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The structure of the International Trade Network (ITN), whose nodes and links represent

world countries and their trade relations, respectively, affects key economic processes

worldwide, including globalization, economic integration, industrial production, and

the propagation of shocks and instabilities. Characterizing the ITN via a simple yet

accurate model is an open problem. The traditional Gravity Model (GM) successfully

reproduces the volume of trade between connected countries, using macroeconomic

properties, such as GDP, geographic distance, and possibly other factors. However, it

predicts a network with complete or homogeneous topology, thus failing to reproduce

the highly heterogeneous structure of the ITN. On the other hand, recent maximum

entropy network models successfully reproduce the complex topology of the ITN, but

provide no information about trade volumes. Here we integrate these two currently

incompatible approaches via the introduction of an Enhanced Gravity Model (EGM) of

trade. The EGM is the simplest model combining the GM with the network approach

within a maximum-entropy framework. Via a unified and principled mechanism that is

transparent enough to be generalized to any economic network, the EGM provides a new

econometric framework wherein trade probabilities and trade volumes can be separately

controlled by any combination of dyadic and country-specific macroeconomic variables.

The model successfully reproduces both the global topology and the local link weights

of the ITN, parsimoniously reconciling the conflicting approaches. It also indicates that

the probability that any two countries trade a certain volume should follow a geometric

or exponential distribution with an additional point mass at zero volume.

Keywords: complex networks, gravity model of trade, statistical inference, maximum entorpy method (MEM),

network models

1. INTRODUCTION

The International Trade Network (ITN) is the complex network of trade relationships existing
between pairs of countries in the world. The nodes (or vertices) of the ITN represent nations and
the edges (or links) represent their (weighted) trade connections. In a global economy extending
across national borders, there is increasing interest in understanding the mechanisms involved in
trade interactions and how the position of a country within the ITNmay affect its economic growth
and integration [1–5]. Moreover, in the wake of recent financial crises the interconnectedness of
economies has become amatter of concern as a source of instability [6]. As the modern architecture
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of industrial production extends over multiple countries via
geographically wider supply chains, sudden changes in the
exports of a country (due e.g., to unpredictable financial,
environmental, technological, or even political circumstances)
can rapidly propagate to other countries via the ITN. The
assessment of the associated trade risks requires detailed
information about the underlying network structure [7]. In
general, among the possible channels of interaction among
countries, trade plays a major role [2–4].

The above considerations imply that the empirical structure
of the ITN plays a crucial role in increasingly many economic
phenomena of global relevance. It is therefore becoming more
and more important to characterize the ITN via simple but
accurate models that identify both the basic ingredients and
the mathematical expressions required to accurately reproduce
the details of the empirical network structure. Reliable models of
the ITN can better inform economic theory, foreign policy, and
the assessment of trade risks and instabilities worldwide.

In this paper, we emphasize that current models of the ITN
have strong limitations and that none of them is satisfactory,
either from a theoretical or a phenomenological point of view.
We point out equally strong (and largely complementary)
problems affecting on one hand traditional macroeconomic
models, which focus on the local weight of the links of the
network, and on the other hand more recent network models,
which focus on the existence of links, i.e., on the global topology
of the ITN. We then introduce a new model of the ITN that
preserves all the good ingredients of the models proposed so far,
while at the same time improving upon the limitations of each
of them. The model can be easily generalized to any (economic)
network and provides an explicit specification of the full
probability distribution that a given pair of countries is connected
by a certain volume of trade, fixing an otherwise arbitrary choice
in previous approaches. This distribution is found to be either
geometric (for discrete volumes) or exponential (for continuous
volumes), with an additional point mass at zero volume. This
feature, which is different from all previous specifications of
international trade models, is shown to replicate both the local
trade volumes and the global topology of the empirical ITN
remarkably well.

2. PRELIMINARIES: BUILDING BLOCKS OF
THE MODEL

Before we fully specify our model, we preliminarily identify its
building blocks by reviewing the strengths and weaknesses of the
two main modeling frameworks adopted so far.

2.1. Gravity Models of Trade
We start by discussing traditional macroeconomic models of
international trade. These models have mainly focused on the
volume (i.e., the value e.g., in dollars) of trade between countries,
largely because the economic literature perceives trade volumes
as being a priori more informative than the topology of the
ITN; the striking heterogeneity of trade volumes observed
between different pairs of countries is clearly not captured by a

purely “binary” description where all connections are effectively
given the same weight. Based on this argument, emphasis
has been put on explaining the (expected) volume of trade
between two countries, given certain dyadic and country-specific
macroeconomic properties.

Jan Tinbergen, the physics-educated1 Dutch economist who
was awarded the first Nobel memorial prize in economics,
introduced the so-called Gravity Model (GM) of trade [8]. The
GM aims at inferring the volume of trade from the knowledge
of Gross Domestic Product, mutual geographic distance, and
possibly additional dyadic factors of macroeconomic relevance
[9, 10]. In one of its simplest forms, the GM predicts that, if i and
j label two different countries (i, j = 1, . . . ,N where N is the total
number of countries in the world), then the expected volume of
trade from i to j is

〈wij〉 = c GDPαi GDP
β
j R

−γ
ij c,α,β , γ > 0, (1)

where GDPk is the Gross Domestic Product of country k, Rij is
the geographic distance between countries i and j, and c,α,β , γ
are free global parameters to be estimated. In the above directed
specification of the GM, the flows wij and wji can be different. An
analogous undirected specification exists, where the volumes of
trade from i to j and from j to i are added together into a single
value wij = wji of bilateral trade. In the latter case, Equation (1)
still holds but with the symmetric choice α = β . With this in
mind, we will keep our discussion entirely general throughout
the paper and, unless otherwise specified, allow all quantities to
be interpreted either as directed or as undirected. Only in our
final empirical analysis will we adopt an undirected description
for simplicity.

More complicated variants of Equation (1) use additional
factors (with associated free parameters) either favoring or
resisting trade [9, 10]. Like the GDP and geographic distances,
these factors can be either country-specific (e.g., population)
or dyadic (e.g., common currency, trade agreements, shared
borders, common language, etc.). In general, if we collectively
denote with Eni the vector of all node-specific factors and with
EDij the vector of all dyad-specific factors used (note that these
vectors may have different dimensionality), Equation (1) can be
generalized to

〈wij〉 = F Eφ (Eni, Enj,
EDij) F > 0, (2)

where the functional form of F Eφ (Eni, Enj,
EDij) need not be of the

same type as in Equation (1), and Eφ is a vector containing
all the free parameters of the model (like c,α,β , γ for the
particular case above). Indeed, although in this paper we focus
on the GM applied to the international trade network, our
discussion equally applies to many other models of (socio-
economic) networks as well. For instance, the recently proposed
Radiation Model (RM) [11] is also described by Equation (2),

1Jan Tinbergen studied physics in Leiden, where he carried out a Ph.D. under the

supervision of the theoretical physicist Paul Ehrenfest. Tinbergen defended his

thesis in 1929, and then became a leading economist. He was awarded the first

Nobel memorial prize in economics in 1969.
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where Eni and EDij include certain geographical and demographical
variables. Our following discussion applies to both the GM and
the RM, as well as any other model described by Equation (2).
Similarly, it does not only apply to trade networks, since both
the GM and the RM have been successfully applied to other
systems as well, including mobility and traffic flows [11–14],
communication networks [15], and migration patterns [16] (the
latter representing—to our knowledge—the earliest application
of the GM to a socio-economic system, dating back to 1889 [17]).

It is generally accepted that the expected trade volumes
postulated by the GM, already in its simplest form given by
Equation (1), are in good agreement with the observed flows
between trading countries. To illustrate this result, in Figure 1

we show a typical log-log plot comparing the empirical volume
of the realized (bilateral) international trade flows with the
corresponding expected values calculated under the GM as
defined in Equation (1) (with parameters calculated as reported
in Table 1). The figure shows the typical qualitative consistency
between the GM and the empirical non-zero trade volumes.
However, it should be noted that, while Equations (1) and (2)
define the expected value of wij, the full probability distribution
from which this expected value is calculated is not specified, and
actually depends on how the model is implemented in practice.
In the GM case, the distribution is chosen to be either Gaussian
(corresponding to additive noise, in which case the expected
weights can be fitted to the observed ones via a simple linear
regression [18, 19]), log-normal (corresponding to multiplicative
noise and requiring a linear regression of log-transformed
weights [20] as we did to produce Figure 1 and Table 1),
Poisson [20], or more sophisticated [21] (see [22] for a review).
The arbitrariness of the weight distribution already highlights
a fundamental weakness of the traditional formulation of the
model. Moreover, for both additive and multiplicative Gaussian
noise, the model can produce undesired negative values.

