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When non-Newtonian fluids flow through porous media, the topology of the pore space

leads to a broad range of flow velocities and shear rates. Consequently, the local viscosity

of the fluid also varies in space with a non-linear dependence on the Darcy velocity.

Therefore, an effective viscosity µeff is usually used to describe the flow at the Darcy

scale. For most non-Newtonian flows the rheology of the fluid can be described by a

(non linear) function of the shear rate. Current approaches estimate the effective viscosity

by first calculating an effective shear rate mainly by adopting a power-law model for the

rheology and including an empirical correction factor. In a second step this averaged

shear rate is used together with the real rheology of the fluid to calculate µeff. In this work,

we derive a semi-analytical expression for the local viscosity profile using a Carreau type

fluid, which is a more broadly applicable model than the power-law model. By solving

the flow equations in a circular cross section of a capillary we are able to calculate

the average viscous resistance 〈µ〉 directly as a spatial average of the local viscosity.

This approach circumvents the use of classical capillary bundle models and allows to

upscale the viscosity distribution in a pore with a mean pore size to the Darcy scale.

Different from commonly used capillary bundle models, the presented approach does

neither require tortuosity nor permeability as input parameters. Consequently, our model

only uses the characteristic length scale of the porous media and does not require

empirical coefficients. The comparison of the proposed model with flow cell experiments

conducted in a packed bed of monodisperse spherical beads shows, that our approach

performs well by only using the physical rheology of the fluid, the porosity and the

estimated mean pore size, without the need to determine an effective shear rate. The

good agreement of our model with flow experiments and existing models suggests that

the mean viscosity 〈µ〉 is a good estimate for the effective Darcy viscosity µeff providing

physical insight into upscaling of non-Newtonian flows in porous media.
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1. INTRODUCTION

Flow through porous media is ubiquitous in many natural and
industrial systems. Examples include flow through biological
tissues, blood vessels and bones [1–3] or through soils, sediments
and rocks, with long-standing interest in hydrology [4, 5],
petroleum [6], and chemical engineering [7–9]. At low Reynolds
numbers (Re≪1) the bulk flow of a Newtonian fluid flowing
through porous media is described by Darcy’s law

q =
κ

µ

1p

L
, (1)

where q is the mean flow rate per unit area, also called
Darcy velocity and µ is the dynamic viscosity. The variable κ

is the permeability and 1p/L is the pressure drop over the
distance L. The proportionality constant K = κ/µ is called
hydraulic conductivity and can be derived from Stokes’ equation
assuming a linear relation between the viscous forces and the flow
velocity [10].

While Darcy’s law is a sound description for the bulk behavior
of a fluid whose viscosity µ is constant, many relevant fluids
in e.g., in food [11–13] and petroleum [14, 15] industry, show
a much more complex constitutive law. For most of these so-
called non-Newtonian fluids, the viscosity can be described by
a nonlinear function of the stress-strain rate tensor E or more
specifically its first principal invariant γ̇ = 1

2

√
E :E [16]. Due

to the heterogeneity of the flow velocities in the interstitial pore
space, shear rates vary considerably inside the porous media. For
non-Newtonian flows the coupling of the constitutive equations
with the flow field leads to a spatial variable viscous resistance.
Consequently, the relation between Darcy velocity and pressure
drop cannot be described by a linear function anymore as in the
case of Newtonian fluids. In order to obtain a bulk equation for
the flow that is linear in the pressure drop, an effective viscosity
µeff—which itself depends on the flow variables—must be used
in order to account for the non-linear effects i.e.,

q =
κ

µeff

1p

L
. (2)

