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Pressures Inside a Nano-Porous
Medium. The Case of a Single Phase
Fluid
Olav Galteland*, Dick Bedeaux, Bjørn Hafskjold and Signe Kjelstrup

PoreLab, Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway

We define the pressure of a porous medium in terms of the grand potential and

compute its value in a nano-confined or nano-porous medium, meaning a medium

where thermodynamic equations need be adjusted for smallness. On the nano-scale,

the pressure depends in a crucial way on the size and shape of the pores. According

to Hill [1], two pressures are needed to characterize this situation; the integral pressure

and the differential pressure. Using Hill’s formalism for a nano-porous medium, we derive

an expression for the difference between the integral and the differential pressures in a

spherical phase α of radius R, p̂α − pα = γ /R. We recover the law of Young-Laplace

for the differential pressure difference across the same curved surface. We discuss the

definition of a representative volume element for the nano-porous medium and show that

the smallest REV is a unit cell in the direction of the pore in the fcc lattice. We also show,

for the first time, how the pressure profile through a nano-porous medium can be defined

and computed away from equilibrium.

Keywords: nano-porous media, thermodynamics of small systems, representative elementary volume, single

phase fluid, molecular dynamics simulations

1. INTRODUCTION

The description of transport processes in porous media poses many challenges that are well
described in the literature (see e.g., [2–6]). There is, for instance, no consensus, neither on the
definition nor on the measurement or the calculation, of the pressure in a porous medium with
flow of immiscible fluids. The problem with the ill-defined microscopic pressure tensor [5, 7] is
accentuated in a heterogeneous system with interfaces between solids and fluids. In a homogeneous
fluid phase one may define and calculate a pressure and a pressure gradient from the equation of
state. In a porous medium the presence of curved surfaces and fluid confinements makes it difficult
to apply accepted methods for calculation of the microscopic pressure tensor and, consequently,
the pressure gradient as driving force for fluid flow. The scale at which we choose to work will be
decisive for the answer. Moreover, the scale that the hydrodynamic equations of transport refer to,
remains to be given for nano-porous as well as micro-porous media.

A central element in the derivation of the equations of transport on the macro-scale is the
definition of a representative elementary volume (REV) (see e.g., [8, 9]). The size of the REV
should be large compared to the pore size and small compared to size of the porous medium. It
should contain a statistically representative collection of pores. We have recently discussed [10]
a new scheme to define a basis set of additive variables: the internal energy, entropy, and masses
of all the components of the REV. These variables are additive in the sense that they are sums of
contributions of all phases, interfaces and contact lines within the REV. Using Euler homogeneity
of the first kind, we were able to derive the Gibbs equation for the REV. This equation defines
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the temperature, pressure and chemical potentials of the REV as
partial derivatives of the internal energy of the REV [10].

As discussed in Kjelstrup et al. [11] the grand potential, ϒ ,
of the REV is given by minus kBT times the logarithm of the
grand partition function, Zg, where kB is Boltzmann’s constant
and T is the temperature. The grand potential is equal to minus
the contribution to the internal energy from the pressure-volume
term, kBT lnZg = ϒ = −pV , which we will from now on refer
to as the compressional energy. For a single fluid f in a porous
medium r, the result was [10, 11]

pV = pfV f + prVr − γ fr�fr , (1)

where p and V are the pressure and the volume of the REV.
Furthermore pf and V f are the pressure and the volume of the
fluid in the REV, pr and Vr are the pressure and the volume in
the grains in the REV, and γ fr and �fr are the surface tension and
the surface area between the fluid and the grain. The assumption
behind the expression was the additive nature of the grand
potential. This definition of the REV, and the expression for the
grand potential, opens up a possibility to define the pressure on
the hydrodynamic scale. The aim of this work is to explore this
possibility. We shall find that it will work very well for flow of
a single fluid in a porous medium. As a non-limiting illustrative
example, we use grains positioned in a fcc lattice. The work can
be seen as a continuation of our earlier works [10, 11].

