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Grand Unified Theories (GUTs) are one of the most interesting high-energy completions of

the Standard Model, because they provide a rich, powerful and elegant group-theoretical

framework able to resolve a variety of problems remaining in our current understanding

of particle physics. They usually act as motivators for many low energy BSM theories,

such as left-right symmetric or supersymmetric models, and they serve to fill the gap

between the experimentally reachable low energies and the physics in the ultraviolet. In

recent years, however, they have fallen slightly from the spotlight, in favor of “simplified”

models with more specific phenomenological predictions. The aim of this review is to

summarize the state of the art on GUTs and argue for their importance in modern physics.

Recent advances in experiments permit to test the predictions of GUTs at different

energy scales. First, as GUTs can play a role in the inflationary dynamics of the early

Universe, their imprints could be found in the CMB observations by the Planck satellite.

Remarkably enough, GUTs could manifest themselves also in terrestrial tests; several

planned experiments aim to probe the proton stability and to establish order of magnitude

higher bounds on its lifetime. Moreover, the predictions of specific GUT models could be

tested even at the LHC thanks to its high energy reach, via searches for exotic states or

additional contributions to flavor anomalies.

Keywords: grand unified theories, supersymmetry, colliders, neutrinos, cosmology, gravitational waves, flavour,

leptoquarks

1. INTRODUCTION

The Standard Model (SM) [1–3] of particle physics is an incredible successful theory of subatomic
physics. It describes the electroweak and strong interactions of fundamental particles with
surprising accuracy up to the energy scales of modern day experiments. Further supported by the
discovery of the Higgs boson [4, 5], it stands as one of the best evidences that symmetries and the
mechanism of spontaneous symmetry breaking play a critical role on the Universe at the smallest
scales [6–8].

In spite of its success at explaining with astonishing precision most of the observed phenomena,
the SM cannot be the ultimate theory of particle physics. The Higgs quartic coupling in the SM
becomes negative at scales & 1010 GeV, rendering the vacuum state of the theory unstable at high
energies [9]. New physics must then surface below or around that scale to stabilize the vacuum.
Furthermore, there is a continuously increasing amount of observations that are in tension with
the predictions of the SM. From the discovery of neutrino oscillations [10, 11] to the recent
anomalies in the flavor sector [12–14], these phenomena cannot be explained with the SM alone
and contributions from beyond the SM (BSM) physics may be required to accommodate them.
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Grand Unified Theories (GUTs) [15–19] are well motivated
extensions of the SM that can address several of its outstanding
issues. As the SM does for electromagnetism and weak nuclear
decays, GUTs exploit the power of symmetries and group theory
to unify the electroweak and strong interactions into a single
force. As can be noticed in Figure 1, the flow of the SM gauge
couplings already hints at a possible unification at a high scale,
thereby providing further motivation for GUTs as appealing
BSM models.

The predicted unification of forces provides an explanation
for the ad hoc nature of the SM charge assignments and
their accidental anomaly cancellation [20, 21]. Through the
introduction of new fields and symmetries, GUTs can resolve
many of the issues of the SM: they can provide an explanation for
the lightness of neutrinomasses, as well as introducing additional
contributions that can accommodate some of the observed flavor
anomalies. In addition, GUTs can also live alongside other BSM
models, such as Supersymmetry (SUSY), with both theories
complementing each other and on the whole becoming a better
candidate for a successful BSM theory [22].

Naturally living at high energies, it is expected that GUTs have
some observable consequences for the cosmological evolution
of the Universe, as they can play a role during the inflationary
epoch and their phase transitions may be the source for matter-
antimatter asymmetry or gravitational waves [23]. With or
without SUSY, GUTs also make predictions that can be tested
at low energy experiments such as particle colliders, which can
search for new exotic states or deviations on flavor observables.
Some of its high energy repercussions can also be probed with
precision experiments, with nucleon decay measurements at the
forefront. In short, Grand Unified Theories have observable
effects in many fronts and can be probed by current and
upcoming experiments in the near future.

