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Most of the highly efficient luminescent silicon nanocrystals (SiNCs) reported to date

consist of organically capped silicon cores. Here, we report a method of obtaining Si/SiO2

core/shell nanoparticles emitting at a peak energy of 1.5 eV with very high quantum yields

(53–61%). The same method led to quantum yields of ∼30% for porous silicon powder

emitting at 1.9 eV. The SiNCs were very stable under continuous excitation for several

hours. The lifetime at 1.5 eV was over 232 µs, the longest ever reported for SiNCs,

consistent with the very high luminescence efficiency. The SiNCs were first fabricated by

non-thermal plasma synthesis or anodization in the case of porous silicon. Then, a thin

oxide shell (∼1 nm) was grown using high-pressure water vapor annealing. This oxidation

process allows for the growth of very good quality oxide with low defect concentration

and low stress, resulting in very good surface passivation, which explains the very high

quantum yields obtained.

Keywords: silicon nano crystals, porous silicon, luminescence, quantum yield, Core/shell

INTRODUCTION

Luminescent Si nanocrystals (SiNCs) are intensively studied for their potential applications in
diverse fields, such as optoelectronics, sensing, and medicine [1–20]. Some particularly important
characteristics of such SiNCs include absolute quantum yield (AQY), stability, luminescence
lifetime, surface chemistry, and synthesis route.

Anodization of Si wafers in hydrofluoric acid, leads to porous silicon (PSi) layers [21], which
can then be milled to produce a powder of micrometer-sized flakes of nanostructures. Some degree
of control of the micro-sized particles was achieved [22]. The photoluminescence (PL) of PSi is
generally very broad, with full width at half maximum (FWHM) of 120–200 nm [12, 23], often
explained by size distribution with quantum confinement as well as defect state emission [24]. The
luminescence efficiency of PSi is generally rather low, and this was explainedmainly by the existence
of a small fraction of actually luminescent nano-crystallites [25]. AQY of 23% was reported with
PSi layers treated by high-pressure water vapor annealing (HWA) [26, 27] and with PSi powders
modified by solution-based chemical oxidation [28]. Recently, ∼32% was reported [14], for most

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2019.00047
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2019.00047&domain=pdf&date_stamp=2019-04-04
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gelloz@nuap.nagoya-u.ac.jp
https://doi.org/10.3389/fphy.2019.00047
https://www.frontiersin.org/articles/10.3389/fphy.2019.00047/full
http://loop.frontiersin.org/people/332257/overview
http://loop.frontiersin.org/people/668455/overview
http://loop.frontiersin.org/people/708188/overview
http://loop.frontiersin.org/people/304576/overview
http://loop.frontiersin.org/people/708252/overview


Gelloz et al. High Quantum Yield Silicon Nanocrystals

likely hydrogen-terminated PSi dried using a supercritical
process. Hydrogen-terminated PSi is generally unstable due to
the high reactivity of H-Si bonds. Growing good quality oxide
helps with surface stabilization. In particular, HWA was proven
very good at stabilizing PSi PL [26, 27], electroluminescence
[29], photonic structures [30], and 2D Si photonic cavities [31].
Another very popular method is the substitution of hydrogen by
organic groups. In particular, hydrosilylation was shown to be
an effective way of stabilizing PSi optoelectronic materials and
devices [32–34].

Another popular SiNCs fabrication route is plasma synthesis
[15, 35, 36]. This route allows for better size control than PSi, and
narrow emission lines were reported [37, 38]. The AQY generally
decreases with the SiNC size [4, 9, 37]. AQYs much greater
than those obtained with PSi were reported recently. Focusing
on ensemble AQYs above ∼40%, SiNCs mostly consisted of Si
cores whose surface was terminated by various kinds of organic
compounds, alkyl groups attached by hydrosilylation being the
most typical [2, 9, 10, 17, 19, 20]. The confinement somewhat
depends on the type of organic group attached to the surface
[20]. Due to the long organic chains, these organically-capped
SiNCs usually take a paste (slurry-like) form, not ideal for electro-
and opto-devices [39]. Moreover, they can easily agglomerate by
phase separation when incorporated in a different matrix. Thus,
for some applications, Si/SiO2 core/shell SiNCs are preferred. For
these nanoparticles, the highest reported AQY is∼23%, obtained
using PSi [26, 28].

