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Minimum Spectral Bandwidth in
Echo Seeded Free Electron Lasers
Erik Hemsing*

SLAC National Accelerator Laboratory, Menlo Park, CA, United States

This paper examines the impact of non-linear longitudinal phase distortions on the

spectral bandwidth in echo seeded free electron lasers (FELs). It extends the existing

theory developed in Hemsing [1] for echo-enabled harmonic generation (EEHG) to

include finite laser pulse durations. An analytic expression for the shape of the optimized

longitudinal bunching envelope is derived, and is used to determine the laser and electron

beam pulse durations that minimize the seeded bandwidth in the presence of arbitrary

phase distortions. The time-bandwidth product (TBP) is also derived, and is shown that

the TBP and the bandwidth increase by no more than
√
2 from their transform-limited

values when the bandwidth is minimized.

Keywords: FEL (free electron laser), EEHG, echo, seeded, xray, chirp, nonlinear, harmonic

INTRODUCTION

Externally seeded FELs use lasers to produce coherent high harmonic density modulations
(bunching) in relativistic electron beams that are then used for the emission of coherent radiation
at short wavelengths. Seeding is useful for overcoming the otherwise noisy output of SASE
(self-amplified spontaneous emission) from these beams to generate narrowband FEL radiation.
Besides improved longitudinal coherence, external seeding also enables control over the character
of the FEL output pulses [2, 3], allowing adjustable coherent bandwidths [4] or the ability to
produce multiple, phase locked pulses [5, 6], or multiple colors [7, 8].

Several different external seeding schemes have been proposed, and a few demonstrated (see e.g.,
[9] and references therein). Relevant specifically to this work, echo-enabled harmonic generation
(EEHG) is a scheme that uses two external laser pulses (generally UV wavelengths) to efficiently
generate bunching in the electron beam down to soft x-rays [10, 11]. In EEHG, the first laser
produces a sinusoidal energy modulation in the electron beam that is typically only a few times
the intrinsic slice energy spread. The beam then goes through a strong longitudinally dispersive
section that folds over the sinusoids and creates a filamentary phase space structure in the particle
distribution. The second laser then modulates the filamented phase space distribution, and a final
dispersive section creates high harmonic bunching at short wavelengths in the current distribution.
The beam then enters the FEL where coherent light is emitted and exponentially amplified.

A primary goal of seeding schemes is to minimize the FEL bandwidth and produce
transform-limited pulses. In principle, the narrowest obtainable bandwidth is given by the inverse
electron beam bunch length. In practice however, electron beams in modern FELs have distortions
in the longitudinal phase space that mix additional frequencies into the harmonic up-conversion
that spoil the purity of the final output spectrum [12–20]. In Hemsing [1] a general method
was developed to calculate the impact of beam energy distortions through the broadening they
introduce in the bunching spectrum (i.e., the Fourier transform of the current distribution). The
broadening width was then used to set limits on the amplitude of common distortions to maintain
near transform-limited seeding.
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Hemsing Minimum Bandwidth in EEHG FELs

The magnitude, shape, and location of these distortions,
within both the electron beam and the laser pulse, is an important
factor in the optimization of external seeding schemes. The
analysis in Hemsing [1] assumed infinitely long lasers that
completely covered the electron beam (e-beam). In this limit,
the bunching spectrum is predicted to be highly sensitive to
e-beam energy variations because the whole beam contributes
to the final spectrum and can have strong nonlinear portions
in the head and tail. However, in practice, the seed lasers can
be comparable in length to the electron beam or shorter, and
positioned longitudinally within the e-beam to avoid seeding
in the strong nonlinear portions. Shorter pulses naturally have
broader bandwidths, so in order to achieve the narrowest
harmonic bunching spectrum, a balance must be found between
the transform limited bandwidth of the short laser and the
broadening from the nonlinear phase contributions.

Here, using an extension of the formalism in Hemsing [1], we
examine this more practically relevant case where the seed laser
pulse can vary in duration, and also carry nonlinear temporal
phase structures. This allows analysis of the bunching spectrum
in the presence of nonlinearity in the electron beam and laser
phase. From a general expression for the bandwidth, we show that
laser pulses optimized in duration can produce much narrower
bunching spectra once the e-beam energy distortions reach a
threshold value. We also define the requirements that allow the
laser phase to precisely compensate the e-beam distortions to
obtain transform limited pulses.