Here we assumed that the permeability κ is a characteristic
constant representing the complexity of the pore space alone.
Several empirical and semi-empirical models have been proposed
to estimate µeff [17–23]. Most of these models start from
a capillary bundle representation of the different flow paths
through a porous medium and estimate an effective shear rate
γ̇eff by comparing the flow rate of a power-law fluid with that
of a Newtonian Poiseuille flow [24] (see also SI). Although
analytical solutions can be derived to determine γ̇eff for power-
law rheologies, previous studies proposed various empirical
correction factors [19, 20] to relate Darcy velocity to the effective
shear rate. The effective shear rate γ̇eff is then inserted into the
constitutive law of the fluid of interest µ(γ̇) to obtain an effective
viscosityµeff. This approach requires an empirical factor to relate
q to γ̇eff, which can vary over several orders of magnitude [25,
26], depending on the properties of the fluid, the tortuosity
and the permeability. This suggests that the above assumptions

FIGURE 1 | Sketch of two shear thinning rheologies: (A) pure power-law

model with two parameters K and n, (B) Carreau model with five parameters

µ0, µ∞, λ, n and α.

are questionable. Additionally most of these models predict
a linear relationship between the effective shear rate and the
Darcy velocity.

In this manuscript we show that for a Carreau fluid [27], the
local viscosity can be derived directly from the fluid’s constitutive
law and the velocity profile in a mean pore size, using a circular
capillary to mimic the flow at pore scale. Contrary to commonly
used capillary bundle models, our approach does neither require
the knowledge of the tortuosity nor of the permeability. The
capillary is only used to calculate a fully developed average
flow profile. Finally, we calculate the mean viscous resistance by
spatially averaging the local viscosity 〈µ〉. Comparisons of our
results with flow cell experiments and existing models show that
〈µ〉 is a good estimate for µeff.

2. METHODOLOGY

2.1. Characterization of the Fluid
In order to model the flow of a non-Newtonian fluid, we first
need to characterize its constitutive behavior. For most non-
Newtonian fluids the constitutive relation between the deviatoric
stress tensor T and the applied strain rates E can be described
by a time independent scalar function µ = µ(γ̇), such that
T = 2µ(γ̇)E. Here µ is a generalized viscosity which depends
only on the first principal invariant γ̇ = 1

2

√
E :E of the stress-

strain rate tensor E [16]. In the case of simple shear flow γ̇

reduces to the shear rate. Many functional forms for µ(γ̇) have
been proposed, where the most common ones are the power-law
model (Figure 1A), the Carreau model (Figure 1B), the Cross
model or the Herschel-Bulkley model [18, 28].

The power-law model is described by

µ(γ̇) = Kγ̇
n−1, (3)

where K is the viscosity at the shear rate γ̇ = 1 s−1 and
n is the power-law index defining the steepness of the shear-
thinning decay for n < 1 (see Figure 1). Due to its simplicity,
the power-law model is the most commonly used rheology to
derive analytical expressions. However, the unbounded power-
law model has two drawbacks: first the model does not capture
the linear shear-strain relation for very low and very high shear
rates, that are prevalent in most natural systems, and second
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the viscosity curve becomes singular in the limit of vanishing
shear. Consequently constitutive models which “blend” a power-
law regime between a Newtonian behavior at low and high shear
rates—such as the Carreau model—have been proposed for real
world applications. The constitutive law of a Carreau fluid is
parametrized by

µ(γ̇) = (µ∞ + (µ0 − µ∞)(1+ (λγ̇)α)
n−1
α ), (4)

where n is the power-law exponent, µ0 and µ∞ are the limits
of the viscosity at zero and infinite shear and λ is the reciprocal
of the critical shear rate, which describes the onset of the shear
thinning regime. The parameter α describes how smoothly the
Newtonian regime blends into the power-law.

