
ORIGINAL RESEARCH
published: 08 May 2019

doi: 10.3389/fphy.2019.00068

Frontiers in Physics | www.frontiersin.org 1 May 2019 | Volume 7 | Article 68

Edited by:

Pietro Ferraro,

Italian National Research Council

(CNR), Italy

Reviewed by:

David Mayerich,

University of Houston, United States

Xiaojun Yu,

Nanyang Technological University,

Singapore

Pasquale Memmolo,

Institute of Applied Sciences and

Intelligent Systems (ISASI), Italy

*Correspondence:

Laurent Cognet

laurent.cognet@u-bordeaux.fr

Pierre Bon

pierre.bon@u-bordeaux.fr

Specialty section:

This article was submitted to

Optics and Photonics,

a section of the journal

Frontiers in Physics

Received: 28 January 2019

Accepted: 18 April 2019

Published: 08 May 2019

Citation:

Linarès-Loyez J, Ferreira JS,

Rossier O, Lounis B, Giannone G,

Groc L, Cognet L and Bon P (2019)

Self-Interference (SELFI) Microscopy

for Live Super-Resolution Imaging and

Single Particle Tracking in 3D.

Front. Phys. 7:68.

doi: 10.3389/fphy.2019.00068

Self-Interference (SELFI) Microscopy
for Live Super-Resolution Imaging
and Single Particle Tracking in 3D

Jeanne Linarès-Loyez 1,2, Joana S. Ferreira 3,4, Olivier Rossier 3,4, Brahim Lounis 1,2,

Gregory Giannone 3,4, Laurent Groc 3,4, Laurent Cognet 1,2* and Pierre Bon 1,2*

1 Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Université de Bordeaux, Talence, France, 2 Institut

d’Optique & CNRS, LP2N UMR 5298, Talence, France, 3 Interdisciplinary Institute for Neurosciences, UMR 5297, Université

de Bordeaux, Bordeaux, France, 4CNRS, IINS UMR 5297, Bordeaux, France

Through the formation of fluorescent self-interference (SELFI), quantitative intensity and

phase imaging enables the 3D localization of single fluorescent molecules inside a fixed

tissue with an accuracy well-beyond the diffraction limit. Here we demonstrate that this

concept can be extended to 3D super-resolution microscopy and 3D single particle

tracking in various living samples ranging from adherent cells to organotypic brain slices,

using diverse fluorescent emitters (fluorescent proteins, organic dyes or quantum dots).

This basically covers the most popular single molecule imaging techniques used for live

sample studies. We also show that SELFI can be used in combination with different

illumination schemes including highly inclined illumination and total internal reflection.

Keywords: super-resolution (SR) imaging, single molecule localization microscopy (SMLM), phase imaging,

interferometry, fluorescence, single particle tracking (SPT), single particle 3D reconstruction

INTRODUCTION

Single molecule super-localization has revolutionized the field of quantitative biology, providing
both images and molecular specificity with resolutions well-beyond the diffraction limit [1–3]. This
has unlocked the opportunity not only to obtain detailed images with nanometric resolution [4–6],
but also to unveil nanoscale molecule dynamics. In particular, single particle tracking inside living
samples give access to dynamic biophysical parameters such as molecular clustering, interactions,
or local viscosity [7–11]. Because the living matter is organized in three dimensions, reliable
biological conclusions will however be obtained only if super-localization of fluorescent emitters
can be performed in 3D, within various living samples. In the past decade several techniques
have been developed for achieving 3D super-localization in optically thin samples, typically an
isolated plated cell [12–23]. To access thicker samples like 3D multicellular structures (organoids),
we recently proposed a new 3D super-localization approach employing quantitative phase and
intensity measurements. This technique, named SELFI, is based on fluorescent self-interferences
[24] and can be considered as the transposition of lateral shearing interferometry [25, 26], a
well-established technique for quantitative phase microscopy, to the field of 3D fluorescence
microscopy. SELFI has the triple advantage over other 3D super-localization techniques [14, 15,
20, 22, 23, 27]: (i) minimal photon-loss, (ii) negligible point spread function (PSF) enlargement,
and (iii) weak sensitivity to optical aberrations, including the ones introduced by the sample
itself. Using SELFI, 3D-super-resolution imaging was achieved deep inside thick tissues [24].
However, it was only demonstrated within fixed organoids and combined with direct Stochastic
Optical ReconstructionMicroscopy (dSTORM) [24] using AlexaFluor 647 which possesses optimal
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blinking properties for this application [28]. Here, we
demonstrate that SELFI can be used in combination with
single quantum dots (Qdot) tracking or with the prevalent
super-localization microscopy approaches developed to study
live samples, using different fluorescent molecules. These include
Photoactivated light microscopy (PALM) [1] and (universal)
Point Accumulation for Imaging in Nanoscale Topography
[(u)PAINT] [3, 29]. First, we present the combination of SELFI
with uPAINT to reconstruct the 3D distribution of epidermal
growth factor receptors (EGFr) in living cancer cells. Then
we demonstrate that 3D SELFI-PALM allows the relative axial
nano-positioning of important proteins of the integrin cell
adhesion machinery to be retrieved. Finally, we show that 3D
single Qdot tracking can be performed at video rate with SELFI,
several tenths of micrometers deep in organotypic brain slices.