Therefore, throughout this review we will focus on the
description of GUT models and their observable consequences.
We will introduce the basic concepts and summarize some of
the modern research in GUTs. Out of all the possible observable

FIGURE 1 | Renormalization group flow of the standard model gauge

couplings.

probes of GUTs, we will focus on a subset of them. In the
cosmological front we will outline the advances on inflationary
GUTs, detail their observable gravitational wave signatures, from
cosmic strings and phase transitions, and their relation with
mechanisms for baryo and leptogenesis. The low energy front
will cover collider searches for supersymmetry, leptoquarks and
exotic states. Lastly, a number of precision tests of unification
will be detailed, including nucleon decay, flavor observables and
neutrinoless double beta decay.

As ultraviolet (UV) completions of the Standard Model that
live at very high energies, GUTs are often closely related to
theories of gravity, such as string theory. In fact, many unified
theories arise as four-dimensional compactifications in some
realization of superstring theory [24, 25]. However, throughout
this review we will not concern ourselves with these string
theory realizations. For a review on embedding GUTs in the
heterotic string and outcomes of string compactification for
unified theories see Raby [22].

2. BASICS ON GUT MODELS

Grand Unified Theories are extensions of the SM with larger
symmetry groups. Strictly speaking, GUTs require that the
unified group be a simple group, e.g., SU(5), SO(10), or E6.
However, here we use the term GUT more loosely, referring to
any extension of the SM symmetries including product groups
such as SU(5) × U(1) and SU(4) × SU(2) × SU(2). Candidate
groups for a realistic GUT model must satisfy two conditions:
they must contain the SM group as a subgroup and they must
have complex representations that reproduce the chiral structure
of the SM. Although groups with pseudoreal representations have
been studied as candidates for unified theories, E7 [26], we will
not consider them here.

2.1. SU(5)
The first appearance of a GUT in the literature dates back to 1974
when H. Georgi and S. Glashow proposed the unification of the
SM gauge group into a simple group, SU(5) [15]. In their proposal
all the left-handed fermions of a single generation fell into two
representations of the group, 5 and 10, in the following way

5↔




dc1
dc2
dc3
e
−ν



, 10↔




0 uc3 −uc2 u1 d1
−uc3 0 uc1 u2 d2
uc2 −uc1 0 u3 d3
−u1 −u2 −u3 0 ec

−d1 −d2 −d3 −ec 0



. (1)

and the gauge and Higgs sector of the theory were embedded
into the 24 and 5 representations, respectively. In addition to the
SM Higgs boson present in the representation 5, often a scalar 5
representation is also present, which contains a second SU(2)L
doublet, necessary for UV completions of two-Higgs doublet
models (2HDM) [27].

The Georgi-Glashow (GG) model was the first attempt of a
fully-unified model for particle physics, and it provided a neat
explanation for the hypercharge quantization in the SM. The
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traceless hypercharge generator can be written as [21]

Y = α diag(− 1
3 ,−

1
3 ,−

1
3 ,

1
2 ,

1
2 ) (2)

which when acting upon the representations of SU(5) results in
the specific hypercharge assignments of the SM fields, i.e., for
α = 1, Y(Q) = 1/6, Y(L) = −1/2, Y(uc) = −2/3, Y(dc) = 1/3
and Y(ec) = 1. In unified theories one often uses the “GUT
normalization” of the hypercharge, which corresponds simply to
a rescaling of the charges and gauge couplings asYGUT =

√
3/5Y

and g1 =
√
5/3 g′ [28].

Spontaneous symmetry breaking of SU(5) happens when a
scalar field in a non-trivial representation of the group acquires
a vacuum expectation value (vev). The minimal representation
of SU(5) that can achieve this goal while keeping the SM phase
unbroken is the 24 [15, 29]. This vev provides a mass to the
off-diagonal SU(5) gauge bosons while the SM gauge bosons
remain massless.

By virtue of the unification into a single gauge group, the
GG model requires strict unification of the SM gauge couplings,
which is hinted at but not really achieved in the SM [28, 29],
as can be seen in Figure 1, as well as that of Yukawa couplings
for each of the two representations, a difficult task in its minimal
version [30, 31].

The minimal SU(5) version suffers from other afflictions
beyond the failed gauge and Yukawa unification mentioned
above. One of these is the introduction of an artificial hierarchy,
known as doublet-triplet splitting [32, 33], in the components
to the Higgs representation 5. The colored components must be
quite heavy to avoid rapid proton decay whereas the uncolored
components must be relatively light, for they correspond to the
SM Higgs doublet, now know to have a mass of mh = 125.18
GeV [34]. Solutions to this problem in several SU(5) models have
been proposed, such as the “missing partner mechanism” [33, 35]
or the “double missing partner mechanism” [36, 37].

