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Modern soil mechanics (geotechnical engineering) was developed as a branch of civil

engineering from the 1920’s. While modern porous media physics was developed as a

branch of physics and applied mathematics from roughly the same period of time. In soil

mechanics the main concern is often on the deformations, resulting from mechanical,

hydraulic, or thermal actions. In application of porous media physics the main concern

is historically on the flow part, putting less emphasis on the mechanical part. However,

deformation and flow are highly linked processes, especially in unconsolidated porous

media (soil). This paper makes some links between concepts used in porous media

physics, like the effective medium theory, and concepts in soil mechanics, like choice

of stress measures. As an example, it shows that the use of Terzaghi effective stress

is a matter of choice and can be consistently used also for cases where other effective

stress measures are used in literature, like Biot effective stress. The requirement, to be

consistent, is that the state variables considered, at the constitutive level, includes all

relevant variables.

Keywords: soil mechanics, porous media physics, effective medium theory, effective stress, constitutive model

INTRODUCTION

Geotechnical engineering is the part of civil engineering concerns about the hydro-mechanical (or
thermo-hydro mechanical) behavior of soils. In classical soil mechanics (geotechnical engineering)
the basics principles used are:

• Equilibrium (Conservation of linear momentum)
• Mass balance (Conservation of mass)
• Heat balance (conservation of energy)
• Effective stress principle (Terzaghi or Bishop) for the stress carried by the soil skeleton and

responsible for deformation.
• Stress-strain constitutive relations
• Darcy flow for the pore fluid(s)
• Fourier’s law for heat conduction

The continuum approach is the most used approach to satisfy the momentum balance,
compatibility, mass balance and heat balance equations. Deformation of and/or stresses (forces)
acting on structures are one of the main problems for the geotechnical engineer to solve. In
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air-saturated soil systems (dry soils), when the loading rate
is not too high (like the load coming from an explosion),
the equilibrium equation is the only equation that should
be solved. In water-saturated systems (and also in partially
saturated systems), the volumetric deformation of the system
is directly linked with the ability of the porous system for
draining/absorbing of water, thus the mass balance equation
should also be taken into account. Practical engineering problems
involving non-isothermal conditions, e.g., artificial ground
freezing projects, require the heat balance equation to be taken
into account, too.

In classical soil mechanics, by assuming incompressible
grains, the deformation of the system is considered as the result of
the process of slippage, widening, and closing between granular
medium particles. The slippage, widening, and closing between
the granular materials will continue until reaching a locked
state. Geotechnical engineers call this state as the “critical state”
of the soil. At the onset of critical state, the volume of the
system will be locked and the system can only be distorted. The
critical state is a kind of geometrical state and can be found
analytically. However, geotechnical engineers find this state
experimentally, and use a mechanical constitutive framework to
link the deformation gradients to an effective stress measure of
the system [1].

The mechanical constitutive model is the key aspect
of computational geotechnical engineering. Traditionally,
in classical geotechnical engineering, these models are
developed in the framework of plasticity theory. However,
it is also possible to find deformation gradient- effective
stress links, based on the effective medium theory. For the
reader not used to the terminology, Effective Medium Theory
(EMT) is a way to describe the macroscopic properties of
a composite material from some sort of averaging of the
multiple values of the constituents of this composite (e.g.,
[2–5]). The properties of the system are calculated from
constituents’ properties knowing the volume fraction of
the constituents and geometrical details. This is typically
used to find conductivities (hydraulic, thermal, or electric)
in composite systems. In case of mechanical properties of
material like rocks, EMT can be used to find elastic moduli
of the composite from elastic moduli of the constituents
(e.g., [6]). The volume fraction and the individual properties
of the constituents are often the easy parts to establish,
however, the geometry of the arrangement of the constituents
is difficult to assess [7, 8]. Hence, effective medium theory
will often result in rigorous upper and lower bounds from
the extreme assumptions on geometrical arrangements and a
representativemodel in between these two extremes, which needs
experimental calibration.

This paper will give some relations between the macroscopic
material behavior (i.e., constitutive laws) and the equivalent
properties that can be obtained from effective medium
theory. The main attempt is made on mechanical constitutive
relations; however, it will also address the possibilities of
using relations obtained from the use of effective medium
theory for calculating hydraulic and thermal conductivities of
the mixture.