MATERIALS AND METHODS

Microscope Setup
The imaging system is constructed around an inverted Nikon
TiE (Nikon) microscope equipped with a Nikon objective
60 × NA = 1.45 (Nikon). For PALM experiments, 405 nm
light filtered from a fiber C-HGFI light source (Intensilight,
Nikon) is used for photo-conversion of mEOS3.2 fluorescent
proteins (excitation filter 385/11, Semrock). For excitation of
mEOS2, a 568 nm laser (250 mw, Sapphire, Coherent) is
used with an appropriate filter set (dichroic FF580-FDi01,
emission filter FF01-440/521/607/694/809-25, Semrock) in a
total internal reflection scheme (∼1.6 kW/cm²). For uPAINT
experiments, a 638 nm laser (100 mw, Obis, Coherent) is
used to excite Atto647N fluorophores with highly oblique
illumination (∼1 kW/cm², dichroic FF655-Di01, emission filter
FF01-698/70-25, Semrock). For Qdots tracking experiments,
a 532 nm laser (5W, Verdi, Coherent) is used to excite
Qdots (QD655, Thermofisher Scientific) in epi-fluorescence
(∼1.5 kW/cm², dichroic FF580-FDi01, Semrock, emission
filter D655/40m, Chroma). The SELFI module (described
in more details in the results section) is used to record
single fluorescent emitter images and includes a homemade
diffraction grating based self-interferometer. The interference
patterns are magnified 2× by an imaging relay (100 and
200mm achromatic doublets in 4f configuration) then recorded
with a camera (sCMOS, ORCA Flash4 V2+, Hamamatsu).
Figure 1 shows a scheme of the setup and summarizes
the different illumination possibilities. A homemade Labview
program (National Instrument) is used to drive the acquisition
setup, analyze the interferograms to retrieve the 3D position
of each emitter, and render the reconstructed 3D super-
resolved images.

Biological Sample Preparation and Imaging
Paxilllin and Talin-C in Focal Adhesion (FA) by PALM
Mouse Embryonic Fibroblasts (MEFs) were cultured in DMEM
(Gibco) with 10% FBS (Gibco), GlutaMAX supplement,
100U.ml−1 penicillin-streptomycin, 1mM sodium pyruvate,
15mM HEPES. Transient transfections of plasmids were
performed 1–3 days before experiments using theNucleofactorTM

transfection kit for MEF-1 and NucleofactorTM IIb device
(AmaxaTM , Lonza). The cells were detached with 0.05%
trypsin, 0.02% EDTA solution (Gibco). The trypsin was
inactivated using soybean trypsin inhibitor (1 mg/ml in
DMEM, Sigma), and the cells were washed and suspended
in serum-free Ringer medium (150mM NaCl, 5mM KCl,
2mM CaCl2, 2mM MgCl2, 10mM HEPES, pH = 7.4)
supplemented with 11mM glucose. Cells were then seeded
on human fibronectin-coated surface (fibronectin: 10µg/ml,
Roche). PALM imaging was performed with 60ms integration
time (to ensure high single molecule localization precision)
during 15 min.