Another case where the minimal SU(5) falls short is the lack
of a mechanism for the generation of neutrino masses. Extended
scalar sectors can generate neutrino masses in the type-I [38]
and type-III [39] seesaw mechanisms1, but the resulting theories
are often non-renormalisable. Renormalisable SU(5) models can
also be constructed where the neutrino masses are generated
via a mixture of type-I and type-III seesaw [40] or the Zee
mechanism [41, 42].

Worst of all, however, is the fact that the vanilla SU(5) model
predicts rapid proton decay. The lifetime of the proton can be
naively estimated as [30]

τp ∼
M4

X

m5
p

, (3)

withmp the mass of the proton andMX the mass of the mediator
field at the scale of unification. The apparent unification of gauge
couplings happens at an energy scale µ ∼ 1015 GeV, which gives
a half life for the proton of the order of 1031 years, far below

1See section 3.2 for details on neutrino mass generation through the seesaw
mechanism.

the experimental bound from the Super-Kamiokande experiment
of 1.6 × 1034 years [43]. Particular choices of the Higgs sector
of the SU(5) model, however, avoid this issue, rendering non-
minimal SU(5) models viable candidates [44–46]. Furthermore,
SU(5) models with vector-like fermions can be consistent with
current limits and even predict an upper bound on the lifetime of
proton decay [47].

One of the fundamental issues with GUT models, which
remains as a concern today, is the gauge hierarchy problem.
The large hierarchy between the mass scale of unification and
the electroweak scale poses a problem since it causes large loop
corrections to the Higgs mass [48]. Supersymmetry (SUSY) was
proposed as a solution to this issue [49] and even acted as
a motivation for unified theories since some of its minimal
realizations, such as theMSSM, predicted the unification of gauge
couplings, as can be seen in Figure 2.

Supersymmetric GUTs are in fact rather popular and have in
some cases been proven to be more successful at representing
nature than regular GUTs [50]. In SUSY SU(5) theories the scale
of unification is typically larger than in non-supersymmetric
models2, around µ ∼ 2 × 1016 GeV as can be seen in
Figure 2. This has two advantageous consequences for these
models: the larger mass scale for the gauge mediators imposes
a further suppression on nucleon decay processes, consistent
with experimental measurements [50]; and pushes the unification
scale beyond the scale of inflation, which helps to dilute
the magnetic monopoles naturally present in the theory [52].
Another issue in vanilla SU(5) models that can be addressed
in its supersymmetric version is the doublet-triplet splitting,
where the Higgs doublets are made light via cancellations of the
superpotential parameters [32, 33, 53, 54].

2.2. Flipped SU(5)
An alternative solution to the issues of SU(5) models, without
supersymmetry, is what is now known as flipped SU(5) [55, 56].
The flipped version differs from regular SU(5) in its gauge group,
extended to SU(5) × U(1), and the manner in which the SM
particle fields are embedded into representations of the group. In
contrast to Equation (1), the matter representations in the flipped
SU(5) model are

5↔




uc1
uc2
uc3
e
−ν



, 10↔




0 dc3 −dc2 u1 d1
−dc3 0 dc1 u2 d2
dc2 −dc1 0 u3 d3
−u1 −u2 −u3 0 νc

−d1 −d2 −d3 −νc 0



, 1↔

(
ec
)
,

(4)
where νc labels the right-handed neutrino field, whose presence
provides a mechanism for neutrino mass generation, which was
absent in vanilla SU(5).

With these different embeddings of the SM fields, the
hypercharge operator is no longer contained in SU(5), as in
Equation (2), but it is rather a combination of diagonal generators
of both SU(5) and U(1). With standard normalization the

2A detailed description of unification in SUSY SU(5) can be found in Dorsner et al.
[51].