A related but more fundamental limitation of the GM is
that, at least in its simplest and most natural implementations,
it cannot generate zero volumes, thereby predicting a fully
connected network [22–24]. Thismeans that the GM can be fitted
only to the non-zero weights, i.e., the volumes existing between
pairs of connected countries. If used in this way, the model
effectively disregards the empirical structure of the network, both
as input (thus making predictions on the basis of incomplete
data) and as output (thus failing to reproduce the topology).
Operatively, the GM can be used only after the presence of a
trade link has been established independently [22]. As observed
in Linders and de Groot [21], “Omitting zero-flow observations
implies that we lose information on the causes of (very) low
trade,” because any fit to positive-only flows would significantly
underestimate the effects of factors that diminish trade. This
problem is particularly critical since roughly half of the possible
links are found not to be realized in the real ITN [25–28]. Clearly,
the same problem holds for the RM and any more general model
of the form specified in Equation (2).

While there are variants and extensions of the GM that do
generate zero weights and a realistic link density (e.g., the so-
called Poisson pseudo-maximum likelihood models [20] and
“zero-inflated” gravity models [21]), these variants systematically

fail in reproducing the observed topology [10, 22]. In other
words, while these models can generate the correct number of
connections, they tend to put many of the latter in the “wrong
place” in the network. Indeed, even in its generalized forms, the
GM predicts a largely homogeneous network structure, while
the empirical topology of the ITN is much more heterogeneous
and complex [22, 23]. Established empirical signatures of
this heterogeneity include a broad distribution of the degree
(number of connections) and the strength (total trade volume)
of countries [25–35], the rich-club phenomenon (whereby well-
connected countries are also connected to each other) [36, 37],
strong clustering and (dis)assortative patterns [26, 27]. These
highly skewed structural properties are remarkably stable over
time. However, they are not replicated by any current version of
the GM [22].

2.2. Network Models of Trade
As we mentioned at the beginning, many processes of great
economic relevance crucially depend on the large-scale topology
of the ITN. In light of this result, the sharp contrast between the
observed topological complexity of the ITN and the homogeneity
of the network structure generated by the GM (including
its extensions) call for major improvements in the modeling
approach. In particular, in assessing the performance of a
model of the ITN, emphasis should be put on how reliably
the (global) empirical network structure, besides the (local)
volume of trade, is replicated. In the network science literature,
successful models of the ITN have been derived from the
Maximum Entropy Principle [24–28, 38–44]. These models
construct ensembles of random networks that have some desired
topological property (taken as input from empirical data) and
are maximally random otherwise. Typically, the constrained
properties are chosen to be the degrees and/or the strengths of all
nodes. In this way the models can perfectly replicate the observed
strong heterogeneity of these purely local properties, and at
the same time illustrate its immediate (i.e., prior to invoking
any other more complicated network formation mechanism)
structural effects on any higher-order topological property of the
network. In the different context of financial networks, where
the main challenge is a reliable inference of the unobserved
topology of a network (typically of interconnected firms or
banks) starting from partial, node-aggregate information [45],
maximum-entropymodels have recently turned out to deliver the
best-performing reconstruction methods so far [43–45].

In general, different choices of the constrained properties
lead to different degrees of agreement between the model and
the data. This can generate intriguing and counter-intuitive
insight about the structure of the ITN. For instance, contrary
to what naive economic reasoning would predict, it turns out
that the knowledge of purely binary local properties (e.g., node
degrees) can be more informative than the knowledge of the
corresponding weighted properties (e.g., node strengths). Indeed,
while the binary network reconstructed only from the knowledge
of the degrees of all countries is found to be topologically very
similar to the real ITN, the weighted network reconstructed only
from the strengths of all countries is found to bemuch denser and
very different from the real network [26–28]. This is somewhat
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FIGURE 1 | Empirical non-zero trade flows vs. the corresponding expectation under the traditional Gravity Model. Log-log plot comparing the empirical volume

(y-axis) of all non-zero bilateral trade flows in the ITN with the corresponding expected volume (x-axis) predicted by the Gravity Model defined in Equation (1), with

parameters estimated as reported in Table 1. Top left: year 1970, top right: year 1980, bottom left: year 1990, bottom right: year 2000. The black line is the identity

line corresponding to the ideal, perfect match that would be achieved if the empirical weights were exactly equal to their expected values, i.e., in complete absence of

randomness.

TABLE 1 | Parameter values for the traditional Gravity Model used in Figure 1

and calculated by fitting Equation (1) (with the symmetry constraint α ≡ β) to all

non-zero empirical bilateral trade flows via an Ordinary Least Square (OLS)

regression of log-transformed weights.

Traditional Gravity Model

Year c α, β γ

1970 9.9 · 108 0.91 0.81

1980 3.1 · 109 0.83 0.89

1990 1.5 · 1010 0.97 0.93

2000 4.3 · 1010 1.05 0.93

surprising, given that the economic literature largely postulates
that weighted properties are per se more informative than the
corresponding binary ones.

The solution to this apparent paradox lies in the fact
that, while the knowledge of the entire weighted network is
necessarily more informative than that of its binary projection (in
accordance with economic postulates), the knowledge of certain
marginal properties of the weighted network can be unexpectedly
less informative than the knowledge of the corresponding
marginal properties of the binary network. In fact, it turns out
that if the degrees of countries are (not) specified in addition
to the strengths of countries, the resulting maximum-entropy

model can(not) reproduce the empirical weighted network of
international trade satisfactorily [27, 40, 41].

An important take-home message is that, in contrast with

the mainstream literature, models of the ITN should aim at
reproducing not only the strength of countries (as the GM

automatically does by approximately reproducing all non-zero

weights), but also their degree (i.e., the number of trade partners)
[26–28, 41]. In addition to these studies, an alternative approach,

the Linear Gravity Transportation Model (LGTM), has also
demonstrated the importance of the ITN topology [46]. In this

model the monetary flow is balanced for each country (node)
based on the number of trade partners (degree). The model

produces expectations of the GDP of countries that are consistent

with real data, using both the volume of trade flows and the
topology of ITN as input. These studies indicate that, in order
to devise improved models of the ITN, one should include the
degrees, which are purely topological properties, among the main
target quantities to replicate. This is the guideline we will follow
in this paper.

Unlike the GM, maximum-entropy models of trade are

a priori non-explanatory, i.e., they take as input structural
properties (as opposed to explanatory economic factors) to

explain other structural properties. However, they can in
fact be used to select a posteriori an explicit, empirically

validated functional dependence of the structure of the ITN on

underlying explanatory factors. For models with country-specific
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constraints, this operation can be carried out as follows.

Mathematically, controlling for node-specific properties is
realized by assigning one or more Lagrange multipliers, also
known as “hidden variables” or “fitness parameters” Exi, to
each node. If a certain choice of local constraints is found to
replicate the higher-order properties of the real-world network
satisfactorily, then one can look for an empirical relationship
between the values of the associated hidden variables and those
of candidate non-topological, country-specific factors of the type
Eni, like the GDP or total import/export. If the hidden variables
are indeed (at least approximately) found to be functions of

some country-specific factors [i.e., if Exi ≈ Ef (Eni)], then one

can replace Exi with Ef (Eni) in the maximum-entropy model, thus
reformulating the latter as a model with explanatory variables
(i.e., “regressors”) of trade, precisely like the GM. Already in one
of the earliest studies on the ITN topology [30], the approach
outlined above led to the definition of a GDP-driven model for
the binary structure of the network, where Exi ∝ GDPi (i.e., in
this case Exi is taken to be one-dimensional). The model, which
is a reformulation of a maximum-entropy model for binary
networks with given degrees, predicts that the probability of a
trade connection existing from country i to country j is

pij =
δ GDPi GDPj

1+ δ GDPi GDPj
δ > 0, (3)

where δ is a free parameter that allows to reproduce the empirical
link density. The model has been tested successfully in multiple
ways [24, 25, 30, 32, 38].