2.2. Current Models
Most commonly applied models to estimate µeff can be derived
by equating the flow rate of a Poiseuille flow [29] with the flow
rate of a power-law fluid [30]

QPoiseuille = Qpower−law. (5)

For a circular capillary with radius R one obtains

π

8µ

1p

L
R4 =

πn

3n+ 1

(

1

2K

)
1
n
(

1p

L

)
1
n

R
3n+1
n , (6)

where we used

Qpower−law =
πn

3n+ 1

(

1

2K

)
1
n
(

1p

L

)
1
n

R
3n+1
n , (7)

which is also known as the Rabinowitsch equation [30] to
describe the flow rate of a power-law fluid in a capillary. Solving
Equation (6) for µ, a power-law viscosity µpower−law can be
defined as

µpower−law =
1

8 (2K)−
1
n

3n+ 1

n

(

1p

L

)
n−1
n

R
n−1
n . (8)

Equation (8) can be simplified to

µpower−law = K
3n+ 1

4n

(

1p

2KL

)
n−1
n

R
n−1
n . (9)

This power-law viscosity corresponds to the viscosity of a
Newtonian fluid which would have given the same pressure drop
1p/L along a capillary.

For a power-law constitutive relationµ = Kγ̇
n−1 Equation (9)

can be inverted to obtain an effective shear rate γ̇eff

γ̇eff =
(

3n+ 1

4n

)
1

n−1
(

1pR

2KL

)
1
n

. (10)

Using the Rabinowitsch equation, we can express the term
(

1p
KL

)
1
n
as

(

1p

KL

)
1
n

= 2
1
n
3n+ 1

n
R−

n+1
n qcap, (11)

where qcap is the mean capillary velocity defined as
Qpower−law/(πR2). Furthermore, the mean capillary velocity
qcap can be defined as the Darcy velocity divided by the
porosity, qcap = q

8
. Following Savins [31], the radius Req can be

expressed by

Req =
√

8κζ

8
, (12)

where ζ is the tortuosity, Req is the radius of a capillary
in the capillary bundle model (see detailed derivation in
Supplementary Information). Inserting Req into Equation (10)
then yields

γ̇eff =
1
√

ζ

(

3n+ 1

4n

)
n

n−1 4q
√
8κ8

. (13)

Empirically it has been found by Cannella et al. [19] that the
factor 1/

√
ζ does not fit realistic data and replaced the term 1/

√
ζ

by a constant C, i.e.,

γ̇eff = C

(

3n+ 1

4n

)
n

n−1 4q
√
8κ8

. (14)

Hirasaki and Pope [20] proposed to use C = 1/
√
25/12 ≈ 0.69

by using the tortuosity ζ of packed spheres, which has been
widely reported to be 25/12 [32, 33]. Ignoring the tortuosity
ζ , Cannella et al. [19] found a factor of C = 6 to be
suitable to describe many flows in different settings. Additionally,
Cannella et al. accounted for unsaturated and multiphase flows
by correcting the permeability κ to κr,wκ and the porosity 8

to Sw8. Here, κr,w is the relative permeability and Sw is the
saturation. Consequently, the effective shear rate according to
Cannella et al. [19, 26] is given by

γ̇eff = 6

[

3n+ 1

4n

]
n

n−1

[

4
√
8

q
√

κr,wκSw8

]

. (15)

Cannella et al. then used this effective shear rate together with
a constitutive law µ(γ̇) to calculate an effective viscosity. For this
last step, mostly the Carreaumodel has been used due to its ability
to fit a wide range of different rheologies.

Other models, that have been developed, are using more
complex rheological descriptions of the fluid. Nevertheless, they
generally require to correct the analytical solution with empirical
factors to achieve reasonable agreement with experimental
data [17].
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2.3. Average Viscosity Approach
Here we present a new approach to estimate µeff by solving
directly for the viscosity profile of a fully developed Carreau flow
inside a single capillary of radius R that mimics a mean pore
with a mean flow rate of

q
8
. This approach assumes that a single

constitutive law can be used both on the pore as well as on Darcy
scale. This assumption is supported by the observation that even
at pore scale, the viscosity distribution covers the whole range of
viscosities given by the Carreau model equation. Consequently
a single power-law is insufficient to describe the transitional
behavior at the low and high shear limits.The onset of the power-
law regime occurs at a characteristic combination of the Darcy
velocity and the pore size. Therefore, it is important to determine
at which Darcy velocity the onset of the non-linearities of the
fluid starts to matter for a given pore size.