Frontiers in Physics | www.frontiersin.org 3 June 2019 | Volume 7 | Article 76

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Croon et al. GUT Physics in the Era of the LHC

FIGURE 2 | Renormalization Group flow of the MSSM gauge couplings.

hypercharge operator can be written as [57]

Y = −1

5
T24 +

1

5
X, (5)

where T24 is a diagonal generator of SU(5) andX theU(1) charge.
Due to the extended gauge sector and modified unified

conditions of flipped SU(5), proton decay does not become an
issue [57]. In addition, in flipped SU(5) magnetic monopoles
cannot be created since the supergroup containing the charge
operator is not a simple group [52, 57].

As was the case with regular SU(5) models, flipped SU(5) can
be extended with the help of supersymmetry. The combination
of solutions to the issues of the SU(5) model that both SUSY and
flipped SU(5) offer makes SUSY flipped SU(5) one of the most
popular GUTs in the literature [58, 59], in spite of not realizing a
full unification of gauge couplings.

Flipped SU(5) models are also well motivated from their
UV completions, since they can easily be derived naturally
from weakly-coupled string theory. As opposed to vanilla SU(5),
which undergoes symmetry breaking via a 24-dimensional
representation, the flipped SU(5) model does not require large
dimensional representations, as it breaks via a 101, and it is
therefore easier to obtain from a manifold compactification of
string theory [60, 61].

2.3. Pati-Salam and the Left-Right
Symmetry
Around the same time that the SU(5) model was proposed, R.
Pati and A. Salam suggested another extension of the SM [16].
They proposed a rearrangement of the SM fields into a different
group configuration, SU(4)c × SU(2)L × SU(2)R. Though not
really a fully unified theory, it provided a partial unification of
leptons and quarks into a single color group, SU(4)c, while at
the same time introducing another copy of SU(2) for the right-
handed sector of the theory. This model automatically contains
a right-handed neutrino, embedded into a SU(2)R doublet with

the right-handed charged lepton. Thus, the SM fields fall into two
representations of the group in the following way

{4, 2, 1} ↔
(
u1 u2 u3 ν
d1 d2 d3 e

)
,

{4, 1, 2∗} ↔
(

dc1 dc2 dc3 ec

−uc1 −uc2 −uc3 −νc
)
. (6)

One of the major successes of the Pati-Salam (PS) model was
being the first appearance of a left-right symmetric model, with
a right-handed sector SU(2)R and a heavy right-handed gauge
boson WR [62]. It was also the original proposal for the idea of
quark-lepton complementarity. As an amalgamation of the two
ideas, the PS group maximally contains the left-right symmetry
group, SU(3)c × SU(2)L × SU(2)R × U(1)B−L [17, 63], as well as
the quark-lepton unified group, SU(4)c×SU(2)L×U(1)R [64, 65].

Left-right symmetric models, à la Pati-Salam or of the type
SU(3)c× SU(2)L× SU(2)R×U(1)B−L, are fairly popular because
they naturally include a right-handed neutrino and can generate
light neutrino masses via some type of seesaw mechanism [66,
67]. Similar to PS, left-right symmetric (LR) models are not
fully unified theories, yet they can be an intermediate step on
the breaking chain of a PS model [68] or some other unified
theory [69].

Symmetry breaking in the PS model can happen through a
number of different paths, depending on the vev of the scalar
fields in the theory. The most compelling paths preserve either
the LR symmetry, with the LR group SU(3)c×SU(2)L×SU(2)R×
U(1)B−L as an intermediate step, or quark-lepton unification,
with SU(4)c × SU(2)L × U(1)R as a subgroup [70]. Further
symmetry breaking from the LR symmetry model happens when
either a pair of SU(2) doublets (one left-handed and one right-
handed) [62, 71], or a pair of SU(2) triplets (left and right-
handed) [68] acquire a vev. In both PS and LR theories, the
hypercharge operator is written as a linear combination of the
diagonal SU(2)R generator and the B − L charge [U(1)B−L
generator embedded in SU(4)c in PS] as

Y = T3
R +

1

2
(B− L). (7)

As opposed to the case of SU(5) the proton is often stable in
PS and LR models. This occurs because the gauge sector of the
theory preserves B and L number independently and the only
scalar fields that can mediate the transition are in antisymmetric
representations, rarely seen in PS or LR models [68].