The GM in Equation (1) and the maximum-entropy model in
Equation (3) have complementary strengths and weaknesses, the
former being a good model for non-zero volumes (while being a
bad model for the topology) and the latter being a good model
for the topology (while providing no information about trade
volumes). An attempt to reconcile these two complementary and
currently incompatible approaches has been recently proposed
via the definition of an extension of themaximum-entropymodel
to the case of weighted networks [42]. Since, as we mentioned,
a maximum-entropy model of weighted networks with given
strengths and degrees [40] can correctly replicate many structural
properties of the ITN [41], it makes sense to reformulate such a
model as an economically inspired model of the ITN. Indeed, like
in the binary case, the hidden variables enforcing the constraints
are found to be strongly correlated with the GDP, thus allowing
to express both pij and 〈wij〉 as functions of the GDP [42]. The
resulting model is confirmed to be in good accordance with both
the topology and the volumes observed in the real ITN.

Unfortunately, in the above approach the choice of country-
specific constraints (degrees and strengths) only allows for
regressors that have a corresponding country-specific nature.
This makes the model in Almog et al. [42] incompatible with
the inclusion of dyadic variables of the type EDij and represents
a strong limitation for (at least) two reasons. Firstly, one of the
main lessons learned from the traditional GM is that the addition
of geographic distances improves the fit to the empirical volumes
significantly. Indeed, in light of the large body of knowledge
accumulated in the international economics literature, it is hard

to imagine a realistic and economically meaningful model of
international trade that does not allow for simple pair-wise
quantities controlling for trade costs and incentives, including
geography [9, 10]. Secondly, even if the structure of the ITN
can be replicated satisfactorily in terms of the “GDP-only”
model defined in Equation (3) [25, 30, 32], recent analyses have
found evidence that certain metric (although not necessarily
geographic2) distances do also play a role in determining the
topology of the ITN [47]. Together, these two pieces of evidence
call for an inclusion of dyadic factors in 〈wij〉 and pij, and
highlight a limitation of currentmaximum-entropymodels based
only on country-specific constraints.

Combining all the above considerations, it is clear that an
improved model of the ITN should aim at retaining the realistic
trade volumes postulated by models based on Equation (2)
(including the GM, the RM, and possibly many more), while
combining them with a realistic network topology generated by
(extensions of) maximum-entropy models. Such a model should
also aim at providing the full probability distribution, and not
only the expected values as in Equation (1), of trade flows and,
unlike the GDP-only model in Equation (3) [25] or its current
weighted extension [42], allow for the inclusion of both dyadic
and node-specific macroeconomic factors.

3. THE ENHANCED GRAVITY MODEL OF
INTERNATIONAL TRADE

In this section, we introduce what we call the Enhanced
Gravity Model (EGM) of trade. The EGM mathematically
formalizes the two ingredients that, in light of the previous
discussion, any “good” model of economic networks should
feature: namely, realistic (trade) volumes and a realistic topology,
both controllable by macroeconomic factors.

3.1. A Single Model for Topology and
Weights
The first lesson we have learned is that Equation (2) is successful
in reproducing link weights only after the existence of the links
themselves has been preliminarly established. This implies that
Equation (2), as a model of real-world trade flows, is actually
unsatisfactory and should rather be reformulated as a conditional
expectation of the weight wij, given that wij > 0. In other words,
if aij denotes the entry of the adjacency matrix A = 2(W) of the
ITN (defined via the step function as aij = 2(wij), i.e., aij = 1 if
wij > 0 and aij = 0 if wij = 0), an improved model should be
such that Equation (2) is replaced by

〈wij|aij = 1〉 = F Eφ (Eni, Enj,
EDij) F > 0, (4)

2Building on the hypothesis of the existence of underlying hidden metric spaces

in which real-world networks are embedded, García-Pérez et al. [47] models the

ITN by looking for an optimal embedding of countries in some abstract metric

space. The resulting inferred distances are interpreted as incorporating all possible

sources of empirically revealed trade costs, possibly including geographic distances

as well. However, since the postulated embedding space is either a unidimensional

circle or a hyperbolic plane, these distances are necessarily different from the usual

geographic distances Rij appearing in the GM and measured as geodesics on our

spherical tridimensional world.
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where 〈wij|aij = 1〉 is the conditional expected weight of the
trade link from country i to country j, given that such link exists.
This operation ensures that, whatever the new model looks like,
its predictions for the expected trade volume between connected
pairs of countries remain identical to the ones proposed in
more traditional macroeconomic models. For instance, choosing

F Eφ (Eni, Enj,
EDij) = c GDPαi GDP

β
j R

−γ
ij as in Equation (1) allows

us to retain (in almost intact form) all the empirical knowledge
that has accumulated in the econometrics literature since Jan
Tinbergen’s introduction of the GM. An important difference,
however, is that in our model the trade volumes will be drawn
from a different probability distribution.

The second lesson we have learned is that, in analogy with
Equation (4), Equation (3) should be generalized to allow for both
dyadic (EDij) and node-specific (Eni) factors as follows:

pij = 〈aij〉 =
G Eψ (Eni, Enj, EDij)

1+ G Eψ (Eni, Enj, EDij)
G > 0, (5)

where a crucial requirement is that G can in general be different
from F in Equation (4) and, correspondingly, the vector Eψ
of parameters can be different from Eφ. Note that, since pij is
monotonic in G, the above expression is entirely general, i.e., we
have put no restriction on the functional form of pij. It is also
worth noticing that the explanatory factors used in Equations (4)
and (5) need not coincide. However, to avoid using different
symbols for the arguments of the two functions, we adopt the
convention that EDij and Eni denote the sets of all factors used as
arguments of either F or G, and that these functions can have flat
(i.e., no) dependence on some of their arguments. For instance,
Equation (5) reduces to Equation (3) by setting Eni = GDPi and
assuming flat dependence on EDij, or it reduces to the hyperbolic

model in García-Pérez et al. [47] by setting EDij equal to the
hyperbolic distance and assuming flat dependence on Eni.

We want our model to produce both Equation (4) as the
desired (gravity-like) conditional expectation for link weights
and Equation (5) as a realistic expected topology. To do so, we
introduce the full probability P(W) that the model produces a
weighted network specified by the N × N matrixW with entries
(wij). We are free to choose whether wij takes non-negative
integer values [in which case P(W) is a multivariate Probability
Mass Function, or PMF] or non-negative real values [in which
case P(W) is a multivariate Probability Density Function, or
PDF]. The distribution P(W) is the key quantity that fully
specifies the model and determines both the topology and the
link weights of the ITN. From P(W), focusing on a single pair
i, j of nodes and integrating out all other pairs, we can define
the dyadic distribution qij(w) indicating the probability (mass
or density) that wij takes the particular value w. Note that the
event wij > 0 indicates the presence of a trade link (i.e., aij =
1). By contrast, the event wij = 0 indicates the absence of
a trade link (i.e., aij = 0) and is also included as a possible
outcome in qij(w). The normalization condition is therefore
∑

w≥0 qij(w) = 1 (for integer weights) or
∫

w≥0 dw qij(w) = 1
(for continuous weights, in which case we anticipate that qij(w)
will have a delta-like point mass at w = 0) for all i, j. Note

that we are not assuming independence of the trade volumes
wij and wkl between two distinct country pairs, or equivalently
the factorization of P(W) into the product

∏

i,j qij(wij) of dyadic

probabilities. However, we will later find that the desired model
has precisely this independence property. Importantly, unlike in
the traditional GM, in our approach dyadic independence is a
consequence and not a postulate.