The Carreau model allows to obtain an average viscosity
profile in a pore without invoking an effective shear rate and an
intermediate power-law rheology. Note that the Carreau model
includes the critical shear rate 1/λ, which defines the onset of the
power-law regime, see Figure 1. To model the flow of a Carreau
fluid we perform the following steps:

(i) We estimate the characteristic pore size in order to set
the diameter of the average pore for which we examine the flow
profile. This characteristic pore size can be readily obtained from
an pore- or grain-size distribution. (ii) We then compute the
velocity profile as a function of the flow rate. (iii) The velocity
profile obtained in the previous step can subsequently be used to
determine local shear rates γ̇(r) = du(r)/dr. (iv) Combining the
shear and the Carreau rheology (Equation 4) we obtain the local
viscosity distribution µ(γ̇(r)) in a cross section of the capillary.
(v) Finally, we use the local viscosity, to estimate the effective
viscosity µeff by averaging the viscosity profile over the cross
section of the capillary.

In order to apply this concept of a mean profile in a pore, we
use a capillary with a circular cross section and assume a fully
developed flow profile. The steady state Navier-Stokes equation
at low Reynolds numbers in a circular capillary can be written as

1

r

d

dr

(

µ

(

du

dr

)

r
du

dr

)

=
dp

dx
, (16)

where the pressure gradient along the capillary is constant
dp
dx

=
const. Integrating with respect to r yields

µ

(

du

dr

)

du

dr
=

r

2

dp

dx
+ K1. (17)

Based on the symmetry of the flow profile, the velocity is maximal
along the center line of the capillary at r = 0. By definition of a

maximum, the shear rate γ̇ = du
dr

vanishes, du
dr

∣

∣

∣

r=0
= 0, which

results in K1 = 0. Thus, Equation (17) simplifies to

µ(γ̇)γ̇ =
r

2

dp

dx
. (18)

Since the pressure drop
dp
dx

along the capillary is assumed to be
constant, we can replace it by a reference pressure pref 6= 0

divided by a reference length scale. Choosing the capillary radius
R as characteristic length, we define

1

2

dp

dx
=

pref

R
. (19)

Then, we insert the reference pressure from Equation (19) into
Equation (18) and obtain

µ(γ̇)γ̇ =
r

R
pref. (20)

Inserting the constitutive law of a Carreau fluid (Equation 4)
into (Equation 20) and solving for r yields

r =
R

pref
γ̇

(

µ∞ + (µ0 − µ∞)(1+ (λγ̇)α)
n−1
α

)

. (21)

This expression can be rewritten by using the boundary condition
for the shear rate ( γ̇|r=R = −γ̇w), where γ̇w is the shear rate at
the wall of the capillary. Consequently, the reference pressure is
given by the following equation:

pref = −γ̇w

(

µ∞ + (µ0 − µ∞)(1+ (−λγ̇w)
α)

n−1
α

)

. (22)

In order to obtain an expression for the flow profile u(r) and γ̇w,
we integrate r(γ̇′) given by Equation (21) radially with respect
to γ̇

′. As the shear rate γ̇
′(r) is an odd function, the relation

∫ −γ̇

0 dγ̇′ = −
∫

γ̇

0 dγ̇′ holds for all r. Consequently, the shear
rate γ̇ will be our free parameter ranging from 0 to−γ̇w.