The work so far considered transport processes in micro-
porous, not nano-porous media. In micro-porous media, the
pressure of any phase (the surface tension of any interface) is
independent of the volume of the phase (the area between the
phases). This was crucial for the validity of equation 1. For
nano-porous systems, we need to step away from Equation (1).
Following Hill’s procedure for small systems’ thermodynamics
[1], we generalize Equation (1) to provide an expression for the
thermodynamic pressure in a nano-porous medium.We shall see
that not only one, but two pressures are needed to handle the
additional complications that arise at the nano-scale; the impact
of confinement and of radii of curvature of the interfaces. In the
thermodynamic limit, the approach presented for the nano-scale
must simplify to the one for the macro-scale. We shall see that
this is so. In order to work with controlled conditions, we will first
investigate the pressure of a fluid around a single solid nano-scale
grain and next around a lattice of solid nano-scale grains. The
new expression, which we propose as a definition of the pressure
in a nano-porous medium, will be investigated for viability and
validity for this case. The present work can be seen as a first step in
the direction toward a definition and use of pressure and pressure
gradients in real porous media.

The pressure is not uniquely defined at molecular scale. This
lack of uniqueness becomes apparent in molecular dynamics
(MD) simulations, for which the computational algorithm has to
be carefully designed [7]. The predominant method for pressure
calculations in particular systems is using the Irving-Kirkwood
contour for the force between two particles [12]. This algorithm
works for homogeneous systems, but special care must be taken
for heterogeneous systems [5, 6]. However, if the control volume
(REV) used for pressure calculation is large compared with the

heterogeneity length scale, one may argue that the algorithm for
homogeneous systems gives a good approximation to the true
result. We are interested in the isotropic pressure averaged over
the REV, on a scale where the porous medium can be considered
to be homogeneous.

The paper is organized as follows. In section 2 we derive
the pressure of a REV for one solid grain surrounded by fluid
particles (Case I) and for a three-dimensional face-centered
cubic (fcc) lattice of solid grains (Case II). Section 3 describes
the molecular dynamics simulation technique when the system
is in equilibrium and in a pressure gradient. In section 4 we
use the theory to interpret results of equilibrium molecular
dynamics simulations for one solid grain and for an array of
solid grains in a fluid. Finally we apply the results to describe
the system under a pressure gradient. We conclude in the last
section that the expressions and the procedure developed provide
a viable definition of the pressures and pressure gradients in
nano-porous media.

2. THE PRESSURE OF A NANO-POROUS
MEDIUM

Equation (1) applies to a micro-porous medium, a medium
where the pore-size is in the micrometer range or larger
[10, 11]. For a nano-porous medium we need to apply the
thermodynamics of small systems [1]. In nano-porous media,
this technique is therefore well suited for the investigation.
The thermodynamic properties like internal energy, entropy and
masses of components of a small system are not proportional to
the system’s volume. As Hill explained, this leads to the definition
of two different pressures, for which he introduced the names
integral and differential pressure, p̂ and p, respectively. For a
system with a volume V , these pressures are related by

p(V) =
∂

(

p̂ (V)V
)

∂V
= p̂ (V) + V

∂
(

p̂ (V)
)

∂V
. (2)

The symbol p (the differential pressure) is given to the variable
that we normally understand as the pressure on the macroscopic
level. It is only when p̂ depends on V , that the two pressures are
different. For large systems, p̂ does not depend on V and the two
pressures are the same.

The integral and differential pressures connect to different
types of mechanical work on an ensemble of small systems. The
differential pressure times the change of the small system volume
is the work done on the surroundings by this volume change. The
name differential derives from the use of a differential volume.
This work is the same, whether the system is large or small. The
integral pressure times the volume per replica, however, is the
work done by adding one small system of constant volume to the
remaining ones, keeping the temperature constant. This work is
special for small systems. It derives from an ensemble view, but
is equally well measurable. The word integral derives from the
addition of a small system.

From statistical mechanics of macro-scale systems, we know
that pV equals kBT times the natural logarithm of the grand-
canonical partition function. For a small (nano-sized) system,
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Hill ([1], Equations 1–17), showed that this logarithm gives
p̂V . In nano-porous media this product is different from
pV , cf. Equation (1). Energies are still additive and the total
compressional energy within the small system is similar to
Equation (1). We replace Equation (1) by:

p̂V = p̂fV f + p̂rVr − γ̂ fr�fr , (3)

where p̂f , p̂r are integral pressures of the sub-volumesV f andVr ,
and γ̂ fr is the integral surface tension.