The paper is arranged as follows.We first present an extension
to the theory in Hemsing [1] that includes a finite seed laser
pulse that produces a modulation with a longitudinal profile
given by the function g(z). Under reasonable approximations,
the bunching bandwidth can be calculated straightforwardly
from g(z), the e-beam distribution f (z), and the combined phase
distortions ϕ(z). Since the spectral-temporal properties in EEHG
are inherited primarily from the second laser, we assume the first
laser is infinite. Assuming that the EEHG bunching amplitude is
optimized, we then derive an analytic expression for g(z) with
a Gaussian seed laser. From this we retrieve the well-known
m−1/3 harmonic compression effect, and are able to calculate
the transform-limited bandwidth. Arbitrary phase distortions are
then included as a Taylor series, and their impacts to each order
on the total bandwidth and time-bandwidth product (TBP) are
then calculated analytically. We then derive the conditions on the
laser pulse length and e-beam length to minimize the bandwidth,
and study a few examples.

MATHEMATICAL DESCRIPTION

Notation closely follows that of Xiang [11]. Consider an EEHG
electron beam transformation of the form,

p1 = p+ A1 sin(k1z)+1p1(z),

z1 = z + B1p1/k1,

p2 = p1 + A2(z1) sin
[

k2z1 + ψ2(z1)
]

+1p2(z1),

z2 = z1 + B2p2/k1.

(1)

where the normalized laser modulations are A1,2 = 1E1,2/σE,

normalized dispersions are B1,2 = k1R
(1,2)
56 σE/E, the slice energy

spread is σE, and E is the electron beam energy. Here, distinct
from the analysis in Hemsing [1], we allow the second laser
to have a finite pulse length, A2(z1), as well as a longitudinally
dependent phase ψ2(z1). The first laser, A1, is assumed to be
ideal and infinite in length. Additional energy distortions in the
electron beam, 1p1 and 1p2, are again modeled as occurring
alongside the laser modulations.

The bunching spectrum near the harmonic peak kE = aEk1 =
(n+mK)k1 is given by

bn,m(k) =e−ξ
2
E/2Jn(−ξEA1)

∫

e−iz(k−kE)+iϕ(z)

× f (z)Jm(−aEA2(z)B2)dz,

(2)

where ξE = nB1 + aEB2 is the EEHG scaling parameter, and
f (z) is the longitudinal electron beam distribution function. The
beam is assumed to have an uncorrelated Gaussian initial energy
distribution. Similar to Hemsing [1], here we utilize the weakly-
folding approximation which assumes that the energy structures
satisfy B1d1p1/dz≪ k1 and are small enough so that they do not
lead to large changes in the phase space distribution after the first
chicane. We also assume that the longitudinal variations in 1p2,
A2, andψ2 are sufficiently slowly-varying that the full integral can
be simplified by replacing z for z1 in the function arguments. It
is also assumed that the system is far from the minimum pulse
duration limit [21].

With these approximations, the phase ϕ(z) captures the
combined impact of energy distortions in the electron beam,
1p1,2, and the phase variation ψ2 in the second laser,

ϕ(z) = −ξE1p1(z)− aEB21p2(z)+mψ2(z). (3)

The z-dependence of the second laser envelope A2(z) is still
within the argument of the Jm Bessel function, which complicates
simple analytic solutions. We therefore search for an ansatz of
the form,

Jm(−aEA2(z)B2) = g(z)Jm(−aEA2B2), (4)

where the imprint of the slowly-varying laser envelope
is captured by the function g(z), determined shortly by
approximate expansion. Note that in the limit of an infinitely
long laser, g → 1. In anticipation of a Gaussian laser profile,
A2 = A2(0) is the peak of the modulation.

