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Tilted Snowplow Ponderomotive
Electron Acceleration With
Spatio-Temporally Shaped Ultrafast
Laser Pulses
Alex M. Wilhelm and Charles G. Durfee*

Department of Physics, Colorado School of Mines, Golden, CO, United States

We propose a novel scheme for using the ponderomotive force of a tilted ultrafast laser

pulse to accelerate electrons in free space. The tilt of the intensity envelope results from

the angular dispersion of the pulse’s spectrum and slows down the interaction of the

pulse with free electrons. The slower effective pulse velocity allows time for the electrons

to accelerate from rest while remaining on the wave. We present both non-relativistic and

relativistic analytic single-particle models in the adiabatic ponderomotive approximation,

describing the process for an ideal infinite tilted pulse as well as a finite width beam.

The analysis predicts the threshold intensity as a function of the pulse front tilt angle

and shows that in the ideal case the output energy of the electrons is four times that of

the ponderomotive potential at the capture threshold. Full-field simulations using the 2D

OSIRIS 4.0 particle-in-cell code confirm the basic scheme. This tilted pulse acceleration

scheme shows promise as a lab-scale method of accelerating electrons to the MeV level

with good energy and angular resolution, to be used for ultrafast electron diffraction or

injection into a second stage accelerator.

Keywords: laser electron accelerators, ponderomotive force, ultrafast lasers, spatio-temporal pulse shaping,

relativistic kinematics

1. INTRODUCTION

One of the issues facing the use of laser pulses to accelerate electrons is the relative difference in the
velocity of the electrons and of the light wave. For direct field acceleration, injected electrons must
be close to the phase velocity, while for wakefield acceleration and ponderomotive acceleration,
it is the pulse group velocity relative to the electron velocity that is relevant. Typically the phase
and group velocities are at or close to the speed of light, and fast electrons must be injected, and
timed with the pulse. Spatio-temporal shaping of the pulses offers a route toward controlling the
pulse group velocity over a wide range. In recent years, several groups have been pursuing the use
of spatial chirp, the ordering of the pulse frequency components in position or angle, to control
the spatio-temporal intensity to slow down the effective group velocity of the wave. Angular spatial
chirp produces a pulse front tilt that presents unique opportunities to study and control electron
dynamics, since the effective pulse velocity can be decreased substantially below the vacuum speed
of light (c).

Tilted pulses have been applied in several areas of non-linear optics and laser-matter
interactions. Control of the angular dispersion has been used to match pulse fronts in second
harmonic generation of broadband pulses in thick non-linear crystals [1] and for optical parametric
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amplification [2]. Similarly, other groups have used tilted pulses
in lithium niobate to obtain high energy THz pulses [3]. The
spatially-dependent arrival time of a tilted pulse can also be
used for traveling-wave pumping of an x-ray laser in an ablating
plasma (e.g., [4]). The tilted pulse has also been shown to result
in interesting asymmetric structures during micromachining on
surfaces [5, 6]. When a pulse is focused with angular chirp, the
intensity is localized along the optical axis due to simultaneous
spatial and temporal focusing (SSTF) [7, 8]. This intensity
localization is extremely useful for micromachining [9, 10] and
laser surgery [11].

One of the primary mechanisms for a laser beam to couple
to plasmas is the ponderomotive force. The optical pressure
drives lighter electrons away from regions of high intensity. For
relativistic intensities (where the average oscillation energy of
the electron in the field is comparable to its rest mass), the
ponderomotive force can drive most or all of the electrons out
of the focal region, leaving a wakefield behind the pulse that can
be used to accelerate electrons [12]. In this paper, we propose to
use tilted laser pulses, like a snowplow, to knock the electrons
out of the focus to one side. By slowing down the effective
velocity of the pulse we predict that the intensity required to
drive the electrons out is dramatically reduced compared to using
a conventionally-focused beam. In this paper, we consider the
acceleration at densities sufficiently low that space charge is not a
factor; in later work we will consider higher densities, including
the wakefield regime. While it is beyond the scope of this initial
paper to fully evaluate this scheme for applications, an ultrafast
source of moderate energy electron pulses can have application
to ultrafast electron diffraction [13], generation of coherent light,
and injection into wakefield accelerators.

Before presenting the details, we illustrate the acceleration
scheme in Figure 1, which shows a simulation of the process
using the particle-in-cell code OSIRIS 4.0 [14, 15]. In the
top left frame, the tilted pulse (orange) is about to meet a
stationary electron bunch at the origin (blue). As the pulse
propagates to the right, the electron bunch is accelerated in the
direction of the tilted intensity gradient. Because the effective
interaction velocity along this direction is slower than c, the
electron bunch is captured and accelerated. In section 2, we
provide a brief overview of the optics of tilted pulses. In
section 3, the simple non-relativistic theory of tilted pulse
acceleration is presented, followed by the relativistic theory and
modeling in section 4. Finally, in section 5, we offer a summary
and conclusion.

