)/a(tf ) ∼ e60 ≈ 1026, where tf denotes the time
of the end of inflation. Combining all results, we obtain

zi ≈ 1026

√

tr

tf

( tm

tr

)2/3 sinh2/3
(

3
2H0

√
�3 t

)

sinh2/3
(

3
2H0

√
�3 tm

) . (120)
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Inserting tf ≈ 10−33s, tr ≈ 1014s, t ≈ 4.35 · 1017s (age of

the universe), �3 = 0.7 and H0 = 2.33 · 10−18s−1 into this
expression, we obtain zi ≃ 1052. The pre-inflationary size of the
universe can be estimated as Ri = R(t)/zi.

If we choose R(t) as the observable radius of the universe,
R(t) ∼ 1028 cm, then the radius of the pre-inflationary universe
is Ri ∼ 10−24 cm. Comparing this result with the prediction of
our model, we find Ri/Rpr = 105. Thus, starting with only one
initial mini-universe, we cannot reach an appropriate size of the
universe at the beginning of the inflationary epoch. To overcome
this difficulty, one can assume that spacetime would consist of
many small fluctuating simplicial regions.

These fluctuations may form mini-clusters, as illustrated in
Figure 9, created in different regions and may grow as “mini-
universes” (Figure 10). We consider all these mini-universes
as a multiverse [92, 93]. After ∼ 107 − 108 steps from
the very beginning, the mini-universes grow enough and may
merge in different regions of space to form pre-inflationary
universes (bubbles) with appropriate average size ∼ 1028 cm.
This multiverse state can be metastable and, as a result of
the first-order phase transition, the nucleation of bubbles may
occur and lead to inflation. Indeed, if the duration of the phase
transition is short enough, bubble nucleation of the new phase
may have an exponential character [94–96]. Thus, in our model
the post-inflationary Universe is the result of first-order inflation,
occurring during a strong first-order phase transition [97–99]
(Figure 11).

Comment 5.2. An alternative scenario of arising spacetime
structure may be formation of 3D-clusters from 2D-simplicial

FIGURE 9 | Formation of space foam from 200 initial randomly distributed

tetrahedrons.

complexes as illustrated in Figure 9. This implies that the 2D-
simplices are more fundamental than 3D-simplices, and 3D
volume effectively is created from random foam-like structures.
In this scenario the spacetime dimension is dynamical and may
vary depending on fusion of simplicial complexes.

6. DISCUSSION AND CONCLUSIONS

The preceding examples show how the framework of
nonassociative geometry may describe the discrete structure
of spacetime. We deal with points (“atoms”) of discrete
nonassociative spacetime. In our approach, at the Planckian
scale the standard concept of spacetime is replaced by the
nonassociative discrete structure. At large spacetime scales this
“looks like” a smooth manifold, and the information about the
geometry of the continuous spacetime is hidden in the structure
of the discrete nonassociative spacetime.

In our approach it is assumed that the “universe” is created
from a few initial points. This leads to a new understanding of
the “big-bang”: the initial singularity does not exist. Spacetime
evolution is described by a stochastic process preserving
spacetime geometry. As a result, we obtain a discrete spacetime
with many of the attributes of continuum spacetime: spacelike
slices, “many-fingered time,” and causal structure. Note that,
while the history of spacetime is foliation dependent, the

FIGURE 11 | Reconstructing the post-inflationary Universe.

FIGURE 10 | “Emergent spacetime”: formation of mini-universe (bubble) from 200 randomly distributed initial 3D-simplices.
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observables are foliation independent since they are defined by
probabilities.

If we admit that the fluctuations can occur in different
regions, then foam-like structures can be created and form a
spatial foam (Figure 9). This implies that the dimension of
spacetime is dynamical and 3D-clusters are created from 2D-
simplicial complexes like a volume can be created from foam-
like structures. This scenario is very speculative, but deserves
further study.

Existence of the fundamental length as a minimal admissible
length scale in the Universe implies that the emergence of
space in the expanding cosmological models is a continuous
process. This point of view is supported by the models with
eternal inflation. In these models the inflationary phase of the
Universe’s expansion lasts forever in at least some regions of the
Universe [93, 97].

We would like to compare our approach with relevant models
of discrete spacetime proposed in CS [19–21] and CDT [14, 22–
28]. Both theories attempt, as their names suggest, to preserve the
causality present in continuous spacetime while also constructing
a discrete underlying structure. We briefly recount the main
features of these approaches to compare and contrast them with
our model.