With bn,m(k) =
∫

b̃n,m(z)e
−ikzdz, the longitudinal bunching

factor can then be expressed as

b̃n,m(z) ≈ b̄n,mf (z)g(z)e
ikEz+iϕ(z), (5)

where f (z)g(z) together form the z-dependent envelope, and

b̄n,m = e−ξ
2
E/2Jn(−ξEA1)Jm(−aEA2B2) the optimized bunching

amplitude [20]. Now the instantaneous spatial bunching
frequency is just the z-derivative of the full longitudinal phase,

kz(z) = kE + ϕ′(z). (6)
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The average frequency is then

〈kz〉 =
∫∞
−∞ kz(z)[f (z)g(z)]

2dz
∫∞
−∞[f (z)g(z)]2dz

= kE + 〈ϕ′(z)〉, (7)

and the spectral bandwidth of the harmonic bunching spike is

σ 2
k = σ 2

kE
+ 〈(ϕ′)2〉 − 〈ϕ′〉2,

= σ 2
kE

+ σ 2
ϕ′ ,

(8)

where the transform-limited bunching bandwidth is [22]

σ 2
kE

=
∫

[(fg)′]2dz
∫

(fg)2dz
. (9)

This gives the bandwidth due to the combination of the laser
modulation g(z) with the electron beam distribution function
f (z). It is dominated by the shorter of the two if they coincide
longitudinally. The bandwidth due to the nonlinear phase
structures is given by σϕ′ .

OPTIMIZED MODULATION

We consider the effect of a Gaussian laser pulse in the second
echo modulator on the longitudinal profile of the bunching. This
will enable us to calculate an approximate form for g(z), and thus
the harmonic compression factor and scaling of the bunching
bandwidth in the presence of the phase ϕ(z). Slippage in the
modulator is ignored.

The optimum amplitude of the second laser from time-
independent echo theory is A2 = j′m,1/aEB2, given by the
requirement that Jm(aEA2B2) is peaked, with j′m,1 = m +
0.8087m1/3 the first zero of the Bessel function J′m. Small relative
changes in the bunching due to variations from the optimum
modulation are given by [20]

1b̄n,m

b̄n,m
= −

(

1A2

A2

)2 (j′m,1)
2 −m2

2
, (10)

where m ≫ 1 is the harmonic of the second laser. Let us
assume that the laser modulation envelope has an rms intensity
duration σL/c,

A2(z) = A2e
−z2/4σ 2L (11)

To lowest order near the z = 0 peak, small changes in the
laser amplitude vary according to 1A2/A2 = −z2/4σ 2

L . This
suggests that the bunching envelope function g(z) can be written

as g(z) ≈ 1−
(

z2

4σ 2L

)2 (j′m,1)
2−m2

2 . Mathematically, this looks like a

lowest order expansion about z = 0 for small values of the second
term. We posit then, that the functional dependance of g(z) may
be modeled as a super-Gaussian distribution that has the same
series expansion to lowest order:

g(z) ≈ exp

[

−
(

z2

4σ 2
L

)2 (j′m,1)
2 −m2

2

]

= exp

[

−
q2

2

(

z

σg

)4
] (12)

FIGURE 1 | (Top) Bunching envelope and harmonic compression effect for

m=50. The approximate super-Gaussian g(z) is slightly narrower than the exact

solution. (Bottom) Corresponding frequency spectra.

where q = Ŵ(3/4)/Ŵ(1/4) ≈ 1/3. This form for the z-dependent
bunching envelope induced by the laser closely matches exact
solutions, as shown in Figure 1. The rms width of |g(z)|2 is, to
a good approximation,

σg ≈
σL

m1/3
. (13)

Thus we recover them−1/3 scaling of the harmonic compression
effect of the initial laser pulse length [13, 14], where for
large harmonics (j′m,1)

2 − m2 ≈ 1.62m4/3. The FWHM has
the same scaling but with a different proportionality, 1g ≈
1.4
m1/31L, where 1L = σL

√
8 ln 2 is the FWHM of the seed

laser intensity. These scalings are plotted against exact values
in Figure 2.

Harmonic compression is the result of the high harmonics
being increasingly more sensitive to the optimal modulation
amplitude to produce bunching, so the longitudinal region of
the Gaussian modulation that matches this condition becomes
narrowed. The flattened, super-Gaussian form of g(z) is thus
characteristic of the optimized bunching envelope for a Gaussian
second seed laser. We note that it slightly underestimates the
exact longitudinal width of the bunching envelope, as shown in
Figures 1, 2. The rms value in (13) is low by about 10%, so the
predicted spectral bandwidths can also differ slightly, but the
scaling withm still holds.
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FIGURE 2 | Normalized RMS and FWHM lengths of the bunching envelope

from exact numerical calculations (solid lines) and from the super-Gaussian

approximation (dashed lines).