EGFr Imaging on A431 Cells by uPAINT
A431 cells are grown in red-phenol-free Dulbecco’s Modified
Eagle Medium (DMEM) supplemented with 10% Fetal Bovine
Serum (FBS), 1% L-Glutamin and 1% penicillin/streptomycin
(Life Technologies) in a cell humidified culture incubator
(37◦C, CO2 5%). After 1–3 days, cells were plated at low
confluency on coverslips coated with poly-L-lysin with 100-
nm gold nanobead embedded inside (Sigma-Aldrich) for
3D microscope stabilization [30]. A second coating was
then made with Fibronectin (Sigma-Aldrich) to optimize
cell adhesion. Epidermal growth factor receptor (EGFr)
membrane localizations on live cells were imaged by
uPAINT. For this purpose, 10 µl of a solution of anti-
EGFr (panitumumab) labeled with Atto647N (Atto-Tec)
were added while simultaneously recording with the SELFI
interferometer with an exposure time of 50ms (to ensure
high single molecule localization precision) during 5–10min.
The fluorescence is excited under highly oblique illumination.
3D stabilization of the microscope is performed at 40Hz as
previously described [30].

Rat Organotypic Cultures With Qdots
Organotypic slice cultures were prepared as previously described
[31]. Hippocampal slices (350µm) were obtained from postnatal
day 5 to postnatal day 7 Sprague-Dawley rats using a McIlwain
tissue chopper and were placed in a pre-heated (37◦C) dissection
medium containing (in mM): 175 sucrose, 25 D-glucose, 50
NaCl, 0.5 CaCl2, 2.5 KCl, 0.66 KH2PO4, 2 MgCl2, 0.28 MgSO4-
7H2O, 0.85 Na2HPO4-12H2O, 2.7 NaHCO3, 0.4 HEPES, 2 ×

10–5% phenol red, pH 7.3 (all products from Sigma-Aldrich).
After 25min of incubation, slices were transferred on white
FHLC membranes (0.45µm) set on Millicell Cell Culture
Inserts (Millipore, 0.4mm; Ø 30mm), and cultured for up
to 14 days on multiwell-plates at 35◦C/5% CO2 in a culture
medium composed of 50% Basal Medium Eagle, 25% Hank’s
balanced salt solution 1X (with MgCl2/with CaCl2), 25% heat-
inactivated horse serum, 0.45% D-glucose, 1mM L-glutamine
(all products from Gibco). The medium was changed every 2–
3 days. Organotypic were incubated with unfunctionalized QDs
1 h before experiment. Imaging was performed in temperature-
controlled (35◦C) chamber (Tokai Hit, Tokai) with 20ms
integration time (for best trade-off between molecule localization
precision and diffusion movement recording) during 15min
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FIGURE 1 | Super-resolution imaging setup based on self-interferences (SELFI) for 3D localization in living samples. Three different configurations are shown:

(a) uPAINT with highly oblique illumination at 638 nm; (b) PALM with epi-photoconversion at ∼405 nm and TIRF fluorescence excitation at 568 nm; (c) SPT of Qdots in

tissues excited in epi-configuration at 532 nm. A scheme of the phase-only diffraction grating used in the SELFI setup is presented at the bottom. An interferometric

PSF obtained with SELFI is also shown on the right. DM, dichroic mirror; f1, 100mm achromatic doublet; f2, 200mm achromatic doublet.

between 10 and 40µm deep in the living slice. 3D stabilization
was performed [30] by locking on fixed structures in the tissue.

RESULTS

Self-Interferences for 3D Localization of
Single Fluorescent Emitters
To measure the 3D position of a single emitter with nanometric
precision, we use a self-referenced interferometer placed in
the detection path of the microscope. It is composed of (i)
a custom-made phase-only diffraction grating consisting of a
π-shift checkerboard pattern positioned a few microns before
the microscope imaging plane, (ii) an imaging relay, and (iii)
a camera [24] (see Figure 1). The interferometer allows the
simultaneous measurement of the phase and intensity of a
(fluorescent) beam with negligible photon loss. Briefly, the
diffraction orders of the grating interfere after a small lateral
shearing and the interference pattern of each single molecule
image (i.e., each point spread function, PSF) is analyzed
individually to extract the localization of the emitter with respect
to the imaging plane of the microscope.