EFFECTIVE MEDIUM THEORY AND
DEFORMATION PROPERTIES OF
DRY SOILS

As an example of effective medium theory and the application
to soil, the case of compressibility/stiffness is selected as a start
point. For the case of soils, or to what is often in porous
media physics referred to as “unconsolidated” porous materials,
effective medium theory has been applied by several researchers
to e.g., establish the dry bulk compressibility and shear modulus
of the composite, assuming a system of spheres and the Hertz-
Mindlin contact model (e.g., [9, 10]). In the geotechnical
engineering community, a similar attempt, but under a different
name “discrete element method,” have been made to find the
deformation characteristics of the composite (e.g., [11–13]).

The dry bulk compressibility derived from effective medium
theory, which will be a function of mean (effective) stress and/or
porosity (or void ratio) in addition to the contact stiffness
(grain compressibility) of the Hertz-Mindlin model, seems to
be relatively in line with the measured values from course-
graded soils (e.g., [14]). As seen from traditional geotechnical
testing of sand samples under isotropic stress condition, the
dry bulk compressibility, or the reciprocal property being the
bulk stiffness, is shown to be a function of porosity and/or
mean stress [1]. The empirical data typically gives that the bulk
stiffness of sand varies with the square root of the mean stress,
at least under the working stress levels normally encountered
in geotechnical engineering practice. Houlsby et al. [15] derived
a hyperelastic formulation, proposing a function for the elastic
strain energy (Helmholtz free energy) and/or the complementary
Gibbs free energy. The derivation from Houlsby et al. [15]
gives not only the variation of the bulk stiffness under isotopic
condition, as function of mean stress, but also the rest of the
4th order stiffness tensor and its stress dependency. As reviled
from the hyperelastic description, under general stress condition,
the stiffness is dependent on the general stress state not only
the mean stress. However, the formulation gives, under the
assumption of isotropic condition, a mean stress dependent bulk
stiffness, that then agrees very well with the results obtained
with effective medium theory [14]. It is worth noting, the
power dependency according to hyperelasticity can vary between
one (linear variation) and zero (constant stiffness), like the
experimental finding of e.g., Janbu [16]. Effective medium theory
under non-isotropic condition shows, as e.g., seen in Norris
and Johnson [17], that the bulk compressibility will become a
function of the tangential slip displacement in the contacts and
the tangential contact stiffness in the Hertz-Mindlin model. This
relates back to the general (shear) stress dependency found by
Houlsby et al. [15] and will also generate coupling terms between
bulk and shear stiffness in the medium in a similar way.

THE EFFECTIVE STRESS PRINCIPLE IN
SOILS, EFFECT OF PORE FLUID

The section above shows that the effective medium theory
essentially produces similar results for dry granular media as
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those relations already used in soil mechanics when it comes to
deformation of themedium. The natural next step would be to see
the relationship between effectivemedium theory and an effective
stress measure, in fully saturated soils. This is important since,
in geotechnical engineering, the effective stress is considered as
the only stress variable controlling the deformation of the soil. It
is well-established, through experimental work and theory, that
for saturated condition and for course-graded soils (i.e., sand
and gravel) the effective stress principle of Terzaghi is valid (see
for instance [18]). In the following, this concept is summarized.
In saturated condition, due the small contact area between the
relatively large grains, one may simply write up Equation (1)
considering one component of normal stress and the buoyancy
of the grains in water.

σ ′ =
1

A
·
(

A · σ − Aw ·
(

pw − pam
)

− A · pam
)

= σ − pam

+
Aw

A
·
(

pam − pw
)

(1)

Where A is the total area of a cross section taken through the
contact points, Aw is the area covered by water (note that water
can be replaced by any other non-reactive pore-fluids), σ

′ and
σ are the effective and total normal stress respectively, pw and
pam are the water and ambient pressures. This is in accordance
with the expression found by Bishop [19]. Further setting Aw/A
= 1 (i.e., ignoring the contact area between grains) and redefining
total stress as σ – pam, and pore pressure as pw – pam, yields the
Terzaghi effective stress as:

σ ′ = σ − pw (2)

Note that, in the above, compression and pressure is considered
as positive.