With an analytic form for g(z) in hand, the transform-limited
bandwidth in Equation (9) can be calculated for a specified
electron beam distribution f (z). For the sake of simplified
calculations, we assume that f (z) has the same, super-Gaussian
form as g(z), but with a different rms, σz , and properly
normalized,

f (z) =
2
√
q

σzŴ (1/4)
exp

[

−q2
(

z

σz

)4
]

. (14)

The rms transform-limited bandwidth of the bunching spectrum
then has simple analytic solution that is approximately (see
Supplementary Material),

σ 2
kE

≈
1

2

(

1

σ 4
z

+
1

2σ 4
g

)1/2

=
1

2

(

1

σ 4
z

+
m4/3

2σ 4
L

)1/2

. (15)

Similarly, the rms length of the bunching envelope |b̃n,m(z)|2 is
simply (see Equation 51),

σb ≈
1

√
3σkE

. (16)

Figure 3 shows how σkE varies with σL for different harmonics.
Two limiting regimes can be identified. If the laser is much longer
than the beam σL ≫m1/3σz , then σkE is independent ofm and is
at its narrowest value. This is the regime studied in Hemsing [1].
In the opposite limit, with g(z) much shorter than the electron
beam, the bandwidth grows like m1/3 because of the harmonic
compression effect. Note that the relative bandwidth decreases in
this limit likem2/3,

σνE =
σkE

kE
∼

σνL

m2/3
, (17)

assuming kE = aEk1 ≈ mk2, and σνL = 1/2σLk2 is the relative
bandwidth of the laser.

FIGURE 3 | Transform-limited bandwidth σkE as a function of laser pulse

length σL from Equation (15). Because of harmonic compression, the laser

pulse length needs to increase slightly with increasing harmonic number to

maintain a fixed bandwidth.

FIGURE 4 | Example electron beam phase space distribution (from FERMI

[Allaria, personal communication]) with dominant quadratic structure and

higher order structure near the head and tail. The optimized laser pulse length

to produce a minimum bandwidth depends on the amplitude of the

non-linearities in the beam.

In general, the transform-limited bunching bandwidth σkE is
set by the length of the laser on the electron beam. However,
nonlinear phase structures ϕ(z) introduce additional bandwidth
through the term σϕ′ in Equation (8). Depending on the origin
of the nonlinear phase structures, it may be possible to limit
their impact on the total bandwidth by adjusting σkE , either
with the laser pulse length σL or the electron beam length
σz . In other words, what combination of σL or σz gives the
smallest total bandwidth of the bunching spike σk? Consider
the example of an electron beam with a quadratic chirp, as
shown in Figure 4. On one hand, a narrowband laser with a
longer pulse length could work, but it may extend over or
add more of the undesirable nonlinearities that add bandwidth
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during the harmonic up-conversion. Conversely, a short laser
pulse is intrinsically broadband, but may be less impacted by
the presence of nonlinearities. As we will see, the optimization is
straightforward once the phase is known, and the answer depends
on the amplitude and source of the non-linearity.

SIMPLE NONLINEAR STRUCTURE

Without regard to the origin of the nonlinear phase structure (i.e.,
laser phase ψ2 or electron beam energy structures 1p1,2), let us
first calculate the impact of generalized phase structures on the
bunching bandwidth σk. We will then use the results to derive
conditions for obtaining the minimum bandwidth.

Arbitrary continuous phase distortions can be expanded in a
Taylor series about z = 0. Similar to the temporal phase in laser
physics, we can expand the bunching phase ϕ(z) as,

ϕ(z) =
∞
∑

N=1

φN

N!
zN , (18)

where each φN = ∂Nϕ(z)/∂zN |z=0 is real. The absolute phase
of the pulse φ0 is ignored, as it does not affect the frequency
or bandwidth. With Equation (6), the instantaneous frequency

is kz(z) = kE + φ1 + φ2z + φ3
2 z

2 + . . . Combined with (7) and
(8), the bandwidth σ 2

ϕ′ associated with the energy distortions

can be calculated analytically up to arbitrary order in N
(see Supplementary Material).