The resulting integral can be expressed as

∫ −γ̇

0
r(γ̇′)dγ̇′ = −

∫

γ̇

0

R

pref
γ̇
′µ(γ̇′)dγ̇′

= −
R

pref

[∫

γ̇

0
µ∞γ̇

′dγ̇′ + (µ0 − µ∞)

∫

γ̇

0
γ̇
′(1+ (λγ̇

′)α)
n−1
α dγ̇′

]

= −
R

pref

[

1

2
µ∞γ̇

2 +
1

2
(µ0 − µ∞)γ̇2

× 2F1

(

2

α
,
1− n

α
;
2+ α

α
;−(λγ̇)α

)]

= −
Rγ̇

2µ∞
2pref

−
R

pref
(µ0 − µ∞)

1

2
γ̇
2

× 2F1

(

2

α
,
1− n

α
;
2+ α

α
;−(λγ̇)α

)

.(23)

Here 2F1(a, b; c; z) is a hypergeometric function with parameters
a, b and c. Further details about the hypergeometric function
can be found in the Handbook of mathematical functions by M.
Abramowitz and I.A. Stegun [34]. Using the chain rule on d(rγ̇′),
we can rewrite r(γ̇′)dγ̇′ as d(rγ̇′)− γ̇

′dr, which yields

rdγ̇′ = d(rγ̇′)− du, (24)
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where we already substituted γ̇
′dr with du. Performing now the

integration with respect to γ̇
′ gives

∫ −γ̇

0
r(γ̇′)dγ̇′ = −

∫

γ̇

0
d(r(γ̇′)γ̇′)−

∫ u

umax

du

= −
R

pref
γ̇
2
(

µ∞ + (µ0 − µ∞)(1+ (λγ̇)α)
n−1
α

)

+ umax − u.

(25)

Setting Equation (23) equal to Equation (25) allows to solve for
the velocity u inside the capillary (Equation (26)).

u = umax −
Rγ̇

2µ∞
2pref

−
R

pref
(µ0 − µ∞)γ̇2

(

(1+ (λγ̇)α)
n−1
α −

1

2
2F1

(

2

α
,
1− n

α
;
2+ α

α
;−(λγ̇)α)

))

. (26)

Applying the non-slip boundary condition at the wall
for velocity (u|r=R = 0) and shear ( γ̇|r=R = −γ̇w)
finally yields umax as defined in Equation (27).

umax =
Rγ̇

2
wµ∞
2pref

+
R

pref
(µ0 − µ∞)γ̇2w

(

(1+ (−λγ̇w)
α)

n−1
α −

1

2
2F1

(

2

α
,
1− n

α
;
2+ α

α
;−(−λγ̇w)

α)

))

(27)

Therefore, for any given maximum velocity umax at the center
of a capillary, the two Equations (27) and (22) can be solved for
the two unknown parameters pref and γ̇w using a non-linear root
finding algorithm. These two parameters can then be inserted
into Equations (26) and (21) to obtain the velocity field u
and the corresponding radial coordinate r. The remaining free
parameter is the shear rate γ̇, which varies between −γ̇w and 0.
Consequently, one can calculate the flow profile u(r) in a capillary
of radius R for any umax. The mean capillary velocity qprofile is
then readily calculated by integrating u(r) over the capillary cross
section �, i.e.,

qprofile =
∫

�
u(r)dA

∫

�
dA

. (28)

To obtain the Darcy velocity, the mean capillary velocity qprofile
has to be multiplied by the porosity 8, namely, q = qprofile8.
Further, we can determine the shear rate profile from u(r) by

differentiation using γ̇(r) = du
dr
. In combination with the Carreau

model (Equation 4), the shear rate can be used to calculate the
local viscosity µ(r) in a cross section of the capillary from which
we can infer the spatial average of 〈µ〉 as

〈µ〉 =
∫

�
µ(r)dA

∫

�
dA

. (29)

Based on this formalism, we now propose that the effective
viscosity can be appropriately estimated directly from the average
viscosity 〈µ〉 without using an effective shear rate γ̇eff. Our
approach is purely based on the physical constitutive law of the
fluid (here represented by a Carreau rheology) and the solution

of the momentum equation of such a non-Newtonian fluid in a
circular capillary.

In order to test the hypothesis that µeff is appropriately
described by 〈µ〉, we benchmark our approach with flow
experiments and compare our model’s prediction with that of
Cannella et al. [19] and Hirasaki & Pope [20].