We now look for the form of qij(w) that enforces both
Equations (4) and (5). Let us consider the latter first. In terms of
qij(w), the probability pij that i and j are connected (irrespective
of the volume of trade) is given by the complement of the
probability qij(0) that they are not connected, i.e.,

pij = 1− qij(0) =

{ ∑

w>0 qij(w) (integer)
∫

w>0 qij(w) dw (real)
(6)

where, for real-valued weights, qij(0) denotes the point mass,
i.e., the magnitude of the delta-like probability density function
qij(w), atw = 0. Imposing that Equation (6) has the form dictated
by Equation (5) leads to the following unique choice for qij(0):

qij(0) =
1

1+ G Eψ (Eni, Enj, EDij)
G > 0. (7)

We now relate qij(w) to Equation (4) in a similar manner. The
expected trade volume, irrespective of whether a link exists, is

〈wij〉 ≡

{ ∑

w>0 w qij(w) (integer)
∫

w>0 w qij(w) dw (real)
(8)

(note that the event w = 0 does not contribute to the above
quantity). On the other hand the conditional probability that wij

equals w, given that the link is realized (w > 0), is

qij(w|aij = 1) =

{

qij(w)

pij
w > 0

0 w = 0
(9)

and its expected value gives the conditional expectation of the
link weight, given that the link exists:

〈wij|aij = 1〉 =
〈wij〉

pij
. (10)

Setting Equation (10) equal to Equation (4) leads to

〈wij〉 =
F Eφ (Eni, Enj,

EDij) G Eψ (Eni, Enj, EDij)

1+ G Eψ (Eni, Enj,
EDij)

F,G > 0. (11)

Equation (11) carries an important message. It reveals that, while
a superficial inspection of Equation (8) might suggest that the
expected trade volume 〈wij〉 is independent of the topology of the
ITN, i.e., on qij(0) or equivalently G, this is actually not the case.
In fact, qij(0) is coupled to the other values qij(w) (with w > 0)
through the normalization condition manifest in Equation (6).
This necessarily implies that the topology of the ITN must
have an immediate effect on the expected volume of trade
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between any two countries. This effect is rigorously quantified
in Equation (11), which shows that 〈wij〉 depends on both F and
G. This result confirms the inconsistency of the traditional GM
defined in terms of Equation (1) and of any of its extensions
of the form given by Equation (2). By contrast, the expected
topology of the ITN is independent of the expected volumes of
trade, since pij depends on G but not on F. This simple but, to the
best of our knowledge, previously unrecognized result highlights
a nontrivial asymmetry between weights and topology in the
ITN and, by extension, in any (economic) network described by
our generic expressions involving F and G. This basic finding
provides a natural explanation for the aforementioned empirical
observation that the topology of the ITN and several other
networks can be satisfactorily reconstructed from aggregate local
constraints [26, 40], while the same result does not hold for
the weighted structure of the same network(s) [27, 28], unless
topological information is explicitly included as an additional
constraint [40, 41].

3.2. Maximum Entropy Construction
Equations (7) and (11) fix two important properties we require
for qij(w) and ultimately P(W), but they do not specify these
probability distributions uniquely. To do so, we invoke the
Maximum-Entropy Principle to ensure that the functional form
of P(W) is maximally random, given the desired constraints.
As is well known, this procedure is guaranteed to lead to the
least biased inference, i.e., to introduce no unjustified “hidden”
assumption in picking a specific form of P(W) [43, 44]. In
applying this method we will focus primarily on the case of
integer-valued link weights, since this requirement matches the
datasets in our analysis. The case of real-valued link weights is
treated in the Appendix and the corresponding key results are
briefly reported at the end of this section.

We look for the form of P(W) that maximizes the entropy
functional

S[P] = −
∑

W

P(W) lnP(W) (12)

(where the sum extends over all weighted graphs with N nodes,
non-negative integer link weights, and such that wii = 0 for all
i) subject to the constraints specified by Equations (7) and (11).
Since Equation (7) is equivalent to Equation (5), we select 〈aij〉
and 〈wij〉 (for all pairs i 6= j) as the two sets of constraints
specifying our model. In this way, if we introduce αij and βij
as the (real-valued) Lagrange multipliers required to enforce
the expected value of aij = 2(wij) and wij respectively [where
2(x) = 1 if x > 0 and2(x) = 0 otherwise], then the maximum-
entropy problem becomes equivalent to one solved exactly in
Garlaschelli and Loffredo [48]. There, it was shown that upon
introducing the so-called Hamiltonian

H(W) =
∑

i,j

[

αij2(wij)+ βijwij

]

, (13)

(representing a linear combination of the quantities whose
expected value is being constrained) and the partition function

Z =
∑

W e−H(W), the maximum-entropy probability P∗(W) with
constraints 〈aij〉 and 〈wij〉 is found to be

P∗(W) =
e−H(W)

Z
=

∏

i,j

q∗ij(wij), (14)

where, given xij ≡ e−αij ∈ (0,+∞) and yij ≡ e−βij ∈ (0, 1),

q∗ij(w) ≡
x
2(w)
ij ywij

(

1− yij
)

1− yij + xijyij
, w ≥ 0 (15)

is the resulting (maximum-entropy) probability that the link
from node i to node j carries a weight w. This probability is called
the Bose-Fermi distribution, as it unifies the Bose-Einstein and
Fermi-Dirac distributions encountered in quantum statistical
physics [48]. We stress again that all our formulas apply to
both directed and undirected representations of the network
and, correspondingly, the sums and products over i, j should be
interpreted as i 6= j in the directed case (where the pairs i, j
and j, i are different) and as i<j in the undirected one (where
the pair i, j is the same as the pair j, i). As we had anticipated,
the factorization of P∗(W) in terms of products of q∗ij(w) shows

that, for this particular choice of the constraints, pairs of nodes
turn out to be statistically independent as in the standard GM
approach, even if we have not assumed this independence as a
postulate in our approach.

Importantly, while the constraints used in the maximum-
entropy models of the ITN considered so far in the literature
are observed topological properties (e.g., the degrees and/or
the strengths of nodes), the constraints considered here
are economically-driven expectations, namely Equations (5)
and (11). This key step allows us to reconcile macroeconomic
and network approaches within a generalized framework and
represents an important difference with respect to previous
models. In particular, we use Equations (6), (8) and (10) to
express pij, 〈wij〉 and 〈wij|aij = 1〉 in terms of xij and yij [48]:

pij = 1− q∗ij(0) =
xijyij

1− yij + xijyij
, (16)

〈wij〉 =
∑

w>0

w q∗ij(w) =
pij

1− yij
, (17)

〈wij|aij = 1〉 =
〈wij〉

pij
=

1

1− yij
. (18)

The above expressions allow us to rewrite Equation (15) as

q∗ij(w) =

{

1− pij w = 0,

pij y
w−1
ij (1− yij) w > 0.

(19)

Now, equating Equation (16) to Equation (5) and Equation (17)
to Equation (11) [or, equivalently, Equation (18) to Equation (4)]
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allows us to find the values of xij and yij solving the original
problem:

xij =
G Eψ (Eni, Enj, EDij)

F Eφ (Eni, Enj,
EDij)− 1

, (20)

yij =
F Eφ (Eni, Enj,

EDij)− 1

F Eφ (Eni, Enj,
EDij)

. (21)

Inserting Equations (20) and (21) into Equation (19), we finally
get the explicit probability q∗ij(w) of any two countries trading

a volume w, as a function of any choice of the factors Eni and
EDij. In terms of conditional probabilities, the model becomes
extremely simple: establishing a link from country i to country j is
a Bernoulli trial with success probability pij given by Equation (5);
if realized, this link acquires a weight w with probability

q∗ij(w|aij = 1) =











0 w = 0,
[

F Eφ (Eni ,Enj ,
EDij)−1

]w−1

[

F Eφ (Eni ,Enj ,
EDij)

]w w > 0,
(22)

which is a geometric distribution representing the chance of
w− 1 consecutive successes, each with probability yij, followed
by a failure with probability 1− yij. The above result provides an
insightful interpretation of the realized volumes in the model in
terms of processes of link establishment and link reinforcement
(see section 5).