We consider here a nano-porous medium, so integral
pressures and integral surface tensions apply. The integral
pressure and integral surface tension normally depend on the
system size. In the porous medium there are two characteristic
sizes: the size of a grain and the distance between the surfaces
of two grains1. The quantities p̂, p̂f , p̂r and γ̂ fr may depend on
both. We shall here examine a system (cf. section 3) of spherical,
monodisperse grains, for which the radius R is a good measure
of the size. The volume of the grains may be a good alternative
measure, which we will also use. The dependence on the grain
size and on the distance between the surfaces of the grains will be
studied in an effort to establish Equation (3).

In the following, we consider a single spherical grain confined
by a single phase fluid (Case I) and a face-centered cubic (fcc)
lattice of spherical grains confined by a single phase fluid (Case
II). The size of the REV does not need to be large, and we will
show in section 4.2 that the smallest REV is a unit cell in the
direction of the pore in the fcc lattice.

2.1. Case I. Single Spherical Grain
Consider the inclusion of a spherical grain r in a box with fluid
phase f . This is system A in Figure 1. Phase f has volume V f

and phase r has volume Vr . The total volume is V = V f + Vr .
The surface area between phase f and r is�fr . The compressional
energy of system A has contributions, in principle, from all its
small parts

p̂AV = p̂fV f + p̂rVr − γ̂ fr�fr (4)

where p̂A is the unknown pressure in Equation (3). There is a hat
on the pressures and the surface tension, in the outset, because
the system is small. The pressure of the fluid in A is, however,
pf , meaning that p̂f = pf . When the surface tension depends
on the curvature, there is a dependence of γ̂ fr on �fr [13, 14].
This interesting effect, which we will not consider here, becomes
relevant as the grain size decreases. Only p̂r depends on the
volume of the phase, Vr . This gives

p̂AV = pfV f + p̂rVr − γ fr�fr (5)

We now introduce a system B in contact with A. System B
has volume V, contains pure fluid, and is tuned so that it is in
thermodynamic equilibrium with A. The equilibrium condition
requires that their grand canonical partition functions are equal,

1Another valid characteristic size is the size of the pores between the grains, but

this follows from the two we have chosen.

FIGURE 1 | A particle in a confined system (A) in equilibrium with a bulk fluid

phase (B).

which implies p̂AV = p̂BV , and with equal volumes this means
p̂A = p̂B. Furthermore, system B is not a small system in Hill’s
sense, which leads to:

p̂A = p̂B = pB = pf (6)

The fluid pressure pf is the same in phases A and B. We obtain

pfV = pfV f + p̂rVr − γ fr�fr , (7)

and by rearranging the terms,

p̂r = pf + γ fr�fr

Vr
= pf + 3γ fr

R
. (8)

where we have used thatVr+V f = V and �fr

Vr = 3
R for a spherical

phase r.
The pressure of the rock particle depends on the volume of the

particle. The relation of the two pressures is according to Hill

pr = ∂(p̂rVr)

∂Vr
(9)

When this is combined with the equation right above, we find the
relation we are after

pr − pf = 2γ

R
, (10)

which is the familiar Young-Laplace’s law. By subtracting
Equation (10) from Equation (8), we obtain an interesting
new relation

p̂r − pr = γ fr

R
(11)

The expression relates the integral and differential pressure
for a spherical phase r of radius R. It is clear that this pressure
difference is almost equally sensitive to the radius of curvature as
is the pressure difference in Young-Laplace’s law.

We see from this example how the integral pressure enters the
description of small systems. The integral pressure is not equal
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to our normal bulk pressure, called the differential pressure by
Hill, p̂r 6= pr . While two differential pressures satisfy Young-
Laplace’s law in Equation (10), the integral pressures do not. The
integral pressure has the property that when averaged over system
A using Equation (4), it is the same as in system B, cf. Equation
(6). This analysis shows that system A is a possible, or as we shall
see proper, choice of a REV that contains the solid grain, while
system B is a possible choice of a REV that contains only fluid.