2.4. Experimental Setup
To measure the effective viscosity of a non-Newtonian fluid
flowing through porous media we set up a Darcy experiment in
a column (405 mm height; 50.3 mm diameter) of monodisperse
glass beads with a diameter of 8 mm (Figure 2). A constant static

pressure was applied using a Boyle-Mariotte bottle connected to
a pressure controller (Fluigent MFCSTM-EZ). The flow rate was
determined by measuring the weight of the outflowing fluid over

time, while the pressure drop was measured with two pressure
sensors (Keller, PAA-36XW) connected to the Darcy column. The
porosity of the packed bed was 8 = 0.4. Before determining the
effective viscosity of the non-Newtonian solution we measured
the permeability κ of the porous medium using a Newtonian
solution (66.7 vol% Glycerol + 33.3 vol% D.I. water) with a well
specified viscosity µNewt = 0.0266 Pa · s [35]. We then measured
the pressure drop over the length L = 300 mm at different flow
rates, obtaining fivemeasurements for q(1P/L). Fitting a straight
line to the measured data yields κ = 4.4 · 10−8m2 (Figure 3).

As a non-Newtonian fluid, we used a solution of 0.05 wt%
xanthan gum produced by Sigma Aldrich. The rheology curve
of the xanthan gum solution was measured with an Anton Paar
MCR 702 rheometer with a double gap DG 26.7 geometry.
Figure 4 shows the dynamic viscosity of our solution as a
function of the applied shear rate together with the fitted Carreau
model with parameters µ0 = 0.085 Pa · s, µ∞ = 0.001 Pa · s,
λ = 2 s, n = 0.48 and α = 0.8 (Equation 4). Very high shear
rates have not been measured, but literature values [36] indicate
that the viscosity of xanthan gum solutions approach the viscosity
of water at high shear rates.

After characterizing the non-Newtonian fluid’s constitutive
behavior, we perform the same Darcy experiment for the non-
Newtonian solution as in the Newtonian case, measuring the
pressure drop at 8 different flow rates. The effective viscosity
µeff of the non-Newtonian fluid was then computed from the
measured Darcy velocity q, the measured pressure drop 1p/L
and the previously measured permeability κ according to

µeff =
κ

q

1p

L
. (30)
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FIGURE 2 | Scheme of the Darcy column experimental setup: constant flow is

imposed from the Boyle-Mariotte bottle (A) by compressed air from pressure

controller (B). We measured the outflow on a scale (C) and the pressure drop

at the column with two sensors (D), where the distance between the sensors

defines L.

FIGURE 3 | Darcy velocity q vs. pressure drop 1p for the Newtonian fluid

(66.7 vol% Glycerol + 33.3 vol% D.I. water) used in the permeability

estimation, κ = KµNewt = 4.4 · 10−8m2.

3. RESULTS AND DISCUSSION

Before discussing the upscaling of our capillary model and the
averaging of the viscosity approach we analyze how the profiles
of velocity, shear and ultimately viscosity behave inside a single
capillary. Figure 5 shows the velocity, the shear rate and the
viscosity profiles, normalized by the respective means, for a
capillary of radius 1 mm for two flow rates qprofile = 0.003 mm/s
and qprofile = 3.7 mm/s. For the rheology of the fluid we
use the Careau model with parameters µ0 = 0.085 Pa · s,
µ∞ = 0.001 Pa · s, λ = 2 s, n = 0.48 and α = 0.8. The profiles
have been calculated numerically by solving Equations (22)
and (27) to determine pref and γ̇w together with Equations (21)
and (26) as described above.