The lifetime of the red emission of SiNCs typically ranges from
microseconds to hundreds of microseconds, increasing with the
emission wavelength [12, 23, 40, 41]. Such long lifetimes may be
limiting in some applications, like those requiring high switching
speeds, but they are actually an advantage for other applications
such as gated imaging [5, 8].

As previously mentioned, HWA was used with PSi layers,
leading to a quantum efficiency of 23% [26, 27] and very good
PL and EL stability. These good performances were attributed
to the very good quality and stable oxide layer (low defect
concentration; low stress) passivating the PSi surface. In this
paper, the effect of HWA on the optical properties of (i) SiNC
powders prepared using non-thermal plasma synthesis, and (ii)
PSi powders prepared by anodization followed by milling, were
investigated. TEM, PL, AQYs, stability, and PL dynamics were
investigated. The best results were obtained with the SiNCs,
with very high AQYs, matching the highest values reported to
date for organically terminated SiNCs, and very good stability.
Furthermore, the lifetimes at given emission wavelengths were
the longest ever observed.

EXPERIMENTAL

SiNC synthesis method and apparatus, as well as detailed reaction
mechanisms, are provided elsewhere [36]. Briefly, a capacitively-
coupled nonthermal plasma was generated by 70 MHz power
source in a quartz tube reactor. SiCl4 and H2 mixture was used
for precursor gas, while Ar was used as a balance so that the total
pressure is maintained at 400 Pa. Excited H2 abstracts chlorine

from the chlorinated species (SiCln) which initiates nucleation of
particles followed by their growth in the gas phase. The mean
particle size is controllable by the reaction time. As-produced
SiNCs have a chlorine-terminated surface which readily induces
silicon suboxide surface upon exposing to air [35]. As-produced
SiNCs were dry-etched by HF vapor to get fully hydrogen-
terminated surfaces [42]. The final SiNCs exhibited a mean size
of about 6 nm.

PSi layers of porosity 68% were formed by anodization in
HF (55 wt. %):ethanol = 1:1 of silicon (100)-oriented wafers (5–
10�.cm) at 50 mA/cm2. Anodization was performed for 21min
to produce 50 µm-thick layers. Immediately after formation, the
PSi layers were separated from the substrate by applying a short
high-current pulse. The PSi membranes thus obtained were dried
and coarsely manually milled to produce the final powder.

In order to get a luminescent reference as-formed PSi layer for
stability experiments, a 0.5 µm-thick PSi layer of porosity 80%
was fabricated in HF (55 wt. %):ethanol = 1:2.67 at 10 mA/cm2

for 100 s.
HWA was carried out using a 30.5ml stainless steel main

chamber. First, an about 1mm thick carpet of dry SiNC powder
(∼50mg) was placed in a separate holder, which was then put
into the main chamber. Water (0.54ml) was then added in
another part of the main chamber, not in contact with the SiNC
powder. The main chamber was closed, heated to 260◦C in order
to set a water vapor pressure of 3.9 MPa in the chamber, and after
4 h it was allowed to cool down, and finally opened. The water
was found to have condensed almost entirely at the surface of the
lid (upper part) of the main chamber. Thus, the SiNC powder
was only exposed to water vapor and was left in a dry state. It was
extracted mechanically from the holder. The water did not show
any color change to the naked eye and was disposed of. Notice
that the system is scalable, and therefore it is possible to process
larger amounts if needed. HWA-treated PSi and SiNCs will be
referred to as HWA-PSi and HWA-SiNCs, respectively.

PL spectra were measured using a spectrometer (QEPro
from Ocean Optics) with a spectral range of 200–1,000 nm
and resolution of about 1 nm. Excitation was a light-emitting
diode (LED) emitting at 385 nm (LLS-385 from Ocean Optics).
Time-resolved PL measurements were acquired using a Horiba
spectrofluorometer Fluoromax-4. PL stability was evaluated in
the following way: powders were illuminated continuously for
several hours by a laser diode emitting at 405 nm (85229-
E0405-3CM; Edmund Optics; 1 mW on sample; spot diameter:
3mm), while the PL intensity and laser power were measured
every 10min. The final result was the PL intensity divided
by laser power. It turned out that the laser diode was
quite stable.