De Boer and Ehlers [20] used the concept of mixture
theory and free energy to show that, when the constituents
are considered as incompressible (incompressible grains and
incompressible fluid) and that the fluid are considered to have
negligible shear stress, the total partial solid stress tensor (acting
over the whole area) is additively decomposed into the pore-
liquid pressure and the effective stress tensor Equation (3). The
above assumption holds, as the shear stiffness of the fluid is zero
for Newtonian fluids and the viscosity times shear strain rate, in
the fluid, is negligible or zero (which holds for the assumption of
Darcy flow).

σij
S = σ ′

ij
S
+ nS · pF · δij (3)

Where nS is the volume fraction of solid and pF is fluid pressure.
Similar for the partial pore-fluid stress tensor (acting over the

whole area), the equation by de Boer and Ehlers yields:

σij
F = nF · pF · δij (4)

where nF is the volume fraction of fluid, which in geotechnical
engineering, in the case of saturated medium, is called porosity n
(the ratio between pore volume and total volume).

When combining Equations (3, 4) in to the total stress of the
effective medium, the following is obtained, since for saturated
case nS + nF = 1:

σij = σij
S + σij

F = σ ′
ij
S
+
(

nS + nF
)

· pF · δij = σ ′
ij
S
+ pF · δij

(5)

This further clarifies, into the classical Terzaghi effective stress
[21], by replacing fluid with water and omitting the index S
for solid:

σ ′
ij = σij − pw · δij (6)

It will be for this effective stress that the constitutive equation,
for the mechanical behavior of the saturated mixture, should
be formulated.

For the case of partially saturated soil (which can be extended
to the case of more than one type of pore fluid), Nikooee et al.
[22] derived from a thermodynamic approach an analog stress to
the Bishop effective stress [23]:

σ ′
ij
(B)

= σij − pa · δij + χ ·
(

pa − pw
)

· δij (7)

where pa is pore air pressure. Equation introduces the effective
stress parameter χ. The parameter χ is a function of the water
saturation (including the air entry value) and the specific air-
water interfacial area. Notice the similarity of Equations (7) to if
one sets χ = Aw/A. Other works, like that of Borja [24], show, by
using mixture theory, that the parameter χ can be set to be equal
to the degree of water saturation (Sw), meaning that the specific
air-water interfacial area would only be dependent on the soil and
degree of saturation and not if the soil is going through wetting
or drying. This is probably an assumption that does not hold
in reality and is easily proven incorrect by experimental testing
(e.g., [25]). Others like the work of Jiang et al. [26] and Huyghe
et al. [27] discuss the form of χ including the effect of wetting
and drying. In addition, as discussed by e.g., Molenkamp et al.
[28] and Manahiloh et al. [29], the Bishop effective stress actually
should be take a form like Equation (8), as due to soil fabric, the
effect of suction is not isotropic.

σ ′
ij
(B∗)

= σij − pa · δij + χ ·
(

pa − pw
)

·
(

δij + χ̂ ·
(

αij − δij
))

(8)

Where A is introduced to account for the anisotropic effect of
suction due to the fabric tensor αij. The consequence of soil
fabric leads to an effective stress measure that is dependent on the
state variable (fabric). Therefore, it might be more appropriate to
work with Terzaghi’s definition of effective stress, Equation (6),
and suction (pa – pw) as an independent stress variable, at the
constitutive level.

As the effective stress is a well-established framework, working
well for coarse graded soil and has solid theoretical explanations,
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the next step is to look into more of the fine graded soils like
clay. Authors like Osipov [30] emphasizes on that the effective
stress principle above does not consider the influence of any
physicochemical forces on the effective stress. Mitchell and Soga
[31] found that the effective stress principle can be modified to
include the “far distance” attractive and repulsive electrostatic
forces and the close distance chemical bounds. After integrating
the effect of the close chemical bounding and the contact stresses,
this results in the following expression for effective stress:

σ ′
ij = σij + A− pw · δij (9)

where A (capital α, not Latin A) is representing the integral of
electrostatic attraction forces divided by area. However, the actual
value of A is very difficult to assess. The size and the sign of
which will be a function of particle orientation and distance,
the double layer thickness etc. For water saturated clays, with
no direct contact between particles, as in soft natural clays with
fully open pore structure, A is equal to the integral over the
local net disjoining/attractive pressure over the working areas,
divided by the total area. The net A is then a function of the
particle-to-particle distance, which in average is represented by
the porosity of the clay (i.e., the volume fraction of free water).
The link between this and the classical geotechnical terminology
is what we experience as the effect of the pre-consolidation stress,
pc