2.2. Case II. Lattice of Spherical Grains
The above explanation concerned a single spherical grain and was
a first step in the development of a procedure to determine the
pressure of a nano-porous medium. To create a more realistic
model, we introduce now a lattice of spherical grains. The integral
pressure of a REV containing n grains is given by an extension of
Equation (3)

p̂AV = pfV f +
n

∑

i=1

p̂riV
r
i −

n
∑

i=1

γ̂
fr
i �

fr
i , (12)

For each grain onemay follow the same derivation for the integral
and differential pressure as for the single grain. By using Equation
(8), we obtain

p̂ri = pf + γ
fr
i

�
fr
i

Vr
i

= pf + 3γ
fr
i

Ri
, (13)

where the last identity applies to spherical grains only. The
differential pressure of the grains is given by a generalization of
Equation (10)

pri = ∂(p̂riV
r
i )

∂Vr
i

= ∂(pfVr
i )

∂Vr
i

+ γ
fr
i

∂�
fr
i

∂Vr
i

= pf + γ
fr
i

∂�
fr
i

∂Vr
i

= pf + 2γ
fr
i

Ri
, (14)

where the last identity is only for spherical grains. The differential
pressures again satisfy Young-Laplace’s law at equilibrium.

When all grains are identical spheres and positioned
on a fcc lattice, a properly chosen layer covering
half the unit cell can be a proper choice of the
REV. We shall see how this can be understood
in more detail from the molecular dynamics
simulations below. The REV is larger if the material
is amorphous.

3. MOLECULAR DYNAMICS SIMULATIONS

Cases I and II were simulated at equilibrium, while
case II was simulated also away from equilibrium.
Figures 3–8 illustrate the equilibrium simulations of the
two cases.

3.1. Systems
The simulation box was three-dimensional with side lengths
Lx, Ly, Lz .The box was elongated in the x-direction, Lx >

Ly = Lz . Periodic boundary conditions were used in all
directions in the equilibrium simulations. In the non-equilibrium
simulation, reflecting particle boundaries [15] were applied to
the x-direction, cf. section 3.5. Along the x-axis, the simulation
box was divided into n rectangular cuboids (called layers)
of size 1x, Ly, Lz , where 1x = Lx/n. The volume of each
layer is Vl = 1xLyLz . There are two regions A and B in
the simulation box. Region A contains fluid (red particles)
and grains (blue particles) and region B contains only fluid,
see Figure 2. The regions, B = B1 + B2 and A do not
have the same size, but the layers have the same thickness,
1x. The compressional energy of the fluid in one layer is,

p̂
f

l
V
f

l
= plV

f

l
.

The simulation was carried out with LAMMPS [16] in the
canonical ensemble using the Nosé-Hoover thermostat [17], at
constant temperature T∗ = 2.0 (in Lennard-Jones units). The
critical temperature for the Lennard-Jones/spline potential (LJ/s)
is approximately T∗

c ≈ 0.9. Fluid densities range from ρ∗ = 0.01
to ρ∗ = 0.7.

3.2. Case Studies
In case I the single spherical grain was placed in the center of
the box. A periodic image of the spherical grain is a distance
Lx, Ly and Lz away in the x, y and z-directions, see Figure 4A.
The surface to surface distance of the spherical grains is d =
Lα − 2R, where R is the radius of the grain, and α = y, z.
In case I, each spherical grain has four nearest neighbors in
the periodic lattice that is built when we use periodic boundary
conditions. We considered two nearest neighbor distances;
d = 4σ0 and d = 11σ0, where σ0 is the diameter of the
fluid particles.

In case II, the spherical grains were placed in a fcc lattice
with lattice constant a. The two shortest distances between the
surfaces were characterized by d1 = 1

2 (
√
2a − 4R) and d2 =

a − 2R, see Figure 2, where d1 < d2. We used d1 = 4.14σ0
and d1 = 11.21σ0, which is almost the same as the distances
considered in case I. The corresponding other distances were
d2 = 10σ0 and d2 = 20σ0. Each grain has 12 nearest neighbors
at a distance d1.

FIGURE 2 | A slice of the simulation box in case II. The box has side lengths

Lx , Ly , Lz , and properties are calculated along the x-axis in layers l of width

1x. Blue particles are grain r and red particles are fluid f . The A is the lattice

constant of the fcc lattice, d1 and d2 are the two shortest surface-to-surface

distances.
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In all cases we computed the volume of the grains Vr
l
, the

surface area �
fr

l
and the compressional energy of each layer, l,

in the x-direction.

3.3. Particle Interaction Potential
The particles interact with the Lennard-Jones/spline potential,

uij(r) =



























∞ if r < Rij

4ǫij

[

(

σij−Rij
r−Rij

)12
−

(

σij−Rij
r−Rij

)6
]

if Rij < r < rs,ij

aij(r − rc,ij)
2 + bij(r − rc,ij)

3 if rs < r < rc,ij

0 if r > rc,ij

.