SINGLE PHASE TERM

The analysis is simplified by isolating a single term in the phase
expansion,

ϕ(z) =
φN

N!
zN . (19)

The total bunching bandwidth is then written in terms of the
nonlinear coefficient φN , as

σ 2
k = σ 2

kE

(

1+
GNφ

2
N

σ 2N
kE

)

. (20)

The second term is the excess bandwidth from the phase
nonlinearity. The analytic expression for the numerical
coefficient GN is given in the Supplementary Material, and the
lowest order numerical values are given in Table 1.

TABLE 1 | Numerical values of GN.

G1 0

G2 0.34

G3 0.035

G4 0.0073

G5 0.00046

G6 0.000033

FIGURE 5 | Time-bandwidth product as a function of the phase change over

the rms bunching envelope ϕ(σb) = φNσ
N
b
/N!. Results are predicted from

Equation (21).

The time-bandwidth product (TBP) of the bunching spectrum
is the dimensionless product of the rms envelope length (16) and
the rms bandwidth (20),

TBP = σbσk ≈
1
√
3

√

√

√

√1+
GNφ

2
N

σ 2N
kE

. (21)

Figure 5 plots shows how the TBP is impacted by the different
order nonlinear phases. Here we see that larger order longitudinal
phase structures have a larger effect on the TBP. This is in contrast
to different order spectral phases in which only the even orders
broaden the bunching bandwidth [14].

Minimum Bandwidth
With the expression for the bunching bandwidth in (20), it is
straightforward to find the values of the laser pulse length or the
electron beam length that minimize σk in the presence of a phase
nonlinearity. In either case this amounts to finding the optimal
value of σkE for a given φN . Assuming that φN is fixed with respect
to the parameter being changed, the minimum bandwidth occurs
when σkE can be adjusted to satisfy,

σ 2N
kE

= φ2NGN(N − 1). (22)

The minimum total bandwidth then scales directly with
optimal σkE ,

(σk)min = σkE

√

N

N − 1
. (23)

An example of how the minimum bandwidth varies in
general for different amplitude phase distortions is shown
in Figure 6.

The full expressions for the optimal electron beam
length and laser pulse length are given in (60) and
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FIGURE 6 | Total bandwidth vs. σkE for different N = 2 phase distortions. The

minimum total bandwidth follows the dashed curve if φN is large enough (i.e., if

Equation 22 is satisfied). Otherwise the minimum is set by the minimum

possible value of σkE (σkE = 1, in this example for φN = 0 and 1).

FIGURE 7 | Scaled bunching bandwidth vs. relative laser duration for phase

distortions of φNσ
N
z = 20 caused by different orders. Harmonic m = 50 is

modeled.

(62) the Supplementary Material. Consider the case
where the transform-limited laser pulse length can be
varied over a fixed length electron beam. If the phase
distortion is large enough that φ2NGN(N − 1) ≫ 1/(2σ 2

z )
N ,

then the laser that minimizes the bandwidth is
given by

(

σ 2
L

)

min
=

m2/3

2
√
2
[

φ2NGN(N − 1)
]1/N

. (24)

Figure 7 illustrates this scenario. Identical values of the
dimensionless phase distortion φNσ

N
z = 20 for different orders

N show that, asN is increased, shorter and shorter laser pulses are
needed to minimize the bandwidth, as given by Equation (24).

Alternatively, if the laser is held fixed and
φ2NGN(N − 1)≫ (m2/3/

√
8σ 2

L )
N , the optimal electron bunch

length is

(

σ 2
z

)

min
=

1

2
[

φ2NGN(N − 1)
]1/N

. (25)

Note that this is independent of the harmonic, in contrast to the
optimal laser pulse length.

The TBP at the minimum bandwidth is,

TBP =
1
√
3

√

N

N − 1
. (26)

It has the same dependence on the order of the phase distortion
as σk; both approach their transform-limited values asN becomes
large. Clearly the lowest order phase distortions have the greatest
impact on both. These results shows that, if the phase distortions
are described by a single polynomial term, then by proper
optimization the TBP and the bandwidth will be no more than√
2 times the transform-limit.
Inspection of the full expression for the TBP shows that it

cannot be minimized simultaneously with the total bandwidth
by adjustment of σkE alone, though it is possible if φN is not
held fixed.