2. GENERATION OF TILTED PULSES WITH
ANGULAR SPATIAL CHIRP

In ultrafast laser systems, care is typically taken to ensure
that all of the spectral components of the beam are
spatially overlapped. However, in the past several years,
more researchers have been seeking to exploit special
properties of beams that have spatial chirp, where one or
more of the beam parameters vary across the spectrum.
For example, a beam with transverse spatial chirp exhibits

the "lighthouse" effect, where the wavefront angle is a
function of time. This effect has lead to the production of
angularly separated attosecond pulses through high order
harmonic generation [16]. Angular spatial chirp leads to
a complementary effect, known as simultaneous spatial
and temporal focusing (SSTF). These beams have unique
properties that can be exploited to control and manipulate
non-linear optical processes. SSTF leads to a localization of
the intensity along the optical axis that is especially useful
for micromachining [6, 10] and laser surgery [11], as well as
non-linear microscopy [17, 18].

While the details of the spatio-temporal structure of these
pulses can be found elsewhere [19], there are several features
of these tilted pulses that are relevant to the current discussion.
A simple understanding of temporal focusing and pulse front
tilt can be obtained by considering a group of plane waves
crossing at Z = 0 where the propagation angle (θ) relative
to the Z−axis depends on frequency ω. The central frequency
component ω0 is defined to be along the Z−axis, so that
θ(ω0) = 0. In the spatial-spectral domain, this beam can be
written as E0 exp[−(ω − ω0)

2/1ω2] exp[i (ω/c)(X sin(θ(ω)) +
Z cos(θ(ω)))], where E0 is the electric field amplitude and
1ω is the spectral bandwidth. Derivatives of the spectral
phase ϕ(X,Z,ω) = (ω/c)(X sin θ(ω) + Z cos θ(ω)) lead
to an understanding of the spatio-temporal properties of the
beam. Along the Z−axis, the group delay dispersion, ϕ2(Z) =

∂2ω (ω Z cos θ) /c
∣

∣

ω0
leads to a pulse that is fully compressed only

at Z = 0. This longitudinal compression combines with the
focusing and the spectral overlap to give a shorter depth of focus
than would be expected for a conventionally focused beam of the
same spot radius.

Along with intensity localization, the angular chirp leads to
a strong pulse front tilt (PFT). At Z = 0, we can find the
arrival time of the pulse by calculating the group delay: ϕ1 (X) =

∂ωϕ|ω0
= ∂ωθ |ω0

X ω0/c. The pulse arrives earliest for X < 0,
and the pulse sweeps across the target Z = 0 plane with a velocity
vxPF = X/ϕ1(X). Noting that the pulse travels at a speed c in the
Z direction, the pulse is seen to have a tilt in the pulse front with
an angle given by tan(θPF) = c/vxPF , where θPF = 0 when there
is no PFT.

PFT control has been applied in previous work in non-linear
optics such as THz generation in crystals [3], non-collinear
optical parametric amplification (e.g., [20]) and achromatic phase
matching [1]. In these examples the group velocity control
makes the non-linear processes more efficient. PFT has also been
exploited in traveling-wave pumping of x-ray lasers (e.g., [4]).

Spatially-chirped pulses can be made by converting the
standard double pass pulse compressor to single pass by
increasing the separation of the diffraction gratings by a factor of
two. Normally, the separation of the gratings is fixed to optimize
pulse compression, but we have shown a pulse compressor that
allows us to vary the degree of spatial chirp while maintaining
optimal pulse compression [21]. Rather than using a single pass
compressor, the beam passes through the grating pair twice, but
with a grating separation that is longer for one pass compared to
the other. Our current design allows us to tune the PFT from zero
all the way to θPF < 88◦.
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FIGURE 1 | Calculation in the lab frame from the OSIRIS 4.0 PIC code for a 20 fs pulse duration, 60◦ PFT angle, and 200 keV peak ponderomotive potential. The red

shows the intensity distribution for the tilted pulse fronts. The blue-black dots represent the location of the electron bunch [2.5 µm square, initial position

(X0,Z0) = (0, 0)]. Here the focal plane is at Z = −20µm. The horizontal dashed lines represent the optical axis for each of the frames. The arrow at t = 500fs
represents the direction of the accelerated bunch, which is close to the normal of the pulse front.

3. NON-RELATIVISTIC SINGLE PARTICLE
THEORY

The essential concepts behind the tilted pulse acceleration
scheme can be most easily illustrated by considering acceleration
in the non-relativistic limit. For simplicity, we will consider a
tilted pulse propagating in the Z−direction with a tilt angle θPF
where we also neglect limits on the transverse width of the beam.
This non-physical idealized framework will serve as a reference
to which more complete calculations can be compared.

An approximate form for the envelope of the pulse intensity,
I, as

I (X,Z, t) = I0 exp

[

−
2
(

c t − X tan(θPF)− Z
)2

c2τ 2

]

(1)

Here, I0 is the peak intensity, and τ is the pulse duration. While
this simple representation of a tilted pulse does not capture the
full spatio-temporal evolution of the intensity through the focus,
we will use it for conveying the essential dynamics of tilted
pulse acceleration. We have developed an analytic expression for
the evolution of the spatio-temporal pulse intensity following
the method outlined in an earlier paper [18], and we find that
the approximation of Equation (1) is best for electrons starting
near the focal plane (Z = 0). Three dimensional effects will be
discussed later in the paper.