3.3. Maximum-Likelihood Parameter
Estimation
We now take an econometric perspective and discuss how the
model parameters can be chosen to optimally fit a specific
empirical instance of the network. To this end, we use
the Maximum Likelihood (ML) principle applied to network
models [38]. IfW∗ denotes the weight matrix (with entriesw∗

ij) of

the empirical network, our model generates this particular matrix
with probability P∗(W∗). We therefore define the log-likelihood
function as

L( Eφ, Eψ) = ln P∗(W∗) =
∑

i,j

ln

(

G Eψ

)a∗ij
(

F Eφ − 1
)w∗

ij−a∗ij

(

1+ G Eψ

)(

F Eφ

)w∗
ij

(where we have dropped the dependence of F andG on Eni, Enj, EDij)

and look for the parameter values Eφ∗, Eψ∗ that maximize L( Eφ, Eψ)
by requiring that all the first derivatives with respect to Eφ and Eψ
vanish simultaneously:

E∇ Eφ L(
Eφ, Eψ) =

∑

i,j

[

w∗
ij − a∗ij

F Eφ − 1
−

w∗
ij

F Eφ

]

E∇ Eφ F Eφ = E0 (23)

E∇ Eψ L( Eφ, Eψ) =
∑

i,j

[

a∗ij

G Eψ

−
1

1+ G Eψ

]

E∇ Eψ G Eψ = E0. (24)

For probability distributions belonging to the exponential family,
i.e., in the form given by Equation (14) like the one we are

considering, the second derivatives of the log-likelihood coincide
with (minus) the covariances between the constraints included in
the Hamiltonian defined in Equation (13) (see for instance [49,
50]). Since covariance matrices are positive-semidefinite (and
actually positive-definite if the chosen constraints are linearly
independent, i.e., non-redundant), L( Eφ∗, Eψ∗) is indeed a (global,
in the positive-definite case) maximum for L( Eφ, Eψ), ensuring
that the solution ( Eφ∗, Eψ∗) to Equations (23) and (24) yields the
optimal parameter values in our model. Selecting these values
into Equations (20) and (21) yields the values x∗ij and y∗ij that,

when inserted into Equation (15), fully specify the model.
The above expressions, which are valid for any specification

of the EGM, show that the estimation of the parameter Eφ
nicely separates from that of Eψ . This result solves, in a single
step, two major problems encountered in previous econometric
approaches: on one hand, in most alternative models the
estimation of the parameters determining the expected weights is
badly affected by the presence of the zeroes; on the other hand,
the expected number of zeroes may paradoxically depend on
the (arbitrary) units of measure for the weights. For instance,
if qij(w) is a Poisson distribution as in zero-inflated GMs [20–
22], then its only parameter (the mean) determines both the
magnitude of link weights and the connection probability pij.
As the monetary units in the data are changed arbitrarily (e.g.,
from dollars to thousands of dollars), so will the estimated mean
and the resulting expected number of zeroes. By contrast, in our
model the monetary units affect Eφ∗ but not Eψ∗ (hence F as they
should, but not G).

3.4. Real-Valued Trade Flows
The above results can be adapted in a straightforward, although
more technical, fashion to the case when link weights are assumed
to take non-negative real values. The entire derivation is reported
in the Appendix. For brevity, here we only report the main
results.

In the real-valued case, P∗(W) is a multivariate PDF (rather
than a PMF) and we look for its form by maximizing a
modified version of the entropy functional S[P], under the same
constraints on 〈aij〉 and 〈wij〉 (for all pairs i, j) used above and
still given by Equations (5) and (11). The result is again of the
factorized form given by Equation (14), where the Hamiltonian
H(W) is still the one defined in Equation (14) while the partition
function Z is different and the resulting expression for q∗ij(w) is

q∗ij(w) = δ(w)(1− pij)+2(w)pij
e
−w/F Eφ (Eni ,Enj ,

EDij)

F Eφ (Eni, Enj,
EDij)

, (25)

where δ(w) is the Dirac delta function and pij is still given by
Equation (5).

The above expression shows that q∗ij(w) has now a point

mass of magnitude 1 − pij at w = 0, followed by a purely
exponential probability density for w > 0. By design, the above
PDF still produces the desired conditional expected trade volume
〈wij|aij = 1〉, connection probability pij and unconditional
expected trade volume 〈wij〉 given by Equations (4), (5) and (11)
respectively. Establishing a link from country i to country j
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is still a Bernoulli trial with success probability pij given by
Equation (5); if realized, this link acquires a weight w with
conditional probability density

q∗ij(w|aij = 1) =







0 w = 0,

e
−w/F Eφ

(Eni ,Enj ,EDij)

F Eφ (Eni ,Enj ,
EDij)

w > 0,
(26)

which is now a purely exponential distribution with the desired
(conditional) mean F Eφ (Eni, Enj,

EDij).

The estimation of the parameters Eφ and Eψ can be carried
out using the ML principle via a straightforward recalculation
of the log-likelihood L( Eφ, Eψ) = ln P∗(W∗) and a corresponding
adaptation of Equations (23) and (24).

4. EMPIRICAL ANALYSIS

We can finally test the predictions of our model against empirical
international trade data. The datasets are described in the
Appendix. Here, it suffices to report that trade volumes are
reported in U.S. dollars and are therefore integer-valued. For this
reason, throughout our analysis we will adopt the formulas we
obtained assuming integer weights. Clearly, the same analysis
can be easily repeated for real-valued volumes by using the
corresponding formulas we have provided for real weights.

4.1. Model Specification
We adopt an undirected network description (where the
connection between two countries carries a weight equal to the
total trade in either direction) to facilitate the definition of the
topological properties characterizing the ITN. Previous work has
shown that, given the highly symmetric structure of the ITN, the
undirected representation retains all the basic properties of the
network [26, 27, 30].

We choose F Eφ(Eni, Enj,
EDij) in such a way that the expected non-

zero trade flow 〈wij|aij = 1〉 is the same as in the GM defined by
Equation (1) (now interpreted as a conditional expectation). This
means choosing Eni = GDPi, EDij = Rij, Eφ = (c,α, γ ) and

F Eφ (Eni, Enj,
EDij) = c (GDPi GDPj)

α R
−γ
ij , (27)

where we have set β ≡ α due to undirectedness. Similarly, we
choose G Eψ (Eni, Enj,

EDij) in such a way that the probability pij is the

same as in the model defined in Equation (3), i.e., Eψ = δ and

G Eψ (Eni, Enj, EDij) = δ GDPi GDPj. (28)

With the above specification, the expected topology does not
depend on any dyadic factor. This is the simplest choice that is
found to reproduce the topology of the ITN very well [25, 30, 32,
38] and is supported by empirical evidence that dyadic factors
like geographic distances [51] and trade agreements [47] have a
much weaker effect on the purely binary topology of the ITN than
on trade volumes. Of course our formalism has been designed
in such a way that we can immediately add dyadic factors and
is therefore much more general. For instance, we might easily
add “hidden” metric distances inferred via an optimal geometric

embedding [47] (although they would not be identifiable with
some empirically measurable, “external” macroeconomic factors
like those used elsewhere in our model).

Given the above model specification, for a given instance W∗

of the empirical network we find the optimal parameter values c∗,
α∗, γ ∗ and δ∗ through theML conditions given by Equations (23)
and (24). Importantly, Equation (24) reads in this case ∂L/∂δ =
0 and yields a value δ∗ that ensures that the expected number
of links

∑

i,j pij =
∑

i,j G Eψ/(1 + G Eψ ) is exactly equal to the

empirical number L∗ =
∑

i,j a
∗
ij, irrespective of the volumes of

trade. This result, which is equivalent to what is found for the
purely binary model defined by Equation (3) [38], shows that,
unlike the standard GM, our model always generates the correct
number of links and, unlike some more complicated variants of
the GM, it does so independently of the monetary units chosen
for the volumes.

4.2. Testing the Model Against Real Data
We first test the performance of the EGM in replicating the
empirical trade volumes, i.e., the purely local (dyadic) structure
of the ITN. In Figure 2, superimposed to the previous results
for the standard GM given by Equation (1) and already shown
in Figure 1, the empirical non-zero link weights w∗

ij are also

compared with their conditional expected value 〈wij|aij = 1〉
under the EGM given by Equation (27). As mentioned above,
for the EGM the parameters are obtained via the ML principle
as prescribed by Equation (23) and their resulting values are
reported in Table 2. As expected, the sets of points generated
by the two models largely overlap, confirming that, in terms
of trade volumes, the EGM cannot do worse than the GM.
Moreover, the EGM turns out to be more parsimonious than
the GM as it achieves a narrower scatter of points while having
no dedicated free parameter to tune the variance (as already
mentioned, the GM usually assumes that each trade volume is
drawn from a certain probability distribution, typically a normal
or log-normal one, with mean value given by Equation (1) and
variance specified by an additional free parameter).