The addition of supersymmetry to PS and left-right symmetric
models [72] is not as straightforward as with other GUT models.
The simplest scenario with both SUSY and LR symmetry was
shown to fail to achieve spontaneous symmetry breaking [73].
In order to circumvent this issue one must either add extra
fields, such as a parity-odd singlet3 [74] or an extra Higgs
field [75], or alternatively supplement the Lagrangian with non-
renormalizable operators [76]. One of the main advantages of

3Although successful in achieving spontaneous symmetry breaking (SSB) in
this SUSY LR model, the resulting vacuum state does not preserve the
electromagnetic charge.
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SUSY LR models, and the reason why so much effort is put on
resolving the SSB issue, is that they naturally preserve R-parity,
since B − L is a gauge symmetry of the theory, which forbids
the dangerous baryon and lepton number violating operators that
appear in the MSSM, thereby making the lightest SUSY particle
stable [77].

2.4. SO(10)
Although the GG and PS models seem quite distinct in their
approach to unification, they have a common ancestor. Both
SU(5)×U(1) and SU(4)×SU(2)×SU(2) are maximal subgroups
of another Lie group of larger dimension, SO(10). This was first
realized by Fritzsch and Minkowski [18], and independently by
Georgi [19], who proposed a model of unification with several
intermediate steps. SO(10) has since been the most popular
choice as a unification group, since it provides a vast display of
options for field configurations and symmetry breaking patterns.

One of the many key features of SO(10) models is that
they fully unify a generation of SM fermions into a single
representation of the group. Thus, the 16 Weyl fermions,
including right-handed neutrinos, can be embedded into the
fundamental 16 representation of SO(10) as

16 = {uc1, dc1, d1, u1, νc, ec, d2, u2, uc2, dc2, d3, u3, uc3, dc3, e, ν}L. (8)

Due to the transformation properties of the SO(10) group,
the spinor representation 16 is a complex representation,
thereby satisfying chirality as observed in the Standard Model.
Additionally SO(10) is a “safe algebra” [78], it does not suffer from
anomalies as, for example, the SU(5) case above, which makes
model building in SO(10) easier for it does not rely on some
specific field configurations to cancel the gauge anomalies [79].

Despite the large amount of SO(10) models in the literature,
a common feature is that the gauge fields are embedded in the
adjoint representation of the group, that is 45,

45→{8, 1, 0} ⊕ {1, 3, 0} ⊕ {1, 1, 0} ← SM gauge bosons

⊕ {3, 2, 1
6 } ⊕ {3, 2,−

1
6 } ⊕ {3, 2,

1
6 }

⊕ {3, 2,− 1
6 } ⊕ {3, 1,−

2
3 } ⊕ {3, 1,

2
3 }

⊕ {1, 1, 1} ⊕ {1, 1,−1} ⊕ {1, 1, 0}.



 ← leptoquarks,

which contains the SM gauge bosons as well as off-diagonal
components which, as happened in SU(5), can mediate quark-
lepton transitions, known as leptoquarks. The Yukawa sector
in SO(10) models is often also quite recurrent because, at the
renormalizable level, it can only be of the form [80]

LYuk = Y · 16TCLC10(Ŵi8
i + Ŵ[iŴjŴk]8ijk +

Ŵ[iŴjŴkŴlŴm]8
ijklm)16, (9)

where Y is the matrix of Yukawa couplings, CL and C10 the
charge conjugation matrices in the Poincaré and SO(10) groups,
Ŵi the generators of SO(10) in the spinor representation and
8i, 8ijk, and 8ijklm are scalar fields in the 10, 120, and 126

representations, respectively. The SM Higgs field is, therefore,
some linear combination of these fields and hence the SM
fermion masses directly follow from the Yukawa matrix Y and

the vacuum expectation values of the scalar fields. The particular
choice of the scalar sector is typically guided by the principle
of minimality. While the minimal regular (non-SUSY) SO(10)
model with SSB driven by the 45 and 126 Higgs representations
has been revived and still represents a phenomenologically viable
scenario [81–85], this is not the case of the minimal SUSY SO(10)
model [86, 87].

Symmetry breaking in SO(10) models can occur through
one of many different paths. Since both SU(5) × U(1) and
SU(4) × SU(2) × SU(2) are subgroups of SO(10), they can be
an intermediate step on the symmetry breaking path toward the
Standard Model, as can be any of their respective subgroup [70,
88, 89]. Alternatively SO(10) can be broken directly to the SM
group, without intermediate steps [90]. All the possible breaking
paths from SO(10) can be seen in Figure 3. The particular
symmetry breaking scenario that is realized in a SO(10) model
depends exclusively on the scalar sector of the theory and the
configuration of the vacuum, and it constitutes one of the major
differences among SO(10) models in the literature.