AQY of powders were measured using the QEPro
spectrometer and the LLS-385 LED, with an integrating
sphere (Labsphere). The method is conventional and was
also used by others. For instance, Jurbergs et al. [2] used a
LED-380 with a USB2000 spectrometer and Joo et al. [14]
used a LLS-365 with a QEPro spectrometer. In our case, the
spectrometer’s spectral response was calibrated with calibration
lamp (Ocean Optics HL-2000-CAL-INT) in the 350–1,100 nm
spectral range. We selected LLS-385, rather than LLS-365 (which
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FIGURE 1 | TEM pictures of SiNCs before (a) and after HWA (b). TEM pictures of PSi after HWA (c,d). The arrows show the location of two nanocrystals.

we also own), as our excitation source because its emission
spectrum fully overlaps the HL-2000-CAL-INT calibration
range. As a base line, the intensity of the LED was measured
with the integrating sphere containing an empty quartz cuvette
(dimensions: 2 × 10 × 50mm). Then the dried powder was
introduced into the same cuvette, which was installed again
in the integrating sphere in exactly the same position and
orientation as for the base line measurement. Then a spectrum,
consisting in the PL signal, and the LED signal was acquired.
The absorption signal was derived from the decrease of the base
line LED signal. Then the spectra were converted from power
emission to photon number emission. The AQY, defined as the
number of visible photons emitted per absorbed UV photon,
was derived by taking the ratio between the integrated PL and
absorption signals.

RESULTS AND DISCUSSION

The structures of the SiNCs and PSi powders were observed by
transmission electron microscopy (TEM) using a JEOL JEM-
2010 microscope, performed at an acceleration voltage of 120
kV. The TEM specimens were prepared by dropping the samples

dispersed in isopropyl alcohol onto a microgrid. The lattice
fringes with a spacing of 0.31 nm observed in nanoparticles
correspond to the (111) planes of Si. The TEM image shown
in Figure 1a reveals that the SiNCs are crystalline and mostly
spherical. The average diameters of the SiNCs in Figures 1a,b

are 5.5 and 4.7 nm, respectively. The as-formed sizes observed
here are in agreement with earlier more detailed studies of
similar powders, which established a mean size of 6 nm [36].
Figures 1c,d shows PSi after HWA. In Figure 1c, crystalline
structures can be observed throughout the picture, suggesting
the crystalline nature of the PSi structure was maintained
by HWA. The diameter of the PSi particles indicated by
the arrows in Figure 1d is approximately 2.7 nm, showing
the sizes are much smaller in PSi than in our SiNCs. After
HWA, the TEM image in Figure 1b shows the growth of
an about 1 nm-thick amorphous oxide layer at the SiNCs
surface, in agreement with a TEM study of HWA-treated silicon
nanowires [43].

The PL spectra of the SiNC ensembles are shown in Figure 2.
A large blue-shift was induced by HWA, as expected from
the core size reduction by oxidation and quantum confinement
effect. Table 1 shows the PL characteristics of these spectra.
Using the obtained peak energy, an attempt was made at roughly
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estimating the SiNC mean size in each case using selected
literature data [20, 44]. For HWA-SiNCs, the mean sizes are
in rather good agreement with the values expected from TEM
data and the previous size study of the as-formed SiNCs (see
data in Table 1). The as-prepared SiNCs PL is rather broad,
reflecting a consequent size distribution. After HWA, the PL
became even broader, which can be attributed to an enlarged
core size distribution, likely resulting from none-uniform oxide
growth at the Si surface.

The PL of as-prepared PSi was extremely weak and, therefore,
we do not show its characteristics in Table 1. The PL peak
wavelength of HWA-PSi, about 650 nm, is typical of bright PSi
layers. The PL peak is at a higher energy compared to that of
the PL of HWA-SiNCs, suggesting that the mean size is much
smaller in our PSi samples than in our SiNC powders. TEM data
in Figure 1 confirm this statement. The peak intensity was similar
to that of HWA-SiNCs, but The FWHM was much smaller. The
value, 137 nm, falls within the lower end of the typical values
found for PSi layers [12, 14, 23, 40].

A picture of the HWA-PSi (left) and HWA-SiNC (right)
powders in their cuvettes, placed under a handy UV lamp (SLUV-
8 from As One; wavelength: 365 nm) is shown in Figure 2, when
the excitation is on or off.