The common definition of the non-relativistic ponderomotive
potential is the cycle-averaged quiver energy of a free electron in
an electromagnetic wave:

Up ≡
e2E0

2

4meω0
2
=

reλ
2I

2πc
, (2)

where e is the electron charge, E0 is the electric field amplitude,
me is the electron rest mass, re is the classical electron radius,

λ is the laser wavelength, and I is the time-averaged beam
intensity. In the non-relativistic limit, we can calculate the force
on an electron from F = −∇Up. Equation (2) can be derived
from the linearized equations of motion of a single charged
particle in the Lorentz force of a high-frequency electromagnetic
field [22]. The force comes out of equations of motion for the
guiding center of the fast oscillations of the particle. A more
general form of the ponderomotive force can be derived through
Vlasov theory that includes interactions with particles that are
resonant with the field [23]. Another approach using the stress
tensor and fluid theory addresses the time-dependent force that
emerges from the longitudinal gradients of the field [24]. At
relativistic intensities, the trajectories of the electron become
anharmonic, and approximate forms of the ponderomotive force
must be derived that account for the relativistic mass increase.
In a later section we will use the approximation developed by
Mora and Antonsen [25]. Owing to the complicated nature
of these approximations, full-field calculations that do not rely
on the ponderomotive approximations can be used to verify
that the results of the simpler theory hold up. For this we
turn to the particle-in-cell calculations that include the fast
electron oscillations.

In the non-relativistic limit, we can calculate the force on an
electron from F = −∇Up, obtaining:

F =
4UP0(c t − X tan(θPF)− Z)

c2τ 2 cos(θPF)
e
−

2(c t−X tan(θPF )−Z)2

c2τ2

(

cos(θPF)
sin(θPF)

)

,

(3)
whereUP0 is the peak ponderomotive potential. By looking at the
vector components of Equation (3), we can see that with a simple
rotation of the reference frame we can align the force along a z′

axis that is normal to the pulse front. In this rotated frame, the
laser pulse has a ponderomotive potential that is traveling at a

Frontiers in Physics | www.frontiersin.org 3 May 2019 | Volume 7 | Article 66

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Wilhelm and Durfee Tilted Snowplow Ponderomotive Electron Acceleration

reduced speed vPF = c cos θPF :

Up = UP0e
− 2

τ2

(

t− z′

c cos(θPF )

)2

(4)

Now consider a reference frame that is moving in the z′ direction
at the pulse front velocity. If an electron is at rest in the lab frame,
then it is moving toward the pulse front with velocity−c cos(θPF)
in the moving frame. Upon reflection from the potential, the
velocity changes to +c cos(θPF). Therefore, from simple energy
considerations, the electron will be “reflected” from this potential
hill if the peak ponderomotive potential is greater than the
capture threshold:

U
cap0
P =

1

2
mec

2cos2(θPF), (5)

where the superscript “cap0” reminds the reader that the initial
electron velocity is zero.

Now suppose the electron has an initial velocity in the lab
frame v0, where v0 > 0 corresponds to an electron moving in
the same direction as the pulse front in the rotated lab frame, i.e.,
along the z′ axis. In the moving frame, the electron approaches
the stationary potential at the speed −

(

c cos(θPF)− v0
)

leading
to a new capture threshold:

U
cap
P (v0) =

1

2
mec

2
(

cos(θPF)− v0/c
)2

(6)

It is important to note that with strong angular chirp approaching
the laser focus it is straightforward to produce pulse front angles
as large as θPF = 88◦. In such cases, capture can take place
with a ponderomotive potential that is approximately 3 orders
of magnitude less than the electron rest mass energy.

When the electron is captured and accelerated (reflected in
the moving frame), the reversal of the electron velocity in the
moving frame corresponds to a net acceleration in the lab frame
to a velocity of 2 c cos(θPF)− v0, or an output kinetic energy of

KEout = 2mec
2
(

cos(θPF)−
v0

2 c

)2
= 4U

cap0
P

+
1

2
mv20 ∓ 4

√

1

2
mv20 U

cap0
P . (7)

Here the minus sign is taken if v0 > 0, which corresponds to
a seed electron velocity in the same direction as the pulse front.
Note that even if UP0 > U

cap
P , the output energy is determined

only by the pulse front velocity (vPF) and the seed electron energy

(v0), not the value of UP0. If v0 = 0, KEout = 4U
cap0
P . We will see

later how a finite beam size affects this result.
In the first form of Equation (7), we see that the output kinetic

energy is smaller if the initial direction is co-moving with the
pulse (v0 > 0) compared to if it is moving into the pulse (v0 <

0). This is perhaps counter-intuitive, but consider the situation
in the pulse frame. If the particle is initially at rest in the lab
frame, the change in momentum after reflection is 2mevPF . Any
additional momentum toward the pulse front will increase the
momentum transfer, while if the particle is initially moving in the

same direction as the pulse front in the lab frame, the momentum
increase from the interaction is lower since the relative velocities
are smaller. This is similar to the situation in American baseball,
where the batter can hit the ball farther off a fast ball than if the
ball is hit off a tee (i.e., starting from rest). One might conclude
from this that if electrons are injected into the field, it is best
to seed the electrons in the direction opposite the pulse front.
However, this is only true if the pulse intensity is sufficient to
reflect the electrons, i.e., UP0 > U

cap
P (v0). Since the capture

threshold, Equation (6), is higher for v0 < 0, we can consider
whether a combination of smaller tilt angle and co-moving
injection would be a more efficient acceleration scheme.