Quadratic Electron Beam Chirp
In modern FELs, it is common that the electron beam has
some residual energy-time correlation in the phase space. These
correlations can be the result of wakefields or other collective
effects during compression and transport. They may be difficult
to remove completely, and may be present at the entrance to the
EEHG seeding system, or can develop within the EEHG beam
line from collective effects [1]. In either case, their impact on the
final bunching bandwidth can be calculated within the present
framework and stated constraints.

Consider a purely quadratic energy chirp on the electron beam
of the form,

1p(z) = h2k
2
2z

2. (27)

The chirp amplitude is characterized by the dimensionless factor
h2. Assuming the second seed laser is transform-limited (ψ2 =
0), the bunching phase can be written generically as [1],

ϕ(z) = −η1p(z), (28)

where η = ξE or aEB2 depending on where the energy distortion
occurs, as expressed in Equation (3). The nonlinear coefficient in
(19) for N = 2 is then

φ2 = −2ηh2k
2
2. (29)

Plugging this into Equation (22) and optimizing the laser pulse
length, one can show that if the amplitude of the quadratic beam
chirp strongly satisfies

h2 >

√
3

4η(k2σz)2
, (30)
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then the laser pulse length that minimizes the bandwidth is, from
Equation (24),

(σL)min ≈
5m1/3

9k2
√

ηh2
. (31)

The corresponding relative bandwidth fromEquation (23) is then

(σν)min = (σk)min

kE
≈

3
√

ηh2

2m
. (32)

Consider the realistic case of electron beams at the FERMI
FEL [23] (for example in Figure 4), which can have a quadratic
chirp of 30 MeV/ps2 upstream of the 260 nm seeding sections.
This corresponds to h2 = 2 × 10−6 for a slice energy spread of
σE = 0.15 MeV. In this case Equation (30) is satisfied for beams
longer than σz = 30 µm (100 fs), which is easily the case for the
ps-scale beams at FERMI (assuming η = 1/2). The minimum
bandwidth setting from (31) requires a laser pulse duration of
250 fs at the 36th harmonic and produces (σν)min = 4.2× 10−5.
At the 64th harmonic, a 300 fs laser is optimum to generate

(σν)min = 2.3× 10−5.

Linear Laser Frequency Chirp
Similar to quadratic structure on the electron beam, a linear
laser chirp in the second seed laser introduces frequency-time
correlations that mix into the harmonic up-conversion process
and impact the final bunching bandwidth. If the electron beam
phase space is flat, the bunching phase ϕ(z) in Equation (3) is
only the laser phase times the harmonic,

ϕ(z) = mψ2(z). (33)

It is useful to separate laser chirps according to whether they are
defined in terms of a fixed pulse length as in Siegman [24] or in
terms of a fixed bandwidth (e.g., [25]).

Fixed Laser Pulse Length

A linear frequency chirp corresponds to a quadratic phase of the
form [24],

ψ2(z) = αz2. (34)

Assuming the pulse length is fixed, α only affects the laser
bandwidth. The quadratic coefficient of the bunching phase is
then φ2 = 2mα, and the analysis is the same as with a quadratic
e-beam chirp with the replacement −ηh2k22 = mα. If both the
e-beam and the laser phase have quadratic structure, then their
effect on the bunching cancels if ηh2k

2
2 = mα.

Fixed Laser Bandwidth

On the other hand, for a fixed-bandwidth laser pulse with rms
intensity σkL , a linear frequency chirp that changes only the pulse
length σL corresponds to a phase,

ψ2(z) = Cσ 2
kL
z2, (35)

where the chirp is

C = ±
√
x2 − 1

x2
, (36)

FIGURE 8 | Chirp as a function of stretch factor, x = σL/σL0 . From

Equation (36).

and

x =
σL

σL0
= 2σLσkL ≥ 1, (37)

is the pulse stretch factor. The laser bandwidth corresponds to
transform-limited pulse length, σL0 = 1/2σkL .