The interferogram formation Iz in the plane z can be
approximated considering only the first order of diffraction along
the directions x and y (>66% of the total diffracted energy).
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with PSFz the intensity point spread function in the plane z,
ai ≤ 1 the energy of the interferogram for each principal
frequencies, Kr =

2π
(
p
2 )

with p the diffraction grating pitch,

zd the distance between the grating and the sensor, and Ws
z

the wavefront local curvature in plane z. The light curvature
will thus be encoded into interferogram frequency modulations.
This curvature directly carries the distance between the light
source (here a single fluorescent emitter) and the imaging
plane where the interferometer registers the interference fringes.
Analysis of the interferogram in the frequency domain thus
allows quantitative measurement of the axial localization of the
emitter with respect to the imaging plane of the microscope. On
the other hand, its lateral localization can be retrieved by applying
a low pass filter on Iz to remove the modulation component -
keeping only the envelope PSFz- and then fitting to a Gaussian,
as the PSF can be considered as free of aberration.

In a standard experiment, a camera raw image contains one
or multiple PSFs sub-structured by interferences (see Figure 1).
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FIGURE 2 | uPAINT-based super-resolution imaging of EGF receptors in living A431 adherent cells. (a) Single molecule based 3D super-resolved reconstructed

image. The nano-topography of the cell is clearly visible. The white arrow indicates membrane ruffling linked to an increase in height at the edge of the cell.

(b) Computer generated epi-fluorescence image (diffraction limited).

By operating in the single molecule regime where each elemental
PSF can be isolated from the others, one can independently
retrieve the 3D localization of each molecule.

uPAINT Imaging for EGFr Studies on
Cancer Cell Line (A431)
EGF receptors (EGFRs) belong to the ErbB family of receptor
tyrosine kinases. They are activated at the cell-surface following
binding with epidermal growth factors (EGFs) to their
extracellular domain, inducing signaling pathways that are
important e.g., in different carcinoma types. Indeed, upon EGF
binding, EGFR dimerization, and tyrosine autophosphorylation
occur, which activates intracellular signaling cascades that can
lead to phenotypic changes such as increased proliferation
and migration. EGFR distributions, activation and signaling
pathways have been extensively studied using fluorescent
microscopy at both ensemble [32, 33], single-molecule levels
[34–36], and also using super-resolution imaging [7]. These
studies revealed for instance the transient distribution of
EGFR dimers at the cellular membrane immediately after
EGF binding and before their endocytosis. Interestingly, using
uPAINT microscopy, we were also able to image on live cells
the super-resolved localization of panitumumab, a human
monoclonal antibody highly specific to EGFRs and widely used
in cancer treatments. This antibody impedes EGF binding
and the subsequent signaling cascades. Intrinsically, uPAINT
is particularly well-suited to study ligand/antibody binding
localizations at high resolution on a live cell. Indeed, uPAINT
relies on stochastically imaging in real-time ligand binding with
target receptors at the single molecule level using highly oblique
illumination [37]. We thus chose to demonstrate the possibility
to combine SELFI with live-cell uPAINT microscopy to generate
3D super-resolved images of panitumumab. For this, we
applied fluorescent panitumumab on A431 cells, an epidermoid
carcinoma cell line which abnormally overexpresses EGFR. We

coupled panitumumab to Atto-647N, a red fluorescent dye with
excellent photophysical properties well-established in single
molecule research. In practice, immediately after the beginning
of recording and while cells were illuminated with a 638 nm
laser beam, fluorescent panitumumab was introduced at low
concentration (0.4 nM) in the imaging solution. A series of
fluorescence images are recorded with SELFI with an integration
time of 50ms. The super-resolved image presented in Figure 2a

displays the 3D localizations of the EGFR population targeted by
panitumumab at the membrane of live cells. For comparison, a
diffraction limited image was generated in Figure 2b by pooling
diffraction limited detections of fluorescent panitumumab.
In the super-resolved image, the gain in lateral resolution is
clearly visible, while SELFI reveals the axial localization of
panitumumab linked to EGFR with super-resolved precision
(∼30–50 nm localization precision, average of 500 detected
photons /localization). Interestingly, local inhomogeneities
in axial localizations can be seen and be related to local cell
membrane topography. For instance, local elevation of EGFR
altitude spanning only 400 nm in height can be observed due to
small ruffling of the membrane at the edge of the cell (Figure 2b
white arrow) while in the remaining of the lamellipodia the
molecules span <150 nm axially. This observation indicates
that panitumumab is able to efficiently target EGFR in different
areas of the cell, including in highly mobile and dynamic
membrane compartments.