Regular SO(10) models may suffer from some of the same
issues as regular SU(5), namely rapid proton decay can occur
with a low unification scale. The main solution to this problem,
as it was with SU(5), is the addition of supersymmetry. SUSY
SO(10) [90, 91] theories are rather popular and given the large
number of degrees of freedom they possess, such as symmetry
breaking pattern, field content, etc., they can easily avoid many of
the traditional issues in unified theories.

Alike to the SU(5) model, it is possible to construct alternative
embeddings of the SM fermions into representations of the group
via the addition of an Abelian group. In the flipped SO(10)×U(1)
model [92] the SM fermion content is not fully embedded into the
16 representation of the group, but rather into the direct product
161 ⊕ 10−2 ⊕ 14. This model loses its unified nature in favor of
more degrees of freedom for the Yukawa and symmetry breaking
sectors of the theory, which are no longer constrained by the
statements above [80].

FIGURE 3 | Patterns of symmetry breaking from SO(10) to the SM group [21].
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2.5. E6
The GUT models described so far have unification groups that
are part of the infinite series SU(n) or SO(2n), which means that
for each successful model with particular n there is an infinite
number of alternatives with order larger than n. For instance,
the SO(18) group has been studied as a candidate for gauge and
family unification [93]. The exceptional algebras, however, are
unique so they are more aesthetically appealing candidates as
theories of unification [20, 94]. Among all exceptional algebras,
only E6 is large enough to contain the SM as a subgroup and
admits complex representations.

The fermionic content in the E6 theory is embedded in
the fundamental 27-dimensional representation of the group,
which contains the SM fermions plus exotic fields. The particular
allocations of SM fermions into the 27 representation depends on
the subgroup of E6 that breaks into after SSB, which is typically
either the trinification group, SU(3)c× SU(3)L× SU(3)R [95–97]
or SO(10)×U(1) [98, 99]. The decomposition of the fundamental
27 into these subgroups is

27 → {1, 3, 3} + {3, 3, 1} + {3, 1, 3}, [SU(3)c × SU(3)L × SU(3)R]
27 → 161 + 10−2 + 14, [SO(10)× U(1)]

(10)

The field content in E6 models is quite vast. There are 78 gauge
bosons, of which only 45 survive at lower scales if SO(10) is the
breaking path, or even fewer in the case of SU(3)×SU(3)×SU(3),
just 24. The minimal scalar content needs at least a scalar field
in the combination 27 + 351 + 351′, which contains the SM
Higgs, and a scalar responsible for SSB of E6, which is dependent
upon the pattern of symmetry breaking, e.g., a 78 for breaking
to SO(10)× U(1).

One of the main motivations for E6 as a unification
group comes from superstring theory, where it was shown to
emerge as a four-dimensional compactification of the heterotic
E8 × E8 superstring theory [24, 25]. In fact, the presence of
compactified extra dimensions near the scale of E6 breaking can
trigger symmetry breaking of the E6 group via the Hosotani
mechanism [100] straight into SU(3) × SU(2) × U(1) ×
U(1) × U(1).

Most of the research in E6 theories has been typically
considered only within the scope of supersymmetry, which ties
in with their motivation as low-energy limits of superstring
theory where spacetime supersymmetry emerges naturally after
compactification. Being a simple Lie group, E6 benefits from
the prediction of gauge coupling unification in supersymmetry,
as did SU(5) and SO(10), which strengthens the motivation. In
addition to the rich phenomenology of the MSSM, the E6 model
adds quite a few phenomenological predictions on its own, from
exotic fermion states to new heavy gauge bosons [101, 102].

3. SELECTED TOPICS IN GUTS

Model building in unified theories involves more than the
selection of the group theory properties as introduced in
section 2. There are a few outstanding issues that need to be

addressed in order to construct a realistic model. Gauge coupling
unification is typically one of the most pressing issues, which can
often be resolved by intermediate steps in the breaking chain or
by the addition of supersymmetry to the theory. In this section we
describe the interplay between SUSY and GUTs, as well as other
topics such as the generation of light neutrino masses and the
unification of the Yukawa couplings.