Importantly, comparing the values of the parameters α,β , γ
reported in Table 2 for the EGM with the corresponding values
of the same parameters shown previously in Table 1 for the GM,
we see that the GM yields systematically larger parameter values
(especially so for α,β). This means that, with respect to the EGM,
the GM overestimates the effects of both GDP and geographic
distance, and this is especially true for the GDP. This is due to
the fact that the EGM is used to explain not only the volume
of realized trade flows, but also their existence, and has separate
functions (F andG) with possibly overlapping sets of explanatory
factors (GDP is the common element in this case) but in any case
distinct sets of parameters (α,β , γ on one hand and δ on the
other), to take these two aspects into account. The effects of GDP
and distance captured by the parameters α,β , γ are only those
conditional on a link being created, while discounting the effects
of link creation itself via the parameter δ. Note that α,β , γ and
δ are all found to be monotonically increasing over time by the
EGM, highlighting a steady increase of the effects of GDP and
distance (even if milder than observed in the GM) and of the
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FIGURE 2 | Empirical non-zero trade flows vs. the corresponding expectations under the traditional Gravity Model and the Enhanced Gravity Model. Log-log plot

comparing the empirical volume (y-axis) of all non-zero bilateral trade flows in the ITN with the corresponding (conditional) expected volume (x-axis) predicted by the

Gravity Model defined in Equation (1) (green, parameters estimated as reported in Table 1) and by the Enhanced Gravity Model defined in Equations (4) and (27) (blue,

parameters estimated as reported in Table 2). Top left: year 1970, top right: year 1980, bottom left: year 1990, bottom right: year 2000. The black line is the identity

line corresponding to the ideal, perfect match that would be achieved if the empirical weights were exactly equal to their (conditional) expected values, i.e., in complete

absence of randomness.

density of connections. In fact, as the network density becomes
higher (larger δ in the EGM), we see a smaller discrepancy
between the fitted values of α,β in the two models, consistently
with the idea that, if all pairs of countries were connected, then
both the GM and the EGM would estimate the effects of GDP
only through the lens of trade volumes, because the GDP would
no longer explain the (fully connected) topology in such an
extreme situation.

In order to better understand the differences between the

trade volumes predicted by the two models, in Figure 3 we

plot the cumulative distribution P≥(w) counting the fraction of

link weights larger than or equal to w in the empirical (red),

GM-generated (green) and EGM-generated (blue) networks. All
distributions are normalized as P≥(0) = 1 in order to include

zero weights, corresponding to pairs of countries that are not
connected, in their support. Note that P≥(w) is not simply the
integral of q∗ij(w) because the latter is a probability distribution

defined for a specific pair of countries, while the former is defined
for the entire network and hence determined by the combination
of all pair-specific probabilities. We see that the empirical

TABLE 2 | Parameter values for the Enhanced Gravity Model calculated by

considering integer link weights (equal to integer multiples of the monetary unit

used in the dataset) and carrying out the corresponding ML estimation as

prescribed by Equations (23) and (24).

Enhanced Gravity Model

Year δ c α, β γ

1970 4.7 · 105 1.0 · 108 0.67 0.78

1980 1.1 · 106 9.3 · 108 0.77 0.75

1990 1.4 · 106 5.4 · 109 0.87 0.86

2000 3.3 · 106 1.7 · 1010 0.91 0.90

distribution has a discontinuous jump at w = 1, as it drops from
a value P≥(1 − ǫ) = 1 to a value P≥(1 + ǫ) ≈ 0.53, where
ǫ > 0 is arbitrarily small. Recalling that link weights take only
non-negative integer values in our analysis, this discontinuity
indicates that there are roughly 47% pairs of countries that are
not connected (w = 0) in this particular snapshot of the ITN, so
that the distribution keeps the value P≥(w) = 1 for w ∈ [0, 1]
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FIGURE 3 | Empirical and model-generated cumulative distributions of trade

flows. Log-linear plot comparing the empirical cumulative distribution of trade

flows (normalized in order to include zero flows) in the ITN for the year 2000

(red) with the corresponding distributions obtained using the Gravity Model

defined in Equation (1) (green, parameters estimated as reported in Table 1)

and the Enhanced Gravity Model defined in Equations (4) and (27) (blue,

parameters estimated as reported in Table 2). Note the discontinuous jump

due to the ≈ 47% pairs of unconnected countries in both the empirical and

the EGM-generated curves, and the absence of such a feature in the

GM-generated curve (for which missing links are incorrectly given a positive

weight).

and, as we cross the smallest allowed non-zero weight value
(w = 1), it drops by a value 0.47 as it no longer “sees” those
unconnected pairs. As bigger weights (w > 1) are considered,
the distribution continues to decrease continuously all the way
to P≥(+∞) = 0, indicating that the only discontinuity we see
at w = 1 is actually due to the excess probability mass at zero
weights produced by the link-generating process. Remarkably,
the empirical distribution is closely matched by the EGM. The
fact that this model replicates both the location and size of the
discontinuity indicates a correctly predicted number of missing
trade connections in the ITN topology. By contrast, the GM
predicts a fully connected network, evidenced from the absence
of the discontinuity. Pairs of countries that are unconnected in
the real ITN are unavoidably given a positive weight by the GM
and hencemisplaced to the right in the distribution, which results
in exceedingly large values of the green curve with respect to the
other two curves. We know that in the EGM the discontinuity is
indeed due to the extra point mass at w = 0 in the expression
of q∗ij(w) given by Equations (15) or (19). Note that, technically,

one can speak of a “discontinuity” only if weights take continuous
values. This would be possible by replicating our analysis in
the case of real-valued weights using the results provided in
the Appendix and summarized in Equation (25). Importantly,
in this case the jump in P≥(w) would be observed precisely at
the “true” value w = 0, consistently with the genuine delta-
like form of q∗ij(w) given by Equation (25) [only, it would no

longer be possible to show the discontinuity of P≥(w) along a
logarithmic axis and plot the full cumulative distribution]. The
EGM would again correctly match both location and size of the
empirical discontinuity (since pij, hence the expected number
of positive weights, is identical in the discrete and continuous

versions of themodel). For positive weights, the real-valued EGM
would continuously interpolate the discrete points of the integer-
valued EGM because this is a generic property of geometric and
exponential distributions with the same expected value. So, in
either specification, the EGM nicely replicates both the empirical
distribution of strictly positive link weights and the sharp peak
“jumping out” from it, while the GM does not.

We now want to check whether the trade links, besides being
predicted in correct number by the EGM, are also placed between
the correct pairs of countries by the same model. This means
moving the focus of our analysis toward the purely binary, global
topology of the ITN. As a first qualitative illustration setting
the stage for this analysis, in Figure 4 we show all the trade
links of the country with maximum degree (USA), the one with
minimum degree (Western Sahara) and one with intermediate
degree (Vanuatu). We also show the corresponding predictions
under the standard GM (where Equation (1) is first fitted to
the non-zero flows and then extended to all pairs of countries)
and the EGM. The traditional GM predicts a fully connected
network, i.e., an expected degree 〈ki〉GM = N − 1 for all i.
This prediction may be accidentally correct for one or a few
countries with maximal degree, if such countries turn out to
be present in the network (in this case, this does not even
happen as the maximum observed degree is k = 203 for
USA), but deteriorates unavoidably and dramatically for other
countries as their degree decreases. By contrast, the EGM gives
an expected degree 〈ki〉EGM =

∑

j 6=i pij (see Appendix) which

is in good agreement with the empirical one for the entire range
of connectivity.

We now consider higher-order topological properties as a
more stringent and quantitative test. In the top left panel of
Figure 5 we plot the average degree (knni ) of the trade partners
of each country i vs. the number of such partners, i.e., the
degree (ki) of country i itself. Similarly, in the top right panel
of Figure 5 we plot the clustering coefficient (ci), i.e., the
fraction of trade partners of country i that trade with each
other, again vs. the number (ki) of such partners. The empirical
quantities are compared with the expected quantities under the
GM and the EGM. The exact expressions for both empirical
and expected quantities are provided in the Appendix. The
decreasing empirical trends observed in both plots show that the
trade partners of poorly connected countries (small ki) are on
average highly connected, both to the rest of the world (large
knni ) and among themselves (large ci). By contrast, countries
that trade with a high-degree country (large ki) are on average
poorly connected, both to the rest of the world (small knni )
and among themselves (small ci). For both properties, we find
that the EGM is in excellent agreement with the empirical ITN,
as opposed to the classical GM which systematically generates
nearly constant and much higher values as a result of predicting
a complete network.