SELFI-PALM Focusing in the Adhesion
Focal Points
Cells adhere and generate forces on the extracellular matrix
through integrin-dependent adhesion sites, in particular mature
Focal adhesion (FAs). While quite stable at the macroscale,
those macromolecular assemblies are highly dynamic and
well-organized at the molecular level [11, 38]. Importantly,
4π interferometric PALM (iPALM) performed on fixed cells
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FIGURE 3 | PALM-based super-resolution imaging of Paxillin and Talin-C in live mouse embryonic fibroblasts. (a) Super-resolved image of Paxillin fused to mEOS2.

(b) Epi-fluorescence image of GFP-Paxillin showing the adhesion focal points. (c) Same as (a) for Talin-C fused to mEOS2 on C-terminal part of the protein. (d) Same

as (b). (e) Histograms of the axial localizations of Talin-C and Paxillin within the adhesion focal points showing an axial separation of ∼23 nm.

demonstrated that FAs are composed of multiple functional
nano-layers located at different distances from the plasma
membrane and recruiting specific components: a membrane-
proximal integrin signaling layer, a force transduction layer
and an upper actin regulatory layer [38]. Here, we wanted to
determine whether SELFI is also able to quantify the height of
different proteins constituting FAs with a much more convenient
one-objective imaging scheme and importantly, within live cells.
We chose a TIRF-PALM configuration in order to image two
proteins of FAs located, respectively in the integrin and actin
layers: Paxillin and Talin carboxy-terminal (Talin-C) fused with
mEos2. Figure 3 presents the results obtained by SELFI-PALM
imaging: Figures 3a,c display, respectively 3D super-resolved
images of Paxillin-mEoS2 and Talin-C while Figures 3b,d both
correspond to diffraction limited images of GFP-paxillin as a
FA reporter. One can see that while the lateral distributions of
proteins span over few microns in adhesion sites, their respective
axial distributions are very narrow (±25 nm). Interestingly, since
SELFI axial localizations are measured relative to the microscope
imaging plane, it was essential to retrieve an absolute axial
reference ( set as z = 0 at the microscope coverslip) to compare
the respective height distributions of Talin-C and Paxillin. For
this purpose, we use fluorescent molecules adsorbed on the
coverslip and detected outside of the cells. By subtracting the
coverslip position to the raw protein localizations we could
generate the absolute values of the localizations with respect to
the coverslip position. Note that for durable determination of
coverslip position, fluorescent particles can be embedded within

the coating layer (fibronectin). This analysis clearly shows that in
live cells, Paxillin, and Talin-C are almost exclusively detected in
FAs with Paxillin being closer to the surface than Talin-C. Indeed,
by analyzing 15,000 localizations in FAs for both Talin-C and
Paxillin, we unambiguously obtained distinct localization heights
separated by 23 ± 0.3 nm (SEM): zPaxillin = 18 ± 22 nm (STD)
and zTalin = 41 ± 25 nm (STD). Taking into account the
experimental uncertainties, the measured distance within this
layered structuration measured on live cells is consistent with
the literature obtained on fixed cells [zlit

Paxillin
= 43.1 ± 22 nm

and zlit
Talin

= 76.7 ± 15.7 nm [38]]. The absolute positions
are however offset by ∼25 nm compared to the literature, which
suggests that adsorbed molecules used for z = 0 determination
might not provide the exact position of the coverslip surface.
Nevertheless, this analysis provides a proof-of-principle that
SELFI-PALM can deliver 3D super-resolved images of mEOS
distributions with state-of-the-art resolution, but with much
simpler instrumentation and within live cells.