3.1. Supersymmetry and GUTs
Supersymmetry is a very appealing theory on its own right.
It is one of the most aesthetically pleasing extensions of the
StandardModel and it has an extremely rich phenomenology that
can be readily tested at colliders and other experiments. SUSY
GUTs [22] are a conglomerate of the numerous advantages of
unified theories and the predicting power of supersymmetry. One
of the most attractive features of SUSY is that it can stabilize
the electroweak scale against quantum corrections, the so called
hierarchy problem [103, 104] and provides a mechanism for
dynamic electroweak symmetry breaking [105, 106].

In addition, if R-parity is conserved [107] the lightest
supersymmetric particle (LSP) is stable. Therefore, SUSY
automatically predicts the existence of a Dark Matter candidate
and can easily produce scenarios with the correct relic
abundance [108, 109].

As previously mentioned, one of the major motivations for
SUSY GUTs is that the minimal MSSM model predicts gauge
coupling unification at some high scale ∼ 1016 [110]. As was
seen in Figure 2, just taking the one-loop RGE flow of the gauge
couplings, the unification at the GUT scale is fairly successful.
The RGEs for the gauge couplings at one-loop have an analytic
solution of the form [111]

α−1i (µ) = α−1GUT +
bi

2π
log

(
MGUT

µ

)
(11)

where i = 1, 2, 3 labels the coupling of the U(1), SU(2), and
SU(3) subgroups of the SM gauge group, and bi are parameters
that depend on the field content. For the MSSM these are bi =
(33/5, 1,−3). With a degenerate sparticle spectrum at 100 GeV,
these one-loop RGEs unify at MGUT ∼ 2.5 × 1016 GeV with
αGUT ∼ 0.0388.

This picture, however, relies on a light and almost degenerate
supersymmetric spectrum. For heavier or split spectra the
situation changes drastically, often spoiling gauge unification
altogether. A unification measure can be defined to assess how
the unification of gauge couplings changes with the masses of the
supersymmetric particles as

1µ = min(µ12,µ23)

max(µ12,µ23)
, (12)

whereµij is the energy scale at which α
−1
i and α−1j unify. Figure 4

shows how the unification measure varies with respect to the
SUSY scale for an MSSM model with degenerate SUSY masses
(blue). One can distinctly see that for larger sparticle masses, the
unification of gauge couplings significantly worsens, from a 70%
unification for MSUSY ∼ 100 GeV to <30% at MSUSY ∼ 1 TeV.
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FIGURE 4 | Evolution of the unification measure with the SUSY scale for the MSSM with almost degenerate masses (blue) and scenario with lighter electroweakinos

(green), calculated at one-loop. Shaded regions include threshold corrections over the solid lines.

Consequently, in addition to solving the little hierarchy problem
without too much fine tuning, a light sparticle spectrum is clearly
preferred to achieve gauge coupling unification.

In spite of the appeal of SUSY GUTs, the combined effort of
several collider experiments has not found any clear evidences
of SUSY particles4. Hence, minimal and light versions of the
MSSM are in tension with experimental evidence and that makes
achieving gauge coupling unification much harder. This tension
relaxes slightly once the mass degeneracy condition is forgone.
If the sparticle masses vary considerably across the spectrum,
it is possible to evade experimental bounds for those masses
more strongly constrained (e.g., gluinos, squarks, etc.) while
keeping part of the spectrum light. Mass splittings across the
supersymmetric spectrum can be taken into account by the
contribution of threshold corrections at the SUSY scale, which
are of the type [112, 113]

λi(MSUSY ) =
1

12π


∑

φ

Si(φ) log
mφ

MSUSY

+ 8
∑

ψ

Si(ψ) log
mψ

MSUSY


 , (13)

with φ the scalar fields in the MSSM (sfermions), mφ their
masses and S(φ) their Dynkin indices; and ψ the fermions in the
MSSM (gauginos and Higgsinos),mψ and S(ψ) their masses and
Dynkin indices. The shaded blue region in Figure 4 corresponds
to MSSM models with slightly non-degenerate masses. Although
these models exhibit the same trend as before, decreasing the

4See section 6.1 for more details on searches for Supersymmetry.

unification measure as MSUSY increases, some of these achieve a
better gauge coupling unification than the degenerate case, with
up to 60% unification forMSUSY ∼ 1 TeV.