If the available input intensity is fixed, and we have the ability
to seed the acceleration with electrons, we can adjust θPF so that
UP0 ≥ U

cap
P (v0). We can then calculate the KE that is added to

the input KE: 1KEout = KEout − KEin, assuming the tilt angle
is always adjusted so that UP0 = U

cap
P as v0 is varied. Using

Equation (6) to solve for cos(θPF), we find that

1KEout

U
cap
P

= 4

(

1±

√

KEin

U
cap
P

)

(8)

Here the upper sign is taken for co-moving injection (v0 > 0).
As an example, suppose we accelerate an electron bunch from
rest using a peak ponderomotive potential of UP0 and the angle

is adjusted to be at the capture threshold (UP0 = U
cap0
P ). Then,

the electrons of kinetic energy 4UP0 are injected into a second
stage with a pulse of the same intensity, and θPF for this stage is
adjusted to be at the threshold for capture. At the end, KEout =
12UP0, which is 1.5x higher than if all the energy were put into
a single stage. For a fixed total energy, the optimum fraction of
energy to use in the first stage is just above 0.25, which yields
an improvement of 1.62x over the single stage case. We will
see in section 4.1 that when the initial electron velocity is near
zero, variations in the output kinetic energy are very sensitive
to input energy perturbations, however, when the acceleration
is seeded with some average initial velocity, this sensitivity is
dramatically reduced.

Although the force is only in the direction normal to the pulse
front, there is motion along the pulse front at the speed v′x =

c sin(θPF). Of course in this ideal case of infinite transverse width,
this motion has no bearing on the kinematics. For a finite beam
width however, there will be some electrons that will slide off the
pulse front before being fully accelerated. We can estimate the
time, 1T, the electron is accelerated by the pulse by considering
an infinite width (in X) beam with a triangular temporal profile
and a duration of τtri from peak to toe. Here, the force is
constant, and since the momentum change is 2mec cos(θPF), then

1T = 4τtri/rUp, where rUp = UP0

/

U
cap0
P is the measure of

how far the focused intensity is above the capture threshold.
The acceleration time is shorter for shorter pulses and larger
rUp. The distance the electron travels in the rotated frame in
the x′ direction is 1x′ = c1Tcos(θPF). To get the transverse
displacement in the un-rotated X direction, we integrate the
equation of motion in the z′ direction, then rotate back to obtain

1X= 2cτ
rUp

sin
(

2θpf
)

(

(

1+
rUp

4

)2
+1
)

. For θPF = 60◦, τtri = 20fs,
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and rUp = 2, the focused spot diameter must be a minimum
of 1X = 17µm. However, for a steeper angle, θPF = 85◦,
1X = 3.4µm, which is considerably smaller.

Finally, we note that in the stationary lab frame (Z,X) the
output velocity vector is {vz , vx} =

{

2 c cos2(θPF), c sin(2θPF)
}

and the output angle (tan−1 (vx/vz)) is simply in the direction
of the normal to the pulse front, consistent with the direction of
the applied force.

Several very important observations come from this simple
analysis. First, all electrons will be captured, provide the capture
condition is satisfied. Second, the output kinetic energy is
dependent only on the PFT angle, not on the intensity of the
laser. Therefore, even when the laser pulse has a transverse
intensity profile, the electrons that are fully captured will have
the same output energy. These two properties of the tilted pulse
acceleration scheme show promise for creating an electron bunch
with high brightness. The analysis later in this paper will explore
the robustness of the scheme, accounting for the effects of
relativity and the non-constant transverse intensity profile.

4. RELATIVISTIC SINGLE-PARTICLE
ANALYSIS OF TILTED PULSE
ACCELERATION

4.1. One Dimensional Analysis With Infinite
Width Tilted Pulse
While the non-relativistic calculation is extremely useful
for illustrating the concept of tilted pulse ponderomotive
acceleration, the accelerated electrons will exhibit relativistic
effects even for modest laser pulse intensities. Mora and
Antonsen [25] give an expression for the relativistic
ponderomotive force, written in the lab frame:

F =
dp̄

dt
= −

1

γ
∇UP, (9)

where the cycle-average relativistic factor is

γ̄ =

√

1+
2

mec2

(

p̄2

2m
+ Up

)

(10)

In these expressions, p̄ is the cycle-averaged momentum. From
Equation (9), we see that in the high-intensity limit, the force
increases only as the square-root of the laser intensity. The
force also decreases with increasing electron momentum. While
this indicates that ponderomotive acceleration is less effective
for strongly relativistic velocities, we will see that it remains
promising as an injection source for another acceleration stage,
such as wakefield acceleration.