Single Particle Tracking in Living Tissue
Being able to study the dynamics of proteins in living samples is
key to understand the complex molecular processes implicated
in biological systems. In this quest, single particle tracking
(SPT) has been largely performed on dissociated cells plated
on coverslips [7, 37, 39–41], while SPT in intact living tissues
is only emerging [10, 42, 43]. Having access to the 3D
dynamics of proteins deep inside living tissues would however
ensure more realistic conclusions since the 3D structure of
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FIGURE 4 | Single fluorescent QDot tracking in live organotypic brain slices. (a–d) Depth of imaging is 10µm. (e–h) and 25µm. (a,e) Super-resolved 3D trajectories

of single QDots. (b,f) Selected trajectories (with 2D projection) within the red doted square region in (a,e) the color coding corresponds to the axial positions.

(c,g) Same as (b,f) the color coding corresponds to the instantaneous diffusion coefficients along the trajectory in logarithmic scale. (d,h) Corresponding histograms

of instantaneous diffusion coefficients along the considered trajectories (c,g).
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native biological samples provides specific environments. In this
context, 3D-SPT currently requires the use of highly transparent
and weakly optically aberrant samples or strategies with
complex fluorescence excitation/detection schemes as compared
to standard wide-field imaging (includingmultiphoton excitation
or selective plane illumination) [44]. It remains thus challenging
to achieve 3D single particle tracking deep in living tissues
using a conventional wide-field fluorescence microscope. To
this aim, we applied SELFI to track single Qdots in 3D deep
in a live tissue. As a demonstration, we measured the 3D
movement of Qdots diffusing in the extracellular space of living
organotypic brain slices. Indeed, it has been shown that the
diffusion properties of Qdots, dextrans, or other nanoparticles
introduced in the brain extracellular space are related to its
nanoscale architecture [8, 9]. The analysis of their trajectories
should thus allow critical biophysical information about this
important brain compartment [45] such as tortuosity, viscosity
and dynamics of endogenous extracellular molecules to be
retrieved. Figure 4 displays typical results obtained at depths of
10µm (Figures 4a–d) and 25µm (Figures 4e–h) inside the brain
slice. Because Qdots are surface passivated without targeting-
functionalization, they diffuse around the cells exploring their
environment at high speed with limited specific interaction with
the sample. The trajectories analyzed in Figures 4b–d,f–h are
indicated in Figures 4a,e with the red dashed boxes. 3D diffusion
coefficients are around 0.5 µm²/s for most of the time along the
trajectories. This value is consistent with earlier 2D studies [8].
Interestingly, the 3D shapes of these trajectories indicate diffusion
around what appears as spherical volumetric structures within
the tissue, which would have been indiscernible in 2D.

DISCUSSION AND CONCLUSION

This work demonstrates that SELFI can be easily combined
with themost common super-localizationmethods developed for
live sample imaging [(u)PAINT, PALM, SPT]. It extends these
methods to 3D quantification in complex live samples. Since
SELFI obtains the 3D information without causing significant
photon loss, it is possible to apply this concept to single emitters
having limited brilliance such as fluorescent proteins as used in
PALM, or nanoparticles deep inside thick living tissues. SELFI
also allows 3D single particle tracking at high imaging frames
(here, 50 frames per second) to follow fast diffusion dynamics
within a tissue. With SELFI, 3D localization is obtained solely by

structuring the PSF with interference patterns in the image plane,
which provide the freedom to use any fluorescence excitation
scheme. Here we demonstrated highly oblique illumination in
uPAINT experiments, total internal reflection in PALM imaging
and standard epi-illumination for deep tissue SPT. Note that
this independence from illumination schemes is key for tissue
imaging applications because intrinsic light scattering by the
sample might disturb specific illumination configurations that
are needed to obtain the 3D information with other methods. In
this work, we have also chosen to image quasi-metrological living
biological samples by studying axial molecular structuration
within cellular adhesion sites. The nanoscale layering of proteins
measured with SELFI is in agreement with the data obtained in
fixed cells in the literature. Finally, we have demonstrated fast 3D
SPT in thick samples. This paves the way to the unambiguous
study of molecular nano-organization and dynamics in complex
samples where 2D imaging-only can lead to biased results. To
conclude, we have demonstrated that SELFI is an efficientmethod
for live super-resolution studies allowing 3D localization even
at high depth (up to few tens of microns) on a regular epi-
fluorescence based microscope. As long as a single molecule
image can be formed in the imaging plane of the microscope,
SELFI can retrieve its 3D localization well-beyond the diffraction
limits, by sensing simultaneously the intensity and the phase of
the light.
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