CS proposes that the microstructure of spacetime is a partially
ordered set (causal set or causet). A causal set is a partially
ordered set of elements C (sometimes also abbreviated a poset)
together with the relation ≺, called “precedes,” such that 1) if
x ≺ y and y ≺ z, then x ≺ z, ∀ x, y, z ∈ C; 2) if x ≺ y and
y ≺ x, then x = y, ∀ x, y, z ∈ C; 3) for any pair of elements x and
z in C, the set of other elements {y| x ≺ y ≺ z} between x and
z is finite. Thus, the partial order encodes information about the
causal structure of spacetime.

These axioms establish the transitivity, non-circularity, and
finiteness of causal sets. Thus, the elements of C lie as nodes
along branches of links between them, with each element
representing an abstraction of a fundamental unit of spacetime.
The fundamental hypothesis of CS theory is that spacetime is
described by a causet made of elements of Planckian size in
the quantum regime. The order of the set gives rise to the
causality present in macroscopic spacetime, whereas the number
of elements determines the spacetime’s volume. Together, these
two features combine to produce the macroscopic geometry of
spacetime.

Like CS, CDT is also concerned with preserving causality at
a fundamental scale but is more explicitly geometrical. Formally,
CDT seeks a discrete version of Feynman path integral [22, 28],

Z =
∫

DgeiS[g] → Za, (121)

where the integration is performed over all Lorentzian geometries
with topology 6 × [0, 1], with 6 being a compact, connected
three-dimensional manifold. The fundamental building blocks
of CDT are equilateral 4-simplices of side length a, that is,
four-dimensional generalizations of equilateral tetrahedra. These
simplices are arranged such that their spacelike edges form
spacelike surfaces separated by their timelike edges. More

explicitly, the partition function, Za is given by

Za =
1

CT

∑

T

eiS[T], (122)

where S[T] is a suitable gravitational action, and the sum is over
the chosen set of abstract triangulations ofM.

So far, CDT has relied on Monte Carlo techniques to build
fluctuating spacetimes out of simplices. It should also be stressed
that the minimum length cutoff at a is not identified with the
Planck length, but is used as part of a limiting procedure to obtain
a continuum spacetime. We refer the interested reader to the
cited bibliography and references therein for promising results
and developments in both CS and CDT, which would be out of
scope for our present discussion.

The description of discrete spacetime by nonassociative
geometry is both similar and distinct from those by CS and CDT.
Like these two approaches, nonassociative geometry incorporates
causality as a fundamental axiom of the model. A given simplicial
spacetime is in a precedence relation to the one that follows it,
M(τn) ≺ M(τn+1). A temporal direction is established and can
be represented by timelike edges between nodes belonging to
times τn and τn+1. Since vertices in M(τn) determine those in
M(τn+1) but, due to the minimum length restriction, not vice
versa, a definite arrow of time is established. However, unlike
the stochastic sequential growth used in CS, where different
branches of spacetime grow one element at a time in each discrete
time interval, nonassociative geometry elements are created
simultaneously in a non-local manner. And unlike CDT, timelike
links in nonassociative geometry can have variable length. This
yields the partial ordering of spacetimes,

· · · ≺ M(τn) ≺ M(τn+1) ≺ · · · ≺ M(τn′ ) . . . , (123)

and the nonassociative discrete spacetime, M =
⋃

n∈NM(τn),
becomes a finite poset as described in section 5. The evolution
of spacetime geometry is interpreted in terms of a sequence:
· · · → M(τn) → M(τn+1) → · · · → M(τn′ ) . . . . Thus, in
our approach the arrow of time appears naturally. The other
difference with CDT is that, in contrast to CDT, in our model the
curvature, being defined by the elementary holonomy associated
with the faces of 2D-simplices, is nonlocal.

Simplicial cells are fundamental components of
nonassociative discrete spacetimes, as in CDT. However, our
numerical implementation of nonassociative geometry explicitly
adopts the Planck length, ℓp, as a minimum cutoff length, unlike
CDT. Also unlike CDT, nonassociative geometry does not restrict
simplices to be equilateral, although the realization we present
does converge to this scenario in the limit of high iteration
numbers (i.e., large values of time). Another difference with CDT
is that spacetime evolution in nonassociative geometry, while
having a certain stochastic character, does not rely on Monte
Carlo techniques to generate fluctuations in spacetimes, since
the “random” component in the evolution resides completely in
the random-walk behavior of R.

In conclusion, we have shown how one can describe
continuum and discrete spacetimes in the framework of the
nonassociative geometry. The first feature of our model of
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discrete spacetime is the obvious absence of an initial singularity.
The other important feature is a natural emergence of causal
structure and an arrow of time. The irreversibility of evolution
is caused by a random process and information loss due to
existence of the minimal fundamental Planck length. Certainly,
the loopuscular structures used in section 5 are given in an ad hoc
manner. The open question is then how to describe more general
models, using the sum over all possible geometries as in the CDT
approach. This is the subject of the future study.
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