′, of the clay. In terms of constitutive modeling, this allows
for two options: A constitutive model formulated in terms of an
effective stress considering ‘A’; or using the previous definition of
effective stress, for saturated soils, and add an additional state
variable being the pre-consolidation stress. The latter being the
way it is often done in soil mechanics today. As an alternative,
a measure of porosity can be used as state variable. For a denser
clay, there might be formation of closed pores. In such case even
for saturated condition, the χ (as the ratio “Aw/A”) parameter
may locally be interpreted as less than one; and the local pore
pressure might be higher than hydrostatic pressure, as the
local encapsulated pressure cannot consolidate. Such behavior
typical the case for e.g., smectite rich clays (swelling clays).
However, this behavior may also be treated at a constitutive level
considering Terzaghi effective stress [32], since the local effective
stress is not needed for considering the macroscopic behavior
of clay aggregates, and the microscopic effects (particle-particle
interaction) can be included by state variables in the model (i.e.,
through fabric).

CONSTITUTIVE MODELING AND CHOICE
OF EFFECTIVE STRESS MEASURE

The relations between two physical quantities specified to a
material are called constitutive relations. Examples of constitutive
relations are that between potential differences and mean fluxes
(fluid, electrical, heat etc.) or between deformation gradients
and stresses (mechanical behavior). For soils, in the context of
soil mechanics, there are three main constitutive relationships
that needs to be addressed. Namely, for the hydraulic part (the
hydraulic conductivity, i.e., the fluid flux due to the gradient

in hydraulic potential, Darcy law, i.e., the 2nd order tensor, k),
for the thermal part (the thermal conductivity, i.e., the heat flux
due to temperature gradient, Fourier’s law, i.e., the 2nd order
tensor λ) and for themechanical part (change in effective stress in
relation to change in strain, i.e., the 4th order tangential stiffness
tensor,D).

The hydraulic conductivity, k, is a function of the soil
permeability (as a function of porosity and anisotropy) and
the fluid viscosity (as a function of temperature). In addition,
the gradient of hydraulic potential is linked through pressure
gradient and density (the fluid density is also a function
of temperature).

Even though the exact description on a macro level for
establishing the effective hydraulic and thermal conductivity
tensors are complicated, from the effective medium theory
perspective, the derivation of it is the same for both consolidated
and unconsolidated porous media.

The deformation properties of a dry porous media are
discussed in a previous section. Accepting that the effective stress
will be the only stress variable responsible for the mechanical
behavior, the same constitutive rules will apply to saturated or
partially saturated soils as for dry soils. Hence, the elastic stiffness
relations found from effective medium theory applies also here.
However, actually the elastic deformation of an unconsolidated
porous medium (i.e., the elastic portion of strain in the soil
material) normally only contributes with a small amount to the
total deformation. Actually, most of the deformations within a
soil material will be plastic deformations (strain that does not
contribute to increase in internal reversible energy).

By the assumption of incompressible solid constituents, as
shown by e.g., Gajo [33], the plastic strains in the medium (soil
skeleton) can be found from a formulation considering a yield
and potential surface that are formulated in terms of the effective
stresses defined in the previous section.

In case of compressible constituents, the tradition in soil/rock
mechanics community is to use the so-called Biot effective stress
definition instead of Terzaghi effective stress. In accordance with
Biot and Willis [34], the Biot effective stress, σ ′′

ij, is defined in
Equation .

σ̇ ′′
ij = σ̇ij − α · ṗw · δij (10)

Where α is the Biot parameter(assumed here as a constant).
Note that when both the soil skeleton and the solid grains
behave isotropically elastic, the volumetric deformation of the
solid grains can be included into the Biot parameter, from the
ratio of the bulk stiffness of the soil skeleton grain system to the
bulk stiffness of solid grains. Which, then in saturated condition
would be:

α = 1−
K ′′

KS
(11)

where K
′′
is bulk stiffness of the solid system (skeleton and

grains) and KS is supposed to be the stiffness of the solid grains.
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Then, the volumetric deformation of the system can simply be
calculated as:

ε̇v =
ṗ′′

K ′′
(12)

where p′′ is the mean Biot effective stress (p′′ = σ ′′
ii/3).