AQYs of HWA-PSi and HWA-SiNC powders were measured
several times in order to get some statistical significance of
measurements. Each time, the powder was unloaded from the
cuvette and then reloaded, in order to average the parts of
the powder exposed to the excitation. Measurements were also
done on different days, re-calibrating the experiment each time.
The PL intensity was linear with the excitation power, up
to the maximum power incident on samples: 2 mW for a
spot diameter of 7mm (5.2 mW/cm2). Therefore, there was
no dependence of the AQY on the excitation power, in our
experimental conditions. Table 2 shows the results. Because
the signal-to-noise ratio of the measured spectra was very
good, the spread of measurement values given in Table 2 gives
the most significant uncertainty. The AQY of HWA-PSi and
HWA-SiNC powders, were found in ranges 28–30.7% and
53–61.6%, respectively.

The lower AQY of HWA-PSi compared to HWA-SiNCs may
be attributed to more significant exciton migration to regions
having non-radiative defects because PSi is an interconnected
network of nanocrystallites [12, 23, 40, 45]. However, considering
the rather high extent of oxidation induced by HWA, the
interconnection may not be that effective. A few reports have
shown that the AQY decreases with SiNC size [4, 9, 37]. Then,
the lower AQY of HWA-PSi may be because of its shorter peak
emission wavelength. The ratio of the AQY of HWA-SiNCs by
that of HWA-PSi is∼56/29∼1.9. From the report ofMastronardi
et al. [4], at 650 nm, the AQY was roughly 25% and for the
maximum wavelength reported, 750 nm, it was 43%. This gives a
ratio of 43/25∼1.7, which is similar to our ratio of 1.9, suggesting
the lower efficiency of HWA-PSi compared toHWA-SiNCs could
be due to this size effect.

For HWA-PSi, our values are close to the ∼32% recently
reported by Joo et al. [14] who used supercritical drying to
improve the AQY compared to when using air drying. Their PL

FIGURE 2 | PL of SiNCs powder before and after HWA, and of PSi powder

after HWA. Excitation was 385 nm. Pictures of the powders under a 365 nm

lamp (SLUV-8 from As One) are shown when the lamp was off and on.

peak wavelength was 685 nm, a bit higher than ours (650 nm),
which may also explain their slightly higher AQY considering
the emission wavelength dependence of the efficiency discussed
above. Our results show that similarly high AQY (30% range)
may be obtained without the sophisticated supercritical drying
technique. Moreover, the HWA-grown oxide is rather relaxed
and stable [26, 27], resulting in reasonably good PL stability
as well.

Considering AQYs of HWA-SiNCs, our values match the
highest reported ones, in the 50–60% range [2, 7, 9, 10, 17,
19]. Most highly efficient SiNCs were obtained using organic
surface passivation [2, 9, 10, 17, 19]. However, our HWA-SiNCs
distinguish themselves from these studies in the fact that they
are oxide-passivated.

Figure 3 shows the PL intensity as a function of time under
continuous excitation in air. The as-formed luminescent PSi layer
shows that hydrogen-terminated SiNCs are not stable, and shows
a spectacular drop in the initial stage of the experiment. Typically,
such silicon surfaces easily get oxidized in air. In contrast, HWA-
treated samples are muchmore stable in air. The oxide is not only
providing good passivation but is also stable right after HWA,
with no strong evolution of its structure. This is in agreement
with previous results of PSi PL [26, 27] and EL [29] of PSi layers
treated by HWA.

Figure 4 shows the PL decays across the PL spectrum
for HWA-SiNCs excited at 365 nm. They are multi-
exponential, which is typical for SiNCs. The departure from
a single exponential behavior is typically explained by the
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TABLE 1 | PL peak wavelength and energy and FWHM of indicated powders,

from spectra shown in Figure 2, and estimated mean size according to

measurements and literature.

Powder FWHM

(nm)

Peak λ

Peak E

Mean diameter (nm):

from present and

previous [36] TEM

Mean diameter

(nm): from

literature

SiNCs 170* 960 nm

1.29 eV

∼6 ∼ 6.3 (Ref. 1)

HWA-SiNCs 240 825 nm

1.50 eV

∼4 ∼4 (Ref. 1)

HWA-Psi 137 650 nm

1.91 eV

∼2.7 ∼2.75 (Ref. 2)

The data of Ref. 1 [20] do not cover the emission energy of 1.91 eV, so the datum for this

energy was taken from Ref 2 [44]. *Obtained by doubling the half width at half maximum.

TABLE 2 | AQYs of fabricated powders.