(15)
Each particle type has a hard-core diameter Rii and a soft-core

diameter σii. There were two types of particles, small particles
with σff = σ0, Rff = 0 and large particles with σrr = 10σ0, Rrr =
9σ0. The small particles are the fluid (f ), and the large particles
are the grain (r). The hard-core and soft-core diameters for
fluid-grain pairs are given by the Lorentz mixing rule

Rfr =
1

2

(

Rff + Rrr
)

and σfr =
1

2

(

σff + σrr
)

. (16)

We define the radius of the grain particles as R ≡ (σff + σrr)/2 =
5.5σ0, which is the distance from the grain center where the
potential energy is zero. Fluid particles can occupy a position
closer to the grain than this, this is illustrated in Figure 3.
The figure shows the radial distribution function, g(r), of fluid
particles around a single spherical grain. The density of fluid
varied between ρ∗ = 0.1 and ρ∗ = 0.7. This shows that the
average distance from the grain particle and the closest fluid
particle is approximately 5.5σ0, but the fluid particles are able to
occupy positions closer to the grain particle.

The interaction strength ǫij was set to ǫ0 for all particle-
particle pairs. The potential and its derivative are continuous in
r = rc,ij. The parameters aij, bij and rs,ij were determined so that

FIGURE 3 | The radial distribution function of fluid particles around a grain, as

shown in Figure 4. Results are shown for densities that vary between

ρ∗ = 0.1 and ρ∗ = 0.7.

the potential and the derivative of the potential (the force) are
continuous at r = rs,ij.

3.4. Pressure Computations
The contribution of the fluid to the grand potential of layer l
is [12]

p
f

l
V
f

l
= 1

3

〈

∑

i∈l
mi(vi · vi)

〉

− 1

6

〈

∑

i∈l

N
∑

j=1

(rij · fij)
〉

, (17)

where p
f

l
is the fluid differential pressure, V

f

l
the fluid volume,mi

and vi are the mass and velocity of fluid particle i. The first two
sums are over all fluid particles i in layer l, while the second sum is
over all other particles j. Half of the virial contribution, the second
term in Equation (17), is assigned to particle i and the other half
to particle j. The virial contribution assigned to the solid particles
are not included. rij ≡ ri − rj is the vector connecting particle i
and j, and fij = −∂uij/∂rij is the force between them. The ·means

an inner product of the vectors. The computation gives p̂
f

l
, which

is the contribution to the integral pressure in layer l from the fluid
particles, accounting for their interaction with the grain particles.

3.5. The Porous Medium in a Pressure
Gradient
We used the reflecting particle boundary method developed by Li
et al. [15] to generate a pressure difference across the system along
the x-axis. Particles moving from right to left pass the periodic
boundary at x = 0 and x = Lx with probability

(

1− αp

)

and
reflected with probability αp, whereas particles moving from left
to right pass freely through the boundary. A large αp gives a high
pressure difference and a low αp gives a low pressure difference.

4. RESULTS AND DISCUSSION

The results of the molecular dynamics simulations are shown
in Figures 4–8 (equilibrium) and Figures 9, 10 (away from
equilibrium). The porous medium structure was characterized
by its pair correlation function, cf. Figure 3. The compressional
energy was computed according to equation 4 in case I with a
single spherical grain and case II with a lattice of spherical grains.

We computed the compressional energy, plVl, in the bulk
liquid (region B) and in the nano-porous medium (region A).
In the bulk liquid we computed the pressure directly from the

compressional energy, because plVl = p
f

l
V
f

l
(not shown).

Figures 4, 6 show the various contributions to the
compressional energy, cf. equation 4. The grain particles
were identical and the system was in equilibrium, so the
integral pressure in the grains was everywhere the same,
p̂r
l

= p̂r . Similarly, the surface tension was everywhere the

same, γ
fr

l
= γ fr .

The grain pressure p̂r and surface tension γ fr were fitted such
that the pressure is everywhere the same and are plotted as a
function of the fluid pressure pf . The results for case II were next
used in Figures 9, 10 to determine the pressure gradient across
the sequence of REVs in the porous medium.
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FIGURE 4 | (A) Illustration of case I, a single spherical grain surrounded by a

fluid phase with d = 4σ0. (B) Volume of grain, Vr , (C) surface area �fr and (D)

compressional energy pV as a function of the x-axis of the simulation box.