Having checked that the EGM does very well in separately
replicating both the local link weights and the global topology of
the ITN, we now perform a last and most severe test monitoring
properties that combine topological and weighted information
together (all definitions are again given in the Appendix). In
the bottom left panel of Figure 5 we plot the average strength
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FIGURE 4 | Country-based network configurations for year 2011 in the real ITN (red), the GM (green), and the EGM (blue). For three representative countries, we

show the connections to all trade partners in the world. The total number of countries in the data (see Appendix) is N = 208. The three countries are selected on the

basis of their empirical degree k: the country with maximum degree (USA, k = 203), the one with minimum degree (Western Sahara, k = 13), and one with

intermediate degree (Vanuatu, k = 91). The GM produces always the maximum possible number (N− 1) of connections. By contrast, the EGM produces connections

randomly with probability pij , so links change from realization to realization. The expected degree is however independent of the individual realizations and is close to

the empirical one for all countries. We have selected a typical realization that produces a degree equal to the expected degree for each of the three countries.

(snni ), i.e., the average traded volume, of the trade partners of
each country i vs. the strength (si) of the country i itself. In the
bottom right panel, we plot a weighted version of the clustering
coefficient (cwi ) of country i, again vs. the strength (si) of country
i. The empirical trends are compared with the predictions of
the GM and EGM (see Appendix for all definitions). These two
plots are in some sense the weighted counterparts of the purely
binary plots considered above.We find that, on average, countries
connected to countries with low trade activity (small si) trade
a lot with the rest of the world (large snni ) but relatively less so
among themselves (small cwi ). Countries connected to countries
with a large volume of trade (large si) have instead low trade
activity with the rest of the world (small snni ), but trade relatively
strongly with each other (large cwi ). Again, we find that both
trends are replicated very well by the EGM, while the standard
GM fails systematically.

5. DISCUSSION

In this paper we have introduced the EGM as a novel,
advanced model for the ITN and economic networks in general.

Phenomenologically, the EGM allows us to reconcile two very
different approaches that have remained incompatible so far:
on one hand, the traditional GM that is well established in
economics and successfully reproduces non-zero trade volumes
in terms of GDP and distance but fails in predicting the correct
topology [22]; on the other hand, network models that have
appeared more recently in the statistical physics literature and
have been successful in replicating the topology [25, 44] but are
more limited in predicting link weights [42]. To our knowledge,
the EGM is the first model that can reliably reproduce the binary
and the weighted empirical properties of the ITN simultaneously.
Just like the standard GM, the RM [11] or similar models, the
EGM can accommodate additional economic factors in terms of
extra dyadic and country-specific properties. Yet, it can attribute
to each of these factors two different roles, by considering its
measurable effects on the topology and on the trade volumes
separately from each other, although in a combined fashion.
For instance, already in the analysis presented here, we have
noticed that the EGM uses the GDP in two different ways when
explaining the presence and the intensity of links. By discounting
the effects of GDP in determining the existence of links from
the effects of the same factor in determining the volume of
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FIGURE 5 | Network properties in the real ITN (red), the GM (green), and the EGM (blue). Top left: average nearest neighbor degree knn
i

vs. degree ki for all nodes. Top

right: clustering coefficient ci vs. degree ki for all nodes. Bottom left: average nearest neighbor strength snn
i

vs. strength si for all nodes. Bottom right: weighted

clustering coefficient cw
i
vs. strength si for all nodes. All results are for the snapshot of the ITN in the year 2000. For all the other years in the analyzed sample, we

systematically obtained very similar results. See Appendix for information about the data and all definitions of empirical and observed quantities.

the realized trade connections, the EGM produces different
parameter values with respect to the GM. By contrast, the latter
lacks this possibility and tends to overestimate the effects of GDP
and distances on the measured trade volumes.

The agreement between the EGM and trade data calls for
an interpretation of the process generating the network in the
model. In this respect, we notice that Equations (15) and (22)
allow us to interpret the realized trade volumes in the EGM as
the outcome of two equivalent processes (a serial and a parallel
one) of link creation and link reinforcement. In the serial process,
for a given pair of countries i, j we first establish a trade link of
unit weight with success probability pij and then increment its
volume in unit steps, each with success probability yij. After the
first failure, we stop the process for the pair of countries under
consideration and start it again for a different pair, and so on
until all pairs are considered. In the equivalent parallel process,
all pairs of countries simultaneously explore the mutual benefits
of trade and engage in a first connection, each with its probability
pij. Then, all pairs of nodes for which the previous event has been
successful reinforce their existing connection by a unit weight,
each with its probability yij. The process stops as soon as there
are no more successful events. In either case, Equation (15) gives
the resulting probability that the realized volume is w.

Importantly, Equation (19) shows that q∗ij(w) is a modified

geometric distribution with an extra point mass q∗ij(0) at zero

volume, i.e., the first event has a probability pij which is in
general different from the probability yij of each of the w − 1

subsequent events required to produce a weight equal to w.
This distinguishing property of the Bose-Fermi distribution [48]
ensures a realistic network formation mechanism where the
establishment of a trade connection for the first time is
intrinsically different (and therefore associated to a different
“cost”) from the reinforcement of an already existing trade
connection. This desirable distinction, interpretable for instance
in terms of profitability of trade, has been advocated in previous
studies [9, 10, 21]. Here, it is implemented naturally within
the maximum-entropy framework via Equation (13), where
the (expected) binary topology is enforced separately from the
(expected) link weights. Notice that the distinction disappears
if the parameter αij in Equation (13) is set to zero, i.e., if
the constraint on the expected value of 2(wij) (the expected
topology) is removed as in the standard GM. In such a case, pij
becomes equal to yij (i.e., link creation and link reinforcement
become equally likely) and therefore q∗ij(w), not only q

∗
ij(w|aij =

1), becomes a geometric distribution. However, this operation
would lead to an unrealistically dense network because the
expected topology would no longer be controllable separately
from the link weights.

Consistently with the fact that trade volumes are typically
reported as integer multiples of some indivisible monetary unit
(e.g., dollars), the above discussion and most of our analysis has
been assuming non-negative integer link weights. However we
may also take the limit of a vanishing monetary unit, in which
case trade volumes become non-negative real numbers and, as
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we have shown, q∗ij(w) becomes an exponential density with an

extra point mass at zero volume as reported in Equation (25),
while q∗ij(w|aij = 1) becomes a purely exponential density as

shown in Equation (26). Crucially, the extra point mass q∗ij(0)

ensures that, even in this continuous limit, pij is unchanged
and the expected topology is still described by Equation (5).
In the absence of topological constraints, i.e., if we imposed
αij = 0, in this real-valued case the network would degenerate
to a fully connected graph as in all specifications of the GM
with continuous volumes [39]. This would happen due to the
disappearance of the point mass at zero volume, implying that
“missing links” become events with zero measure in probability.

Our results may have strong implications both for the
theoretical foundations of trade models and for the resulting
policy implications. It is known that the traditional GM is
consistent with a number of (possibly conflicting)micro-founded
model specifications [52–55]. For instance, a gravity-like relation
can emerge as the equilibrium outcome of models of trade
specialization and monopolistic competition with intra-industry
trade [10, 56]. The empirical failure of the standard GM
highlights a previously unrecognized limitation of these micro-
founded models, at least in their current form, and indicates the
need for an appropriate reformulation that makes these models
consistent with the EGM, i.e., with a realistic topology of the
ITN. How policy implications change as the result of such a
reformulation of current micro-founded models is an important

point to add to the future research agenda. Research in the field
of interbank networks [45] has shown that, if unrealistically dense
networks are assumed, then the outcomes of stress tests typically
carried out by central banks to study the propagation of stress
among financial institutions are dangerously biased toward a
systematic underestimation of systemic risk. Indeed, running the
stress test on a network with the “right” density and topology
turns out to be crucial in order to achieve a reliable estimate of
risk propagation [45]. These results make us confident that, in
the field of international economics where the propagation of
trade risks is determined by the ITN topology, the EGM may
offer a novel benchmark supporting improved theories of trade
and refined policy scenarios.
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APPENDIX

From Integer to Real Link Weights
If the link weights wij take non-negative real values instead
of non-negative integer values, the probability P(W) has to be
interpreted as a PDF rather than a PMF. We then look for the
maximum-entropy form of this probability by maximizing the
following modified version of the entropy functional introduced
in Equation (12):

S[P] = −
∑

A

∫

2(W)=A
dWP(W) lnP(W), (29)

where the constraints on 〈aij〉 and 〈wij〉 (for all pairs i 6= j) are
still given by Equations (5) and (11), and we keep assuming zero-
diagonalmatrices (no self-loops in the network), i.e. aii = wii = 0
for all i. Note that, in going from Equation (12) to Equation (29),
the summation

∑

W over all N × N zero-diagonal matrices with
non-negative integer entries has been replaced by an integral
∫

2(W)=A dW over all N × N zero-diagonal matrices with non-
negative real entries and such that their binary projection 2(W)
is a given adjacency matrix A (i.e. such that 2(wij) = aij for all
i, j), followed by a discrete sum

∑

A over all such possible binary
matrices. The resulting integral, written in the combined form
∑

A

∫

2(W)=A dW rather than in the unconstrained form
∫

W dW,
allows us to treat the binary constraint 〈aij〉 more naturally and
to recover more general “mixed” (i.e. containing a mixture of
a discrete and a continuous part) solutions for P∗(W) that are
otherwise inaccessible, as we confirm later.