The direction of the force in Equation (9) is the same
as the non-relativistic case. This allows us to consider the
relativistic modifications to the one-dimensional non-relativistic
analysis described in section 3. Since the force is non-linear,
we numerically integrate the equations of motion in the lab
frame using the idealized tilted pulse shown in Equation (1)
to obtain the electron trajectories. Figure 2A shows electron

trajectories for a fixed pulse front angle and several values
of the peak ponderomotive potential, UP0. Figure 2B shows
the time-dependence of the kinetic energy, mec

2 (γ − 1).
For high UP0 (blue curve) the electron is accelerated to
approximately 700 keV, but when UP0 is much less than
the capture threshold (purple curve), the pulse passes by
the electron without accelerating. For this low UP0 case, the
kinetic energy follows the ponderomotive potential. As UP0

increases to just below threshold (red curve), the electron
is not captured, but is shifted forward as the pulse passes
by. Just above the threshold for capture (green curve), the
electron rides along the top of the pulse before being accelerated
in front.

We can see that in this case of infinite beam width, the
final output kinetic energy is not affected by the height of the
ponderomotive potential: both the blue and green curves in
Figure 2 reach the same maximum value. Rather, the output
kinetic energy is determined by the PFT angle, as seen in
Figure 3. Below threshold, it is seen that the curves for the output
energies lie on top of each other up to the threshold for capture.

The non-relativistic calculation for the threshold for capture
(from Equation 6) is shown as a dashed curve in Figure 3A.
We can see that the relativistic capture threshold is higher than
the non-relativistic prediction (Equation 5). As the relativistic
mass increases with higher intensity, the ponderomotive force
decreases and a higher capture threshold results. The output
kinetic energy at threshold is equal to four times the threshold
potential for capture.

To numerically find the threshold ponderomotive potential,
we iterate on the peak ponderomotive potential, calculate the
trajectory, and look at the sign of z′ (tmax) − c cos(θPF) tmax (as
seen in Figure 2A) to see if the electron has been accelerated.
We can then calculate the final kinetic energy at the maximum
time of integration, tmax, when the electron has moved off of the
pulse. Figure 3B shows the variation of the capture threshold as a
function of PFT angle (solid lines). The blue curve shows the non-
relativistic prediction, while the red curve shows the numerically
calculated relativistic threshold.

The dashed lines in Figure 3B show the output kinetic energy
after acceleration. In blue is the non-relativistic prediction, which
is four times the capture potential shown in Equation (6). The red
dashed curve results from the relativistic numerical integration
and is equal to four times the relativistic capture potential. While
the potential for capture is larger in the relativistic case than the
non-relativistic prediction, the final kinetic energy is still four
times the threshold potential. Given that the PFT angle can be
tuned to ensure capture, there is no loss in effectiveness of the
ponderomotive acceleration at relativistic intensity.

Next we consider the dependence of the output kinetic energy
on the input kinetic energy of the electron. When there is initial
electron velocity, for a given value of UP0, the seed electron can
be injected either along the direction of the pulse front normal
or against it. Equation (6) shows that the capture potential is
lower when a seed electron is co-moving with the pulse front,
and higher if it is moving toward the pulse front. Figure 4A
shows how the output kinetic energy (KEout) depends on the seed
kinetic energy (KEin). The energies are ratioed against the capture
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FIGURE 2 | Relativistic calculations of acceleration in the moving frame for a pulse front angle of 50◦, for which the non-relativistic capture potential is

Ucap0P = 100 keV. The electron is initially at rest in the lab frame. The different curves correspond to varying values of the peak ponderomotive potential. (A) Electron

trajectories and (B) kinetic energy. The horizontal gray line in (B) represents 4x the calculated threshold for capture.

FIGURE 3 | (A) Output kinetic energy as a function of the PFT angle for several fixed values of peak ponderomotive potential. The dashed curve shows the

non-relativistic capture threshold. The vertical dashed lines represent the capture threshold angle in the non-relativistic approximation. (B) Threshold ponderomotive

potential (solid) and output kinetic energy (dashed) as a function of PFT angle. The color of the curves correspond to the non-relativistic (blue) and relativistic (red)

predictions.

potential U
cap0
P at zero initial velocity; at KEin = 0, we see the

factor of four predicted above. When the seed electron is injected
against the pulse front direction (KEin < 0 in the plot), the
output kinetic energy is actually higher than if the electron starts
at rest or is injected in the same direction as the pulse front (see
Figure 4A). This is similar to how a baseball player can hit the ball
farther off a faster pitch. The sharp cutoff for negative KEin is at
the capture threshold for the ponderomotive potential chosen for
this calculation. Although seeding against the pulse front leads to
higher KEout , this approach will work only if the pulse has high
enough UP0 so that the electron is actually captured.