Powder N Mean

(%)

Std dev.

(%)

Min

(%)

Median

(%)

Max

(%)

HWA-PSi 5 29.1 1.3 28.0 28.5 30.7

HWA-SiNCs 12 55.75 2.49 53.00 55.45 61.60

N is the number of independent measurements done with different powder samples.

inhomogeneous nature of the PL spectrum, invoking crystallite
shape distributions or exciton migration [12, 23, 40], or energy
transfer between nanocrystals [46]. Exciton migration is not
likely to have a large effect for our HWA-SiNC powders since the
surface oxide should prevent it. The decays could be fitted with a
stretched exponential exp[-(t/τ )β ] [40, 45]. However, parameter
β was found to vary significantly, from ∼0.76 at 825 nm to ∼0.4
at 550 nm, altering the practical meaning of τ . Thus, a more
practical estimation of the decay time was used: the time taken
for the PL to fall by a factor of e. [40, 47] Obtained values are
shown in Figure 4. At the PL peak wavelength, 825 nm, this
method gives 283 µs, whereas the stretched exponential gives
τ = 232 µs with β = 0.75 (fit shown in Figure 4). The two
values are not too far apart as β is not too low in this case. τ

increases with the wavelength, which is a typical behavior in
SiNC ensembles, and was attributed to size-dependent quantum
confinement effects [40], though size-dependent surface defects
may also play a role [4].

The PL lifetime in SiNCs, τ , has been estimated as (τ−1
r +

τnr
−1)−1, where τr and τnr are the radiative and non-radiative

lifetimes, respectively, [12, 23, 40]. Thus, τ is expected to increase
with the AQY since τnr decreases. Thus, we can compare our
lifetimes, in particular that at 825 nm, with those reported for
SiNCs exhibiting high AQYs. For example, Sanghaleh et al.
[10] reported τ ∼90 µs at 860 nm, for an AQY of 60 ± 5%.
Mastronardi et al. [4] reported τ ∼60 µs at 700 nm, for an AQY
of 43%. A lifetime of∼125 µs at∼825 nm was reported for alkyl-
terminated SiNCs with AQY of ∼65% [19]. A lifetime of ∼155
µs at∼860 nmwas reported also for alkyl-terminated SiNCs with
maximumAQY of∼39% [48]. Furthermore, τ ∼65µs at 800 nm,
for PSi having an AQY of 32% (peak wavelength 685 nm) [14]. A
particular study of PL lifetimes in SiNCs [41] reported τ ∼131

FIGURE 3 | PL peak intensity of HWA-treated SiNCs and PSi powders, as

well as of an as-formed 80%-porosity PSi layer, as a function of time under

continuous excitation at 405 nm (1 mW on sample; spot diameter: 3mm).

FIGURE 4 | Time-resolved PL of HWA-treated SiNCs at indicated

wavelengths. Indicated lifetimes correspond to the time taken for the PL to fall

by a factor of e. The black solid curve is a fit with a stretched exponential.

µs at 815 nm for dodecyl-capped SiNCs. The better the surface
passivation is, the lower τnr , the higher τ , and the higher the
AQY are. Thus, our very long PL decays are consistent with our
very high measured AQYs, which can be attributed to very good
surface passivation provided by the oxide generated by HWA.

The high AQY and good stability are consistent with those we
had obtained previously using HWA with PSi layers [26, 27]. In
these reports dedicated to PSi layers treated by HWA, we have
shown that HWA produces a relaxed, and thus stable, oxide.
In addition, electron spin resonance showed very low defect
concentration at the core/shell interface [26].
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CONCLUSION

AQYs in ranges 53–61 and 28–30% were measured for SiNCs
and PSi powders treated by HWA, respectively. These values
are in the higher range of currently reported AQYs [2, 7,
9, 10, 14, 17, 19]. However, our SiNCs are the only ones
passivated with oxide to show such high AQYs to date, most
others being terminated by some kind of organic groups [2,
9, 10, 17, 19]. At the PL peak emission wavelength (825 nm),
the lifetime of HWA-SiNCs was 232 µs using a stretched
exponential, or 283 µs using a decay by 1/e, the highest values
ever reported at this wavelength. They were also very stable under
continuous optical excitation. These oxide-passivated SiNCs may
find some applications in gated imaging [5, 8], optoelectronic
devices [3, 15, 49, 50], and systems using light emission
of nano-particles.
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