The other option is to use the Terzaghi effective stress
principle for the soil skeleton, and the effective medium theory
to find the effect of compressible constituents in the constitutive
level. In this case, the total volumetric strain in the system is
distributed into volumetric strain in the solid particles themselves
and volumetric strain of the soil skeleton. While the volumetric
strain in the soil skeleton is connected to the change in effective
mean stress (p′), the volumetric strain in the solid particles
is connected to the change in solid grains mean stress (ps).
According to Equation (3) the stress in solid grains depends on
both effective stress, p′, and pore pressure, pw. However, the solid
stress in Equation (3) is acting over the whole area, and it could
be rescaled on the solid surface forming the stress σS:

(σS)ij =
σij

S

1− n
=

σ ′
ij
S

1− n
+ pF · δij (13)

One can rewrite this equation in terms of mean stress rate as

ṗS =
ṗ′

1− n
+

p′

(1− n)2
· ṅ+ ṗw (14)

where the Terzaghi definition is used:

p′ = p− pw (15)

and p is the total mean stress and p′ is the effective mean stress.
The increment in volumetric strain in the particles is related to

pS through the bulk stiffness of the solid constituent, if the solid
grains behave isotropically elastic.

(ε̇S)v =
ṗS

K ′
S

(16)

where (εs)v is the volumetric strain of the particles and KS
′ is the

actual effective bulk stiffness of the solid material.
The increment in volumetric strain in the skeleton is related

to p′ through the bulk stiffness of the skeleton, if the skeleton
behaves isotropically elastic.

ε̇′v =
ṗ′

K ′
(17)

where ε′v is the volumetric strain of the skeleton and K′ is the
effective bulk stiffness of the soil skeleton. The total volumetric
strain of the system then can be calculated as

ε̇v = (1− n) · (ε̇S)v + ε̇′v (18)

Now, one can connect the Biot stiffness parameters to the
effective stiffness parameters through: (full derivation is given in
the Appendix)

KS =
K′

S

1− n
·

(

1−
p′

K′
S
·

n

1− n

)

(19)

K′′ =

(

1−
p′

K′
S
·

n

1− n

)

·

((

1−
p′

K′
S
·

1

1− n

)

·
1

K′
+

1

K′
S

)−1|

Note that normally both K′′ and K′ are function of n and/or p′. If
KS

′ ≫ p′ then the relations are simplified to Equation (20), and
only porosity dependency is present.

KS ≃
1

1−n · K ′
S

K ′′ ≃
(

1
K′

S
+ 1

K′

)−1 (20)

Giving the Biot coefficient, as a function of porosity, as follows:

α ≃
K ′

S + n · K ′

K ′
S + K ′

(21)

The difference between using the Biot effective stress measure
and the Terzaghi effective stress is then simply the use of K′ or K′′

for bulk stiffness of the soil skeleton alone or for the solid system
in total, respectively, and KS or KS

′ for the grain contribution.
It means that selection of the stress measure is a choice as long
as one considers the effects at the constitutive level. Note that
the above relation with Terzaghi effective stress definition can be
extended to anisotropic elasticity, for the soil grains or the soil
skeleton, by modifying Equations or respectively. Table 1 gives a
brief summary of three of the stressmeasures, found in the article,
and the connection with required variables.

Since soil actually does not behave in an isotropic linear
elastic manner (see the section on effective medium theory
and deformation properties of dry soils), the Biot definition
of effective stress will be response dependent. Therefore, for
a non-linear, anisotropic and/or inelastic material response, it
is more convenient to have an effective stress measure that is
independent of response (Equation, 6), i.e., the Terzaghi effective
stress definition and solid stress as the stress state variables for the
mechanical constitutive model.

CONSTITUTIVE MODELING, CHOICE OF
FUNCTIONS AND STATE VARIABLES

For e.g., soft clays, it is often found that there is a linear
relationship between mean effective stress and elastic bulk
stiffness, for small variation in porosity. Such an observation
and others like it is essential information to be able to
formulate constitutive models for the mechanical behavior of
soils. However, the constitutive equations cannot be formulated
in an arbitrarily manner, the following should apply (not in a
specially ordered manner):

1. Behave in a deterministic manner or more strictly described:
Principle of causality
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TABLE 1 | Summary table of some stress measures.