Since the sets of constraints is the same as in the integer-valued
case, we arrive at the same expression for P∗(W) given by (14),
where the Hamiltonian H(W) is still given by Equation (13) but,
importantly, the partition function Z is now calculated as

Z =
∑

A

∫

2(W)=A
dW e−H(W)

=
∑

A

∫

2(W)=A
dW

∏

i,j

e−αij2(wij)−βijwij

=
∏

i,j

∑

aij=0,1

∫

2(wij)=aij

dwij e
−αij2(wij)−βijwij

=
∏

i,j

∑

aij=0,1

e−αijaij
∫

2(wij)=aij

dwij e
−βijwij

=
∏

i,j

[

1+ e−αij
∫ +∞

0
dwij e

−βijwij

]

=
∏

i,j

[

1+
xij

βij

]

(30)

where we have again used the definition xij = e−αij , while
in this case we find it more convenient not to introduce the
corresponding transformation yij = e−βij , for reasons that will
be clear below.

Inserting Equation (30) into Equation (14) yields the following
new form of q∗ij(w), replacing the one appearing in Equation (15):

q∗ij(w) =
x
2(wij)

ij βij e
−βijw

xij + βij
, w ≥ 0. (31)

Using Equations (6) and (8), we can now calculate the connection
probability and the (conditional) expected weight as

pij = 1− q∗ij(0) =
xij

xij + βij
, (32)

〈wij〉 =

∫

w>0
dw w q∗ij(w) =

pij

βij
, (33)

〈wij|aij = 1〉 =
〈wij〉

pij
=

1

βij
. (34)

Equations (32), (33) and (34) replace Equations (16), (17)
and (18) in the case of real-valued link weights. Inserting these
expressions into Equation (31), we get

q∗ij(w) =

{

1− pij w = 0,

pij βij e
−βijw w > 0,

(35)

which replaces Equation (19) in the real-valued case and shows
that q∗ij(w) is now a mixture of a discrete part, characterized by a

probability mass of magnitude 1− pij at w = 0, and a continuous
part characterized by an exponential probability density for w >
0. If we want to interpret q∗ij(w) uniquely as a PDF throughout

its domain (or on the entire real axis), we may rewrite it via the
Dirac delta function δ(x) as

q∗ij(w) = δ(w)(1− pij)+2(w)pijβij e
−βijw, (36)

which allows for a fully continuous treatment. For instance,
the normalization can be correctly stated as

∫

dw q∗ij(w) =

(1 − pij) + pij = 1. Clearly, the above solution would not be
obviously retrieved if we used the unconstrained integral

∫

W dW
in Equation (29), unless we imposed, a priori et ad hoc, the
presence of a delta-like spike at zero weight.

In terms of conditional probabilities, we still find that
establishing a link from country i to country j is a Bernoulli trial
with success probability pij given by Equation (5) as desired; if
realized, this link acquires a weight w with probability density

q∗ij(w|aij = 1) =

{

0 w = 0,

βij e
−βijw w > 0,

(37)

which is now a purely exponential distribution with (conditional)
mean β−1

ij as prescribed by Equation (34). Now, equating

Equation (32) to Equation (5) and Equation (34) to Equation (4)
yields the values of xij and βij solving the original problem:

xij =
G Eψ (Eni, Enj, EDij)

F Eφ (Eni, Enj,
EDij)

, (38)

βij =
1

F Eφ (Eni, Enj,
EDij)

. (39)
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Note that Equation (11) holds in this case as well, as it should
because it does not depend on whether link weights are taken
to be integer or real. Inserting Equations (38) and (39) into
Equations (36) and (37), we get the explicit form of q∗ij(w) and

q∗ij(w|aij = 1) as a function of the factors Eni and EDij, as reported

in the main text in Equations (25) and (26) respectively.

Data
We have used international trade and GDP data from the
database curated by Gleditsch [57] for the years 1950, 1960,
1970, 1980, 1990, and 2000. This database includes yearly trade
volumes wij (which we have symmetrized by taking the sum
of wij + wji), yearly GDP values, and the (time-independent)
distance matrix Rij. The number N of countries increases over
time from roughly 85 in 1950 to ∼ 200 in 2000. Both GDP and
trade data are reported in U.S. dollars and are therefore integer-
valued. To produce Fig. 4, we have used the BACI database [58],
which reports imports and exports between N = 208 countries
in 2011. The BACI data were originally in disaggregated form,
where total trade was resolved into 96 different non-overlapping
commodity classes. We have aggregated all these commodity
classes together, and again symmetrized, to obtain a dataset
consistent with the Gleditsch data used for the earlier years.

Observed Network Properties
Given a weighted undirected network with weight matrixW and
adjacency matrix A, with entries related through aij = 2(wij),
the degree of node i is defined as

ki =
∑

j 6=i

aij, (40)

the average nearest-neighbor degree of node i is defined as

knni =
∑

j 6=i

aijkj

ki
=

∑

j 6=i

∑

k 6=j aijajk
∑

j 6=i aij
, (41)

and the (binary) clustering coefficient of node i is defined as

ci =

∑

j 6=i

∑

k 6=i,j aijajkaki
∑

j 6=i

∑

k 6=i,j aijaki
. (42)

The average nearest neighbor strength of node i is defined as

snni =
∑

j 6=i

aijsj

ki
=

∑

j 6=i

∑

k 6=j aijwjk
∑

j 6=i aij
(43)

(where si =
∑

j 6=i wij is the strength of node i)

and the weighted clustering coefficient of node i is
defined as

cwi =

∑

j 6=i

∑

k 6=i,j(wijwjkwki)
1
3

∑

j 6=i

∑

k 6=i,j aijaki
. (44)

Expected Network Properties
The expected value (under the EGM) of each of the network
properties defined above can be calculated either numerically,
by averaging over many network realizations sampled
independently from the probability P∗(W) in Equation (14), or
analytically, using the following approach. First of all, in this
model the expected value of all ratios can be approximated
by the ratio of the expected values [40, 41]. Secondly, all
numerators and denominators involve only products over
distinct pairs of nodes, which are statistically independent in
the model. Using Equation (15), the expected values of such
products can therefore be calculated exactly in terms of xij and yij
as follows:

〈

∑

i,j,k,...

aij · ajk · ...

〉

=
∑

i,j,k,...

〈aij〉 · 〈ajk〉 · 〈...〉, (45)

〈

∑

i,j,k,...

wαij · w
β

jk
· ...

〉

=
∑

i,j,k,...

〈wαij 〉 · 〈w
β

jk
〉 · 〈...〉, (46)

where 〈aij〉 = pij, as given by Equation (16), and

〈w
γ
ij 〉 ≡

∞
∑

w=0

wγ qij(w) =
xij(1− yij)Li−γ (yij)

1− yij + xijyij
, (47)

Lin(z) =
∑∞

l=1
zl

ln
denoting the so-called n−th polylogarithm

of z. From the above two considerations, it follows that
the expected properties of all quantities of interest can be
approximated with entirely analytical expressions obtained by
simply replacing aij with pij and w

γ
ij with 〈w

γ
ij 〉 in Equations

(40)-(44) Via xij and yij, the expected values are ultimately
a function of only the GDPs and distances. In our analysis,
after preliminary checking that the analytical expressions
matched extremely well with the numerical averages over
realizations, we have systematically adopted the analytical
approach, which requires no sampling of networks and is
therefore extremely efficient.
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