For the low flow rate qprofile = 0.003 mm/s, the shear rate
does not exceed the critical shear rate γ̇crit = 1/λ at any radial
position in the capillary. Consequently the viscosity is almost
constant at µ0 resulting in a Newtonian flow behavior and a
parabolic velocity profile. Here the shear rate increases linearly

FIGURE 4 | Measured rheology of a 0.05 wt% xanthan gum solution, with the

best fit of the Carreau model for the parameters: µ0 = 0.085 Pa · s,
µ∞ = 0.001 Pa · s, λ = 2 s, n = 0.48 and α = 0.8. Very high shear rates have

not been measured. Literature values indicate that µ∞ for xanthan gum

solutions approximates water, i.e., µ∞ = 0.001 Pa s [36].

from γ̇ = 0 at the center of the capillary to γ̇ = γ̇w at the wall.
As soon as the flow rate exceeds a certain threshold, nonlinear
effects become important and the velocity profile flattens at the
center (c.f. purple line in Figure 5A). This nonlinear behavior
can also be observed in the shear rates γ̇ = du/dr, as well
as in the local viscosity µ(r) which starts to develop a very
distinct maximum at the center of the capillary, Figure 5C. As
a result, first averaging the shear rate and then calculating the
viscosity leads to a significantly different results than calculating
the average viscosity itself, namely µ(〈γ̇〉) 6=

〈

µ(γ̇)
〉

. The models
of Cannella et al. and Hirasaki & Pope assume a pure power-
law rheology for the calculations of the effective shear rate γ̇eff

at all flow rates (Equations 7, 11). This does not agree with the
bahavior shown in Figures 5A–C, which indicates that the profile
changes from a Newtonian to a nonlinear behavior depending on
the applied flow rate.

After discussing the problem of averaging shear and
viscosity in a single capillary, we now benchmark the average
viscosity approach. We compare our model estimates with
our experimental results and the predictions of the models by
Cannella et al. and Hirasaki & Pope.

Figure 6 shows the measurement of the effective viscosity
as a function of the Darcy velocity using Equation (30) (red
diamonds). The predictions of the models by Cannella et al.
(C = 6) and Hirasaki & Pope (C = 0.69) are marked in
orange and green, respectively. The solid violet line represents the
prediction of our average viscosity model using a pore radius R =
0.62 mm. The characteristic pore radius R used in Figure 6 has
been calculated from the bead diameter as the maximal radius of
the void space between three beads that are in contact with each
other (see Figure 7). Consequently we find for a bead diameter of
d = 8 mm a capillary radius of R = 0.62 mm.

While Cannella et al.’s model does not capture the
experimental measurements, the model of Hirasaki & Pope
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FIGURE 5 | (A) Normalized flow and (B) shear profile for flow in a capillary with an exemplary radius of 1 mm. The fluid is described by the Carreau model using the

fitting parameters for the measured rheology. (C) Viscosity distribution µ(γ̇(r)), including the viscosity of the mean shear rate and the mean viscosity for a mean velocity

of qprofile = 3.7 mm/s.

FIGURE 6 | Comparison of the experimental measurements (red diamonds)

with the proposed model (purple solid line). The model is calculated for a pipe

of radius R = 0.62 mm. Additionally, the correlations of Cannella et al. [19]

(C = 6) and Hirasaki and Pope [20] (C = 0.69) are shown. The latter was

defined from packed beds of monodisperse spheres.

fits the experimental data equally well as the average viscosity
model. Nevertheless, all three models agree in terms of slope
in the shear thinning power-law regime. This is consistent
with the observation of Teeuw & Hesselink [22], who found
that the power-law exponent of the microscopic rheology equals
the exponent of the effective viscosity µeff as function of the
Darcy velocity q [19]. The major difference in the behavior of
our model compared to the approach of Hirasaki & Pope [20] is
found at the transition from the low shear Newtonian regime to
the power-law regime. Here the former model predicts a slightly
smoother transition than the average viscosity formulation.
However, the error bars shown in the inset of Figure 6 reveal
that this region also has the highest uncertainty due to the
noise in the pressure measurements. Consequently, we cannot
conclude that the proposed model, using an average viscosity,
captures the transition between the low shear Newtonian regime

FIGURE 7 | Characteristic pore size with radius R between three glass beads

with radius d/2 (blue circles).

and the power-law regime better than the previous models.
Nevertheless, in favor of the proposed model, the linear relation
in Equation (13) assumed for γ̇eff ∼ q used by both Cannella et al.
and Hirasaki & Pope does not reflect the non-linear behavior of
the profiles shown in Figure 5 for a single capillary.