Note that the chirp grows from zero to a maximum of |C| =
1/2 when the pulse length is stretched by x =

√
2, and then

decreases to zero as the pulse is stretched further. This is shown
in Figure 8. This means that a strongly stretched pulse can have
the same small chirp as a barely stretched pulse, even though the
pulse lengths are quite different [25]. Wigner distributions of the
laser pulses for different values of x are shown in Figure 9.

The quadratic coefficient of the bunching phase is,

φ2 = 2mCσ 2
kL
. (38)

The chirp is multiplied by the harmonic. Because the laser pulse
length changes, the bandwidth σkE is also a function of the stretch
factor x,

σ 2
kE

=
1

2

(

1

σ 4
z

+
8m4/3σ 4

kL

x4

)1/2

. (39)

Inserting (38) into (22), one can see that if the pulse is
stretched such that 2

3m
2/3(x2 − 1) > 1, then there exists a finite

length electron beam that minimizes the bandwidth, given
approximately by (25),

(σz)min ≈
31/4

2σkL
√
mC

. (40)

The optimum electron beam length is the smallest at the
maximum chirp, C = 1/2, and is also less than σL0 unless the
harmonic chirp is smaller than one, mC < 1. This can occur for
both barely stretched or strongly stretched pulses. The minimum
relative bandwidth from Equation (23) is then,

(σν)min =
2σνL
31/4

√

C

m
. (41)

Figure 10 shows how the bandwidths evolve for different σz .
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FIGURE 9 | Wigner distributions of a chirped laser pulse with fixed bandwidth

with x and C values from Equation (36).

Note that if the electron beam also has quadratic curvature,
the laser chirp can be set to negate the bandwidth broadening if
C = −ηh2/mσ 2

νL
, similar to [4]. Consider the example of the 4

GeV (σE = 0.45 MeV) beam at LCLS-II using EEHG to reach
harmonic m = 130 of a 260 nm laser. Assuming σz = 15 µm
(50 fs), and quadratic electron beam curvature h2 = 1× 10−4 in
the beam core, the transform-limited laser pulse to minimize the
bandwidth from (30) is also 50 fs (assuming η = 1/2). This yields
a relative bandwidth from (32) of (σν)min ≈ 8× 10−5. However,
chirping the laser slightly C = −ηh2/mσ 2

νL
≈ −1/4, (stretching

the pulse by about 3%), the bandwidth is reduced by
√
2 and is at

the transform limit.
Finally, it is useful to look at a practical example in which

the electron beam is long compared to the length of the second
laser, irrespective of the chirp (e.g., FERMI). The total relative
bandwidth from Equation (20) is then

σ 2
ν ≈

4σ 2
νL

3x2m4/3

[

1+
3

4
m2/3

(

x2 − 1
)

]

. (42)

FIGURE 10 | Scaled bandwidth vs. electron beam length for different values of

a fixed-badwidth laser stretched with a linear chirp at m = 50.

FIGURE 11 | Relative bandwidth as the fixed-bandwidth second laser is

stretched for different harmonics, assuming σz → ∞. Exact solutions are solid

lines, and approximate solutions from Equation (42) are dashed lines. The

disagreement with exact solutions is attributed to the super-Gaussian

approximation for g(z).

Inspection reveals that σν grows with increasing x for high
harmonics, so the minimum bandwidth is obtained only when
the laser chirp is zero. The scaling with the harmonic number
clearly differs according to whether the laser is fully compressed
or stretched,

σν ≈
{

σνL/m
2/3 (x = 1)

σνL/m
1/3 (x≫ 1).

(43)

Figure 11 illustrates the bandwidth growth between the two
regimes.
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CONCLUSIONS

Finite laser pulse length effects in EEHG FEL seeding are
investigated. We have derived an approximate super-Gaussian

form for the laser modulation g(z) and used it to calculate
the spectral bandwidth of the harmonic bunching peak.
The effects of nonlinear longitudinal variations in the e-

beam energy and the laser temporal phase are studied
by way of a general phase term ϕ(z). From the series
expansion, the impact on the bandwidth and the TBP of
the different order phase contributions is determined. All

orders of the temporal phase contribute, in direct contrast
to the spectral phase where the odd orders are negligible.
Conditions on obtaining the minimum bandwidth are

derived, which is shown to exceed the transform-limited
bandwidth by at most

√
2, depending on the order of the

nonlinearity.
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