4.1. Case I. Single Spherical Grain.
Equilibrium
The single sphere case is illustrated in Figure 4A. Figures 4B,C
show the variation in the volume of the porous medium (rock),
Vr
l
, and the surface area between the rock and the fluid, �fr ,

along the x-axis of the simulation box. The two quantities were
determined for all layers, l, and these results were used in the plots
of Figures 4B,C. To be representative, the REV must include the
solid sphere with boundaries left and right of the sphere. In order
to obtain pREVVREV we summed plVl over all the layers in the
REV. At equilibrium, pREV = p, where p is the pressure in the
fluid in region B. For the REV we then have

pVREV =
∑

l∈REV
p
f

l
V
f

l
+ p̂r

∑

l∈REV
Vr
l − γ fr

∑

l∈REV
�

fr

l
, (18)

where we used that p̂r
l
= p̂r and γ

fr

l
= γ fr . We know the values of

all the elements in this equation, except p̂r and γ fr . The values of
p̂r and γ fr are fitted such that the pressure, p in Equation (18)
is everywhere the same. With these fitted values available, we
calculated plVl of each layer from

plVl = p
f

l
V
f

l
+ p̂rVr

l − γ fr�
fr

l
. (19)

The contributions to the compressional energy in this equation
for case I are shown in the bottom Figure 4D. We see the

contribution from (1) the bulk fluid p
f

l
V
f

l
, (2) the bulk fluid

and grain p
f

l
V
f

l
+ p̂rVr

l
and (3) the total compressional energy,

plVl = p
f

l
V
f

l
+ p̂rVr

l
− γ fr�fr , which gives the pressure of the

REV when summed and divided with the volume of the REV.
Figure 4D shows clearly that the bulk pressure energy gives

the largest contribution, as one would expect. It is also clear that
the surface energy is significant. As the surface to volume ratio
increases, the bulk contributions may become smaller than the
surface contribution (not shown). In the present case, this will
happen when the radius of the sphere is 2.25σ0. For our grains
with R = 5.5σ0, this does not happen.

The plots of p̂r and γ fr as functions of p in region B are shown
in Figure 5. The values for d = 4σ0 and d = 11σ0 are given in
the same plots. We see that the plots fall on top of each other.
This shows that the integral pressure and the surface tension
are independent of the distance d in the interval considered. If
confinement effects were essential, we would expect that p̂r and
γ fr were functions of the distance d between the surfaces of the
spheres. When the value of d decreases below 4σ0, deviations
may arise, for instance due to contributions from the disjoining
pressure. Such a contribution is expected to vary with the surface
area, and increase as the distance between interfaces become
shorter. In plots like Figure 5, we may see this as a decrease in
the surface tension.

4.2. Case II. Lattice of Spherical Grains.
Equilibrium
Consider next the lattice of spherical grains, illustrated in
Figure 6A. Figures 6B,C give the variation in the volume of the
porous medium Vr

l
and surface area, �fr , along the x-axis.

When the REV in region A is properly chosen, we know that
pREV = p. In equilibrium, the pressure of the REV is constant in
the bulk liquid phases, in regions B1 or B2, where p is the pressure
of the fluid in region B. In order to obtain pVREV in region A, we
sum plVl over all the layers that make up the REV, and obtain

pVREV =
∑

l∈REV
p
f

l
V
f

l
+ p̂r

∑

l∈REV
Vr
l − γ fr

∑

l∈REV
�

fr

l
, (20)

To proceed, we find first the values of all the elements in this
equation, except p̂r and γ fr . The values of p̂r and γ fr are fitted
such that the pressure is everywhere the same. Using these fitted
values, we next calculated p̂lVl of each layer using

plVl = p
f

l
V
f

l
+ p̂rVr

l − γ fr�
fr

l
(21)

The contributions to the compressional energy in this equation
are shown in three stages in Figure 6D: (1) bulk fluid

contribution p
f

l
V
f

l
, (2) bulk fluid and grain contribution

p
f

l
V
f

l
+ p̂rVr

l
and (3) the total compressional energy, plVl =

p
f

l
V
f

l
+ p̂rVr

l
− γ fr�fr . Figure 6D shows clearly that the bulk

contribution is largest, as is expected. However, the surface
energy is significant.