A major challenge of models based on effective shear rates is
the need of an empirical factor to compute γ̇eff. This, so-called
C-factor, can vary over several orders of magnitude [25, 26].
This problem is especially evident considering the fact that the
shape factor varies for different fluids and pore geometries [26].
While the shape-factor C is used to fit the onset of the power-law
regime in µeff against Darcy velocity plot, our model describes
this transition intrinsically through the Carreau parameter 1/λ.

Comparing the models of Cannella et al. and Hirasaki & Pope
reveals that the empirical shape factor C of Cannella et al.’s model
corresponds to C = 1/

√
ζ in the model of Hirasaki & Pope.

Using the tortuosity of ζ = 25/12 for a packed bed of uniform
spheres [32, 33] Hirasaki & Pope arrive at a shape factor of C =
0.69. However, Cannella et al. later found empirically that this
tortuosity dependence does not hold in many different settings
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and proposed C = 6 as a generally good value. However if we
calculate the tortuosity associated with this empirical value we
obtain a tortuosity ζ = 0.03, which is inconsistent with the
geometric interpretation of ζ as the elongation of flow paths in a
capillary bundle model. Another problematic point of the models
of Hirasaki & Pope andCannella et al. is that the tortuosity should
not matter at all for the determination of the effective viscosity
as the viscosity profile does not change along the capillary.
Hence the viscosity, respectively the effective shear rate, should
not change with the elongation of the flow paths contrary to
Equation (13).

In contrast to most currently used capillary bundle models
which try to mimic the flow paths inside porous media, our
average viscosity approach uses a capillary only to calculate
a fully developed flow profile in a single pore. Generally, we
find good agreement with experimental measurements and with
previous models, provided that the free parameters have been
determined from experimental data [16, 19, 32, 33, 37–39].
Averaging the viscosity over the mean flow profile has several
advantages. First of all, the model only includes the physical
rheology of the fluid and does not need a singular power-law
model as an intermediate step to calculate an effective shear
rate γ̇eff. This eliminates the problem that arises from µ(〈γ̇〉) 6=
〈

µ(γ̇)
〉

. Using the mean viscosity to describe the flow resistance
of the fluid is physically more intuitive than using an effective
quantity derived from comparisons of non-Newtonian flows with
Newtonian behavior. Additionally our model only requires a
characteristic geometric length factor rather than an empirical
shape factor which depends on geometric properties as well as
on the fluid. Our characteristic length scale is a property of the
porous medium alone and can be estimated independently from
permeability, porosity or tortuosity using e.g., pore or grain size
distributions. Furthermore, our approach includes the parameter
λ, which describes the onset of the shear thinning regime and
is given by the rheology. Consequently, the average viscosity
approach provides a consistent nonlinear upscaling of a flow
profile in a pore with mean pore size and does not require
tortuosity [40].

4. CONCLUSIONS

In summary, we presented a new approach to extend Darcy’s law
to Carreau fluids using the mean viscosity over a representative
capillary as the effective flow resistance. The major advantage
of the new model is that it does not require an intermediate
effective shear rate and calculates the average viscosity directly

using the microscopic constitutive law of the fluid. This approach
allows us to upscale the average viscosity of a single pore with
a mean pore size to a Darcy scale. This procedure also avoids
an empirical shape parameter, which has been replaced by a
characteristic length scale derived from the physical property of
the porous medium itself. Furthermore, the proposed approach
does not require commonly made capillary bundle assumptions
like the elongation of a capillary by using the tortuosity
and it does not require the permeability [40] to estimate an
equivalent capillary diameter. Experimental measurements for

a flow through a packed bed of monodisperse beads and
comparison with other non-Newtonian capillary models reveal
that the average viscosity provides a robust estimate for the
effective Darcy viscosity µeff.
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