Terzaghi Biot Bishop

Effective Stress σ ′ σ ′′ σ ′ (B)

Purpose for modification N.A. Deformable grains Unsaturated soil

Isotropic parameters/variables under “normal” isothermal

working condition

K′ K′′ and α K′ and χ

Additional variables needed in the constitutive model when

deformable grains should be modeled under isotropic

isothermal condition

pw, K
′
S No new variables

Note that α is function of porosity

(and σ ′, K′
S and K′)

Not part of this work

Additional variables needed in the constitutive model when

unsaturated soil should be modeled under isotropic

isothermal condition

pw, χ (and pa) Not part of this work No new variables

Note that χ is a function of pw − pa

2. Obey the 2nd law of thermodynamics (Entropy principle)
3. Behave objectively (Principle of material frame-indifference)
4. Preserve material symmetry, meaning that there

is a consistency between material symmetry and
constitutive equation.

5. Principle of equipresence, meaning that all constitutive
equations should include the all the same state variables.
Unless these are shown to have no effect. Or, that such a
presence is in violation with physical laws (i.e., reduced by the
other principles).

6. Finally, the constitutive behavior is to be described locally
(Principle of local action). Which means that it is only the
action on an infinitesimal space, which gives an effect in
this infinitesimal space. However, deviation from this point
is allowed in some cases, e.g., in order to use a continuum
description for a local phenomenon.

Constitutive Model for the
Mechanical Behavior
Houlsby and Puzrin [35] uses the fact that, in order to have a
hyper-elastoplastic description of the mechanical behavior of a
material, the constitutive equations should be formulated based
on the 1st and 2nd law of thermodynamics. As a consequence
of their derivation, it is possible to come up with a formulation
of so called yield and potential surfaces, formulated in the
conventional stress space (i.e., in terms of σ ′

ij, pw, pa, θ ,∇θ , dθ/dt,

∇(dθ/dt), κ). Where θ is temperature and κ is a set of internal
state variables. In the simplest form, κ is expressed simply by the
plastic strain tensor, ε

p
ij. Note that Houlsby and Puzrin uses the

dissipative generalized stress “Xij“ to formulate the framework in
their paper and also assuming that the mechanical work itself
must be dissipative (to obey the 2nd law of thermodynamics).
However, a transformation between a formulation in terms of
the dissipative generalized stress and conventional stress tensor is
possible. Normally, the elastoplastic description of soil materials
is not derived from energy potentials and dissipation functions,
but rather suggested expressions for yield surfaces, potential
surfaces and hardening rules, for the plastic or viscoplastic part.
For the elastic part, some uses a hypo-elastic description, in
other case a hyper-elastic description is used (where the latter is
definitely preferable).

Constitutive Relations for the Fluid Flow
Darcy’s law, for quasi-static condition (steady state) of a single-
phase flow in saturated porous media, gives that the fluid
velocity tensor, w, over the total area, with respect to the
soil skeleton grain system, is proportional to the difference in
hydraulic potential:

w = −
k

ρw · g
·
(

∇pw − ρw · g
)

(22)

Where:

w = n · (vw − v) (23)

and k is the hydraulic conductivity tensor (in geotechnical
engineering, referred to as permeability tensor, which for
isotropic condition is replaced by a single value k), vw is the actual
velocity tensor of the water, v is the velocity tensor of the skeleton
grain system, ρw is mass density of water, g is the gravitational
tensor [0 0 –g]T. The hydraulic conductivity is found from:

k = κ ·
ρw · g

µw
(24)

where κ is the absolute permeability tensor and µw is dynamic
viscosity of water. The absolute permeability tensor is expected
to be a function of the porosity, n, and anisotropy/fabric α.
µw and ρw are functions of temperature (θ) [and fluid pressure
(pw)]. The geotechnical engineering practice is to establish this
experimentally. However, effective medium theory can be used
to establish such a relationship. For the case of partially saturated
soil the concept of relative permeability as described in Brooks
and Corey [36] is normally followed. A concept easily extended
to anisotropic medium, e.g., [37].

Constitutive Relation for Heat Flow
Unlike the hydraulic conductivity, that depends on the absolute
permeability tensor, a property of the pore space, and the
properties of the fluid, the thermal conductivity depends on
structure of the skeleton, properties the solid part, structure of
the pores and properties of the pore fluid. Wang et al. [38] and
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Gong et al. [39] considered an isotropic representative volume
and showed that an unified equation, for a modified effective
medium theorymodel for the thermal conductivity of a two phase
system (particular case of a multiphase system), is in accordance
with Equation (25).