From Figure 6B it follows that a proper choice of the REV is a
unit cell, because all REVs are then identical, (except the REVs at
the boundaries). The integral over plVl in these REVs is the same
and equal to pVREV. The layers l are smaller than the REV and as
a consequence p̂lVl will vary, a variation that is seen in Figure 6D.
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FIGURE 5 | Fitted grain pressure p̂r and surface tension γ fr as a function of pressure p for a sphere (characteristic length d = 4σ0 and d = 11σ0).

FIGURE 6 | (A) Illustration of case II, a lattice spherical grain surrounded by a

fluid phase with a = 20σ0. (B) Volume of grain, Vr , (C) surface area �fr and

(D) compressional energy pV as a function of the x-axis of the simulation box.

The smallest REV is a unit cell.

The values for p̂r and γ fr are shown as a function of pf for case
II in Figure 7 for d1 = 4.14σ0 and d1 = 11.21σ0. We see now a
systematic difference between the values of p̂r and γ fr in the two
cases. The integral pressure and the surface tension increases as
the distance between the grains decreases. The difference in one
set can be estimated from the other. Say, for a difference in surface
tension1γ fr we obtain for the same fluid pressure from equation
11, a difference in integral pressure of 1p̂r = 31γ fr/R. This is
nearly what we find by comparing the lines in Figure 6, the lines
can be predicted from one another using R = 6.5σ0 while the
value in Figure 3 is R = 5.5σ0. The difference may be due to the
disjoining pressure. Its distribution is not spherically symmetric,
which may explain the difference between 6.5σ0 and 5.5σ0.

The results should be the same as for case I for the larger
distance, and indeed that is found, cf. Figure 8. As the distance

between the grain surfaces increases, we expect the dependence
on confinement to disappear, and this is documented by Figure 8
where the two cases are shown with distances d = 11σ0 and
d1 = 11.21σ0, respectively. The curves for the single grain and
lattice of grains overlap.

The knowledge gained above on the various pressures at
equilibrium is needed to construct the REV. The size of the REV
includes the complete range of potential interactions available in
the system, but not more. To find a REV-property, we need to
sample the whole space of possible interactions. The thickness of
the REV is larger than the layer thickness used in the simulations.

Our analysis therefore shows that the pressure inside grains
in a fcc lattice and the surface tension, depends in particular on
the distances between the surfaces of the spheres, including on
their periodic replicas. A procedure has been developed to find
the pressure of a REV, from information of the (equilibrium)
values of p̂r and γ fr as a function of pf . It has been documented
in particular for nano-porous medium, but is likely to hold for
other lattices, even amorphous materials when the REV can be
defined properly.

4.3. Case II. Lattice of Spherical Grains.
Non-equilibrium
Figure 9 illustrates the system in the pressure gradient, where
Figure 9B shows the compressional energy, pV , along the x-
axis. The dip in the pressure close to x = 0 is caused by the
reflecting particle boundary, cf. section 3.5. The reflecting particle
boundary introduces a surface between the high pressure on the
left side and the low pressure on the right side.

To show first how a REV-property is determined from the
layer-property, consider again the compressional energies of each
layer. In the analysis we used the fcc lattice with lattice parameter
a = 20σ0. The volume of the grain, Vr , and the surface area, �fr ,
varied of course in the exact same way as in Figures 6B,C. The
pressure gradient was generated as explained in section 3.5. The
pressure difference between the external reservoirs B1 and B2 was
large, giving a gradient with order of magnitude 1012 bar/m. The
fluid on the left side is liquid-like, while the fluid on the right
side is gas-like. The smallest REV as obtained in the analysis at
equilibrium is indicated in the figure.

In order to compute a REV variable away from equilibrium,
we therefore follow the procedure described by Kjelstrup et al.
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FIGURE 7 | Fitted grain pressure p̂r and surface tension γ fr as a function of pressure p for the lattice of spheres (characteristic length d1 = 4.14σ0 and d1 = 11.21σ0).

FIGURE 8 | Fitted grain pressure p̂r and surface tension γ fr as a function of pressure p for the sphere (characteristic length d = 11σ0) and a lattice of spheres

(characteristic length d1 = 11.21σ0).