The maximum energy extraction for a fixed peak intensity can
be obtained if the pulse front angle can be adjusted so that the
electrons are just captured. In contrast to Equation (7) where the
tilt angle was held constant while KEin was varied, consider a case
where the tilt angle is adjusted to be at the capture threshold. In
the non-relativistic limit, the output kinetic energy is then

KEout = 4UP0 + KEin ± 4
√

KEinUP0. (11)

The negative sign is chosen when the electron is seeded against
the direction of the pulse front. In this scenario, the highest
output energy when seeding is obtained by injecting with a co-
moving electron bunch while tuning the PFT to just capture
the electrons.

Another consequence of the variation of output kinetic energy
with input velocity is that if there is a spread of initial velocities
δKEin, for example from a thermal distribution, the output spread
δKEout will be amplified by the process. Figure 4A shows that
the slope of KEout vs. KEin is largest for zero initial velocity,
as discussed in section 3. However, even a modest value of
KEin will reduce the relative output energy spread δKEout/KEout .
Figure 4B shows how δKEout/KEout is reduced as the pulse front
angle decreases for several values of KEin.

4.2. Quasi-Three Dimensional Analysis
With Finite Width Tilted Pulse
Although the infinite width tilted pulse is non-physical, it
allows for a relatively simple description of how the tilted pulse
acceleration operates in the ideal limit. We can modify Equation
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FIGURE 4 | (A) Output kinetic energy KEout as a function of the seed electron kinetic energy KEin for UP0 = 500 keV. Both energies are calculated relative to the zero

initial velocity capture potential. Negative KEin corresponds to electron velocity that is initially heading toward the beam. (B) Relative variation in the output kinetic

energy as a function of PFT angle for three values of the co-moving seed kinetic energy. The test value of δKEin is 1 eV.

(1) to add a transverse profile:

I (X,Y ,Z, t) = I0 exp

[

−
2
(

c t − X tan(θPF)− Z
)2

c2τ 2

−

[(

2
(

X2 + Y2
)

w2
0

)n]

(12)

Here w0 is the focal spot radius and when the integer n > 1
we have a super-Gaussian transverse profile. We have calculated
the time-dependent intensity profile through the focus based
on our previous analysis [18] that accounts for diffraction and
evolution of the chirps and pulse front tilt. In a later paper, we will
extend our analysis to include beam propagation effects, but for
simplicity in this paper we will largely restrict our analysis to the
simpler form (Equation 12). Although we are calculating forces
in the Z-direction, the simpler form is reasonable near Z = 0. If
the focused intensity is not far above the capture threshold, the
strong localization of the intensity along the axis for SSTF pulses
limits the interaction to a short depth of focus.

A finite beam size leads to several departures from the ideal
case. In this section we will first consider the effect of finite
beam size in the X−direction. Next we will include the effects
that result from intensity dependence in the Y−direction. The
first effect of the finite beam size is that while the pulse exerts
force nominally in the direction normal to the pulse front, the
electron will move along the pulse front during the acceleration
process. In the rotated reference frame, the pulse speed in the
direction of the force is c cos(θPF). Additionally, the electron will
move along the pulse front with the speed c sin(θPF). Even if the
threshold condition for capture is satisfied, the electrons may not
experience the full acceleration if the beam is insufficiently wide,
in this case sliding off the side of the tilted pulse. This effect is
mitigated for electrons that start closer to the leading edge of
the tilted pulse. In Figure 5, the solid and dash-dot lines shows
the results of a relativistic finite-beam calculation of the output
kinetic energy as a function of PFT angle for several values of

FIGURE 5 | Single particle calculations of output electron kinetic energy KEout
resulting from acceleration from a finite Gaussian beam with radius 15 µm.

The pulse duration is either 20fs (solid) or 50fs (dash-dot). The black dashed

curve shows the non-relativistic prediction.

peak ponderomotive potential. For this calculation, the focal spot
radius is 15µm and the electron starts at X0 = 0. The solid line
corresponds to a pulse duration of 20fs, while the dash-dot line is
for a duration of 50fs. We can see that the threshold for capture is
less well-defined for a finite beam size, but that a shorter driving
pulse can accelerate the electrons with less time on the beam.

A second effect concerns the local shape of the pulse front.
Although KEout is determined by θPF and is not sensitive to
the peak intensity, the transverse intensity dependence and the
temporal pulse shape both affect the local curvature of the pulse
front. Larger tilt angles lead to a longer flat section; shaping
the transverse profile of the beam to a super-Gaussian also
dramatically narrows the energy and angular distribution. A
super-Gaussian shape is closer to the ideal tilted pulse that we
used in our one-dimensional analysis.

These effects are illustrated by extending the single-particle
analysis to finite beams with Gaussian and super-Gaussian
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FIGURE 6 | Single particle calculations for electron acceleration from a finite beam with radius 15 µm, a pulse duration of 20fs, a 60◦ PFT angle, and 100 keV peak

ponderomotive potential. The two curves correspond to Gaussian and super-Gaussian transverse beam profiles. (A) output kinetic energy and angle as a function of

the starting transverse position X0. The color shading corresponds to the output energy. (B) Projection onto the KEout − X0 plane. (C) Projection onto the θout − X0
plane.

transverse profiles (see Figure 6). Figure 6A shows how KEout
and the output angle θout depend on the starting X0 position in
the beam. The Gaussian beam profile showsmuchmore variation
than the super-Gaussian. The latter profile, which more closely
approximates the ideal case described above, shows less curvature
in the pulse front. In fact, the region in the −5 < X0 < 0µm
range shows just a 1% variation in output energy and less than
0.3% variation in output angle. Further improvement can be
obtained by using larger spot size.