λ′ =
λS · λw + 2λm · ((1− n) · λS + n · λw)

(1− n) · λw + n · λS + 2λm
(25)

Where λ′ is the effective thermal conductivity, λS and λw are
thermal conductivities of the solid and fluid (water), respectively,
λm is the unknown effective medium conductivity parameter that
gives the coupling, extremes being series, or parallel coupling
(λm = 0 or λm = ∞). By setting λm = λ′, one retrieves a
more original form of the EMTmodel (for electrical conductivity
with spherical inclusions) by Landauer [40]. Note that λm likely
itself will be porosity dependent, but this dependency is not
significant, as discussed in e.g., Gong et al. [39] for the case of
a sand, where empirical findings agreed well with the use of
Equation (25). However, in general in a soil, it is expected that
the thermal conductivity may not be isotropic, but expressed
by a tensor (λ′). Which, also like the hydraulic conductivity,
depends on the fabric tensor, α. Establishing the full λ

′ tensor
can be done following the procedure of a modified EMT with
different structure in different directions, but little references to
such work can be found in literature. Even from an experimental
point of view, measurement of anisotropic thermal conductivity
is challenging [41]. Finally, the Fourier law gives that the heat flux
q is expressed as:

q = −λ
′ · ∇θ (26)

Note that in the above, properties as K′
S and λS are assumed

to be reflected by a single mineralogical composition. However,
natural soil is composed of a variety of different minerals with
varyingKS and λS. The calculation of these two average quantities
for the bulk of grains are ideal exercise in using EMT. For the
case of effective bulk stiffness of the solid such a relation will be
of the form of Equation (27) after modifying and extending the
Landauer [40] relation.

∑

(

nSi ·
K ′

S − Ki
S

f · K ′
S + Ki

S

)

= 0 (27)

Where nSi is the volume fraction of the solid constituent, i,
and f is a geometrical factor between zero and infinity. For the
effective (combined) solid thermal conductivity of the solid, λ′S,
the following relation may be used:

∑

(

nSi ·
λ′S − λiS

f · λ′S + λiS

)

= 0 (28)

Equations (27, 28) are not the exact form of the effective
quantities for the solid, because it does not reflect on the
anisotropy, but it is a simple suggestion as a start point.

Thermal Expansion

Based on the individual constituent the volumetric thermal
expansion follows the Equation (29)

ε̇θ ,v = −
∑

i

(

ni · αi

)

· θ̇ (29)

where αi is the volumetric thermal expansion of the constituent.
However, for the solid grains when combined in a soil skeleton
grain system, consisting of several different minerals, the thermal
expansion coefficient is not necessary isotropic.

FINAL GOVERNING EQUATIONS

Governing equations for a saturated porous media, in tensorial
form, are presented below. The mass balance equation is written
with an Eulerian description for the fluid phase with respect to
the Lagrangian solid:

nρ̇w − ρw
(

ε̇′v − ε̇θ ,v

)

+ ∇ . (ρwww) = 0 (30)

The first term in Equation (30) can be found by the bulk modulus
of water (Kw):

ρ̇w =
ṗw

K ′
w

(31)

Substituting Equations (18, 31, 29) in Equation (30), result in:

n

K′
w
ṗw − ρw

[

ε̇v − (1− n) · (ε̇S)v +
(

(1− n) · α′
S,v + n · αw

)

· θ̇
]

+∇ . (ρwww) = 0 (32)

Considering Equations (16, 32) can be rewritten as:

n

K′
w
ṗw − ρw

[

ε̇v − (1− n) ·
ṗs

K′
s
+
(

(1− n) · α′
S,v + n · αw

)

· θ̇

]

+∇ . (ρwww) = 0 (33)

Where the total volumetric strain is found from:

ε̇v = −∇ · v (34)

Introducing Equations (14, 34) into Equation (33) and
rearranging, one find the final form of the mass balance
equation as:



∇ · v+
ṗ′ +

p′

1−n · ṅ

K ′
S

+

(

1− n

K ′
S

+
n

Kw

)

· ṗw (35)

−
(

(1− n) · α′
S,v + n · αw

)

· θ̇
)

· ρw + ∇ · (ρw · w) = 0

Where α′
S,v and αw is the effective volumetric thermal expansion

coefficient of solid and thermal expansion coefficient of water,
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respectively. The particular form of Equation (35) is chosen such
that it includes the relative change in fluid pressure to solid stress
through Equation (14), by the change in effective mean stress
and/or due to change in porosity.