[10] and choose a layer as a reference point. We then compute
the average using five layers, two to the left, two to the right
and the central layer. Moving one layer down the gradient, we
repeat the procedure, and in this manner we obtain the property
variation on the REV scale. The results of the simulation gave, for
each individual layer, pl

l
V l
l
, as plotted in Figure 9B. The profile

created by the REV-centers is shown in Figure 10. We see a
smooth linear profile (central curve) as one would expect from
the boundary conditions that are imposed on the system. Some
traces of oscillation are still left in the separate contributions to
the total compressional energy.

We have seen that a nano-porous medium is characterized
by pressures in the fluid and the solid phases, as well as the
surface tension between the fluid and the solid. When one
reduces the size of a thermodynamic system to the nano-meter
size, the pressures and the surface tensions become dependent
on the size of the system. An important observation is then
that there are two relevant pressures rather than one. Hill [1]
called them the integral and the differential pressure, respectively.
It is maybe surprising that the simple virial expression works
so well for all pressure calculations in a fluid, but we have
found that it can be used. We will next be able to study
transport processes, where the external pressure difference is a
driving force. The method, to compute the mechanical force
intrinsic to the porous medium, may open interesting new
possibilities to study the effects that are characteristic for
porous media.

FIGURE 9 | (A) Illustration of case II in a pressure gradient. (B) Compressional

energy pV variation across the system.

In a macro-scale description, the so-called representative
elementary volume (REV) is essential. The REVmakes it possible
to obtain thermodynamic variables on this scale. We have here
discussed how the fact that the macro-scale pressure is constant
in equilibrium makes it possible to obtain the integral pressure
in the solid, as well as the surface tension, of the liquid-
solid contacts in the REV. An observation which confirms the
soundness of the procedure is that we recover Young-Laplace’s
law for the differential pressures. The existence of a REV for
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FIGURE 10 | Compressional energy pV variation across the system smoothed

over the representary elementary volume.

systems on the nano-scale supports the idea of a REV that can
be defined for pores also of micrometer dimension [10]. There is
no conflict between the levels of description as they merge in the
thermodynamic limit. The REV, as defined in the present work,
may allow us to develop a non-equilibrium thermodynamic
theory for the nano-scale.

5. CONCLUSIONS

The following conclusions can be drawn from the above studies

• We have obtained the first support for a new way to compute
the pressure in a nano-porous medium. The integral pressure
of themedium is defined by the grand potential. The definition
applies to the thermodynamic limit, as well as to systems which
are small, according to the definition of Hill [1].

• It follows that nano-porous media need two pressures in their
description, the integral and the differential pressure. This is
new knowledge in the context of nano-porous media.

• For a spherical rock particle of radius R, we derive a relation
between the integral and the differential pressure in terms
of the surface tension, p̂r − pr = γ /R. Their difference is
non-negligible in the cases where Young-Laplace’s law applies.

• We have constructed two models of a porous medium, case I
with a single spherical grain and case II with a fcc lattice of
spherical grains. The new method to compute the pressure

in these nano-porous mediums is not specific to these two
cases, it is general. The method can be used on, e.g., a random
distribution of spherical grains, but the REV will need to be

larger in order to include all possible microstates. The REV
needs in general to be larger as the heterogeneity of the porous
medium increases.

• To illustrate the concepts, we have constructed a system with
a single fluid. The rock pressure and the surface tension are
constant throughout the porous medium at equilibrium. The
assumptions were confirmed for a porosity change from φ =
0.74 to 0.92, for a REV with minimum size of a unit cell.

• From the assumption of local equilibrium, we can find the
pressure internal to a REV of the porous medium, under
non-equilibrium conditions, and a continuous variation in the
pressure on a macro-scale.

To obtain these conclusions, we have used molecular dynamics
simulations of a single spherical grain in a pore and then for
face-centered lattice of spherical grains in a pore. This tool is
irreplaceable in its ability to test assumptions made in the theory.
The simulations were used here to compute the integral rock
pressure and the surface tension, as well as the pressure of the
representative volume, and through this to develop a procedure
for porous media pressure calculations.

Only one fluid has been studied here. The situation is expected
to be more complicated with two-phase flow and an amorphous
medium. Nevertheless, we believe that this first step has given
useful information for the work to follow. We shall continue
to use the grand potential for the more complicated cases, in
work toward a non-equilibrium thermodynamic theory for the
nano-scale.
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