Finally we consider the effect of the transverse intensity profile
in the vertical (Y) direction. As seen above, the force is directed
toward the local gradient of the spatio-temporal intensity profile.
Figure 7 shows how KEout and the output angle vary with the
initial X0,Y0 position in the Z = 0 plane. Figures 7A–D show
the results for the Gaussian and super-Gaussian beam profiles,
respectively. The output angles are calculated as the cone angle
deviation from the direction of the force, which is nominally
at 60◦ to the Z−axis in the X − Z plane. For the Gaussian
case, the angular dispersion is greater along the vertical direction
than in the horizontal, since the tilted pulse front presents a
wider face to the electrons. The super-Gaussian case illustrates,
as we have seen above, how the energy and angular dispersion
can be dramatically improved by engineering the pulse front
intensity. The correlation of the output energy and angle with
the starting electron position offers the possibility of externally
filtering with an aperture to achieve better angular and energy
dispersion (at the expense of beam current). For the Gaussian
case, the energy dispersion δKEout

/

〈KEout〉 within a 5◦ cone
angle is approximately 11%, while decreasing the cone angle
to 1◦ gives δKEout

/

〈KEout〉 = 7%. This selection, however, is
not efficient: the fractions of electrons starting in the circle with
appreciable output energy shown in Figure 7A are 2 and 0.2%,
respectively. The super-Gaussian case is much more promising.
For a cone angle of 2◦ there are 43% of accelerated electrons, and
these have δKEout

/

〈KEout〉 = 3%. Decreasing the cone angle to
0.5◦ contains over 25% of the electrons and an energy dispersion
of 1%.

To obtain the intensity in the examples shown above would
require a substantial pulse energy of approximately 450 mJ. We
have chosen the θPF = 60◦ case since we can compare to the PIC
simulations presented in the next section. However, increasing
θPF dramatically decreases the pulse energy required for electron

capture and acceleration. As an example, for θPF = 85◦, U
cap0
p =

1.8 keV. For an intensity 2x over threshold, a spot radius of 10
µm and τ = 20fs, only 3.8 mJ of pulse energy is required. As
the desired KEout increases, so does the required input energy,
but with proper shaping of the beam profile, a line focus (longer
in the tilted direction) can be used to reach high intensity while
obtaining good energy and angular distributions.

While at this stage we have not included the space charge
effect on the electron dynamics, we can estimate the energy
required to remove charge from a sphere. To remove 10 pC of
charge from a sphere of radius 10 µm requires 67 nJ. While
this energy is insignificant relative to the laser pulse energy, the
energy required to remove the last electron is approximately
13.4 keV. The amount the energy dispersion is increased by
the space charge will decrease as the accelerated kinetic energy
increases. If the electron bunch is obtained from elsewhere, e.g.,
from photocathode emission, this space charge limitation can
be circumvented.

4.3. Particle-In-Cell Simulations of
Ponderomotive Tilted Pulse Acceleration
To explore this acceleration mechanism in more detail, we have
begun to utilize the OSIRIS 4.0 particle-in-cell code [14, 15]. For
the simulations presented here, we use the 2D, fully-relativistic,
full field (non-cycle-averaged E and B fields) version of the code
without any ponderomotive approximation. The tilted pulse is
initialized at the focus at t = 0 as a fully compressed pulse in the
space-time domain with a polarization perpendicular to the tilt
direction. At present we restrict the use of the tilted pulse option
to moderate tilt angle (≤ 60◦) where the beam propagation has
been tested against our propagation models [19]. The calculated
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FIGURE 7 | Single particle calculations of electron acceleration from a finite

beam with radius 20 µm, a pulse duration of 20fs, a 60◦ PFT angle, and 200

keV peak ponderomotive potential. In the first row we calculate, as a function

of the initial electron coordinate (X0,Y0,Z0 = 0) and for a Gaussian (G)

transverse beam intensity profile, the output (A) kinetic energy, KEout and (B)

the output angle, relative to the 60◦ direction of the force. The second row

(C,D) shows the corresponding calculations for a super-Gaussian (SG)

transverse beam profile. As indicated in the legends, the contour spacing for

the energy plots is 20 keV and angle is 1 degree.

capture potential for this angle corresponds to an intensity that is
nearly relativistic (a0 ≥ 0.7), where a0 is the normalized vector

potential, defined as a0 =
√

4UP0/mec2.
Figure 1 illustrates the acceleration of a square cold electron

bunch 2.5 µm wide, initially at rest, by a pulse with θPF = 60◦,
and an initial intensity that is well above threshold (a0 = 1.25,
UP0 = 200 keV). The simulation parameters correspond to a
pulse that is identical to that described in the previous section.
The bunch is placed Z0 = 20µm from the focal plane and is
constructed such that the initial density (ne) is far below the
critical density (ne ≪ 10−3nc) in order to more closely model a
distribution of non-interacting single particles. The plots are in
the lab frame: the tilted pulse moves forward (to the right) at
the speed of light. Note that the pulse duration increases with
time owing to the geometrically induced chirp [19]. The electron
bunch starts at rest, and is accelerated in a direction (61.1◦) close
to θPF = 60◦.