Equilibrium equation is written using the Terzaghi effective
stress definition plus solid stress, stand for describing the hydro-
mechanical behavior of a fully saturated system.

∇ · σ ′ + ∇pw − ρ · g = 0 (36)

And finally for heat balance:

(

(1− n) · ρS · CS + n · ρw · Cw

)

· θ̇ + ρw · Cw · w · ∇θ + ∇ · q

−Q = 0 (37)

where Q is the total heat supply (or loss). CS and Cw are heat
capacity of solid and fluid, respectively.

CONCLUSION

This article tries to connect the use of different concepts with
porous media physics, like effective medium theory, to the
classical concepts in soil mechanics/geotechnical engineering.
The article demonstrates that the use of the Terzaghi effective
stress principle is valid, for all types of geomaterials, as long
as the constitutive model for the material behavior considers
all relevant state variables. This means that there is no actual
need for a Biot or Bishop effective stress, or any modification of
such effective stress, to take into account of e.g., physiochemical
forces, grain compressibility or the capillary suction in partially
saturated soil. Especially since, the Biot parameter is anyway not
a constant, but is deformation dependent, the physiochemical

forces cannot be assessed properly and the capillary suction
anyway must be treated as a state variable at constitutive
level to account for soil fabric. For the case of compressible
grains this article proposes a modified mass balance equation
where the solid stress is included (rather that the Biot
parameter). The understanding, of the geomaterials, obtained
from effective medium theory and thermodynamics, shows that
the conventional methodology, as used in modern numerical
modeling in geotechnical engineering practice, is theoretically
sound. This includes things like effective stress dependent
stiffness, for themechanical part, and the description of hydraulic
and thermal conductivities where empirically based values
fits with well with theoretical EMT studies, as recorded in
various literature.
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APPENDIX

Derivation of the stiffness relation Equation (19).
Setting the rate of total stress in Equation (10) equal to the rate

of total stress derived from Equation (6) combined with Equation
(11) gives:

σ̇ ′
ij = σ̇ ′′

ij −
K ′′

KS
· ṗw · δij (A1)

Taking the trace and inserting Equations (12, 17)

K ′ · ε̇′v = K ′′ · ε̇v −
K ′′

KS
· ṗw (A2)

Combined with Equation (18)

K ′ · ε̇v − K ′ · (1− n) · (ε̇S)v = K ′′ · ε̇v −
K ′′

KS
· ṗw (A3)

Writing porosity change as:

ṅ = −ε̇′v + n · ε̇v (A4)

Inserting Equation (A4) into Equation (14) and combining with

Equation (16, 17)

K ′
S · (ε̇S)v =

K ′ · ε̇′v
1− n

+
p′

(1− n)2
·
(

−ε̇′v + n · ε̇v
)

+ ṗw (A5)

Then, replacing the εν
′ by using Equation (18) gives:

K ′
S ·(ε̇S)v =

K ′ ·
(

ε̇v − (1− n) · (ε̇S)v
)

1− n
−

p′

1− n
·
(

ε̇v − (ε̇S)v
)

+ṗw

(A6)
Which solved for (̇εν) gives:

(ε̇S)v =

(

K ′ − p′
)

· ε̇v + (1− n) · ṗw

(1− n) · K ′
S + (1− n) · K ′ − p′

(A7)

Inserting the resulting Equation (A7) into Equation (A3) and
rearranging gives:

(

K′
S −

n
1−n · p′

K′
S + K′ −

p′

1−n

)

·K′ · ε̇v−
K′ · (1− n)

K′
S + K′ −

p′

1−n

· ṗw = K′′ · ε̇v−
K′′

KS
· ṗw

(A8)
Where, by grouping:

(

K ′
S −

n
1−n · p′

K ′
S + K ′ −

p′

1−n

)

·K ′ = K ′′and
K ′ · (1− n)

K ′
S + K ′ −

p′

1−n

=
K ′′

KS
(A9)

Which, finally gives Equation (19).
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