For the same conditions, Figure 8 shows the output px − pz
momentum distribution for the electron bunch. In blue, we see
the distribution of the output electron momenta as calculated
by OSIRIS. Overlaid in red and orange dots is the prediction of
the single particle model for a 2.5µm wide distribution of initial

FIGURE 8 | Calculations from the OSIRIS 4.0 PIC code for a 20 fs pulse

duration, θPF = 60◦, and UP0 = 200 keV, showing the distribution of output

electrons (blue) in the pz − px plane, starting from an electron bunch 2.5 µm
wide in the X and Z directions centered at (X0,Z0) = (0, 20µm). The additional

dots show the prediction from the single particle model for the same range of

transverse initial positions, centered at (0, 0) (orange) and 0,20 (µm) (red).

transverse positions placed at Z0 = 20µm and Z0 = 0µm,
respectively. The single particle model used for these simulations
is fully-relativistic and ponderomotive and includes the pulse
evolution effects described by Durfee et al. [19], which were
neglected in previous sections as they are beyond the scope of this
paper. There is strong agreement in the momenta distributions
between the single particle model and the OSIRIS simulation for
the 20 µm initial displacement. The 0 µm results are shown to
illustrate how the momentum distribution changes with initial
axial position.

There are a number of reasons for the small differences
between the predictions of the relativistic single particle
calculation and those of the OSIRIS simulation. The first is due
to the fact that there are many particles in the OSIRIS simulation
and space charge effects, while negligible for the densities
considered here, will broaden the energy and angular spectra of
the bunch. This effect has been seen in many other acceleration
schemes. Additionally, OSIRIS uses an approximation of the laser
pulse similar to Equation (12). The single particle model of the
pulse used in this comparison includes more effects of the pulse
evolution such as the evolution of the pulse front tilt angle and
pulse duration though focus. These two effects, individually and
in combination, change the dynamics of the acceleration process
and could potentially lead to higher energies than predicted by
OSIRIS. As stated before, we will further explore these effects, and
how to potentially exploit them in future work.

Our objective in the calculation of Figure 8 was to compare
our single-particle ponderomotive theory with a full field
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simulation. We see that the ponderomotive calculations are quite
close to the full field results, with the latter resulting in somewhat
larger energy spread. In future work, we plan to continue to use
OSIRIS to explore the more interesting laser-plasma dynamics
that occur in a real acceleration experiment. For example, rather
than starting with a localized, stationary electron bunch, the
electrons can be created through tunneling ionization of atoms
in the early part of the pulse. Of particular interest is exploring
the region where the ponderomotive approximation begins to
break down and full-field effects become significant in the particle
dynamics. As shown in Figure 5, the acceleration process benefits
from using shorter duration pulses and predicting exactly how
electrons will be accelerated using few-cycle pulses requires a
better understanding of this transition region.We will investigate
how more exotically shaped SSTF pulses, such as the super-
Gaussian described in section 4.2, can optimize the energy-
momentum landscape of the accelerated electrons. In future
work, we will also investigate the dynamics of these pulses with
higher electron densities, to better understand what brightnesses
and emittances can be achieved with this scheme, as well as the
wakefield regime.

5. DISCUSSION AND CONCLUSION

In this work, we have proposed an efficient laboratory-scale
method of accelerating electrons from rest to relativistic energies
using tilted ultrafast laser pulses. The tilt of the pulse front
extends the interaction of the short pulse with the electrons
such that the process acts at multiple time and length scales and
thus requires a less energetic pulse for ponderomotive capture.
At a given time within the pulse, an electron interacts with a
beam with a width that is reduced by the pulse front tilt; this
leads to larger ponderomotive force since the intensity gradient
is larger. At the same time, the electron can interact with the
full width of the beam as it accelerates. Correspondingly, the
local pulse duration is transform limited, but the tilt of the
pulse allows for an extended total duration of the pulse. This
is in contrast to a non-tilted ponderomotive schemes where a

captured electron does not have an extended period of time to

interact with the pulse.
We have described this acceleration process with a simple

ponderomotive model in one- and three-dimensions. We
also demonstrated that this effect can be seen in more
rigorous relativistic and full field simulations. Our analysis and
simulations show that when the beam is engineered to a flat
transverse profile, the method has promise to produce narrow
energy and angular distributions for the accelerated electrons.
Since the energy threshold can be modest with large tilt angle
and short pulses, tilted pulse ponderomotive acceleration can
be achieved with table-top laser systems, leading to possible
applications in ultrafast electron diffraction. Our calculations
indicate that the scheme can be staged to accelerate at least
up to the 10MeV level (see Figure 4). In ongoing work we are
considering other pulse structures that could go to higher energy
for seeding laser wakefield electron accelerators.
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