Supersymmetric models with large splittings in the particle
spectrum can modify this picture significantly. A special case,
known as Split Supersymmetry [114, 115], has all the sfermions
decoupled at the GUT scale and only gauginos and Higgsinos
remain light, protected by chiral symmetry. This model is very
well motivated within the context of unified theory, because the
decoupled fields form full multiplets of SU(5), so the unification
of the gauge couplings is not affected [114]. Hence, the behavior
of the unification measure for these models is identical to
the semi-degenerate MSSM case from above (blue line and
shaded region in Figure 4), but has the advantage of allowing
a lighter spectrum since some of the strongest experimental
constraints are on the squark masses, which are decoupled
from the spectrum. These Split-SUSY models, however, predict
the existence of a light gluino, which is unfortunately strongly
constrained by experiments. Alternative versions of this model
with light electroweakinos (∼ 100 GeV) and heavy gluinos
(∼ 5 TeV) have been studied [116], but these fail to provide
successful gauge coupling unification for a light spectrum, slowly
improving at larger scales, as can be noticed from the green solid
line and shaded region (threshold corrections) in Figure 4. Split-
SUSY and the light electroweakino model are just two extreme
cases, the former requiring very light spectrum for successful
unification and the latter a heavy spectrum. A number of models
can be constructed with different spectra that have intermediate
predictions for gauge coupling unification. In fact, with a precise
analyses of threshold corrections, a number of supersymmetric
models with large mass splittings have been shown to achieve
exact unification, with a relatively light spectrum [117].
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3.2. Neutrino Masses
The observed oscillations of neutrino flavors [10, 118] require any
successful extension of the SM to incorporate non-zero masses
for at least two neutrino species. Effectively, these masses are
generated by the 5-dimensional Weinberg operator

OW =
cW

3
LLHH, (14)

where cW is the Wilson coefficient, 3 denotes the operator’s
cut-off scale and L and H are the lepton and Higgs doublets,
respectively. A typical UV-completion of this effective operator is
some kind of seesawmechanism [66, 119], which allows to satisfy
elegantly the requirement of tiny neutrino mass size. Generally,
these neutrino mass schemes assume a presence of new, heavy
degrees of freedom, which are ideally motivated by other BSM
physics. As has been shown, a number of different seesaw set-ups
can be very naturally incorporated within the GUT framework.
Provided that only a single type of new particle is added to the SM
field content, there are three basic tree-level seesaw types [120].

3.2.1. Seesaw Type I
In the original and simplest seesawmechanism of type I the right-
handed neutrino singlets must be added to the model [66, 121–
123]. As the current experimental data require only two neutrinos
to be massive, the minimal scenario must include two right-
handed neutrino states. This extension then allows to write both
Dirac and Majorana neutrino mass terms

LN = −yνLℓH̃NI − 1

2
[MM]IJN

ITCNJ + h.c., (15)

where yν is the matrix of neutrino Yukawa couplings and MM

denotes the Majorana mass matrix. Hence, taking mD = yνv,
with v being the SM Higgs vev, the neutrino mass matrix can be
written in the usual form

M =
(

0 mD

mT
D MM

)
. (16)

The block-diagonalisation of this matrix leads to the light mass of
the oscillating neutrinos

MI
ν = −mDM

−1
M mT

D, (17)

as the Majorana mass parameter can be chosen to be arbitrarily
large. Considering the neutrino Yukawa couplings of order one
and the Majorana mass around 1014 GeV, the desired neutrino
mass sizes of order mν ≈ 0.1 eV are obtained. The type-I
seesaw mechanism can be implemented in the GUT framework.
Particularly, it arises very naturally in SO(10) GUT, where the
right-handed neutrino singlet can be accommodated together
with all the other fermions in a single 16F spinor representation.

3.2.2. Seesaw Type II
The second possibility to construct a seesaw mechanism is to
assume a heavy scalar SU(2)L-triplet1L,

{1, 3, 2} ≡ 1L = 1L · τ =
(

1√
2
1+ 1++

10 − 1√
2
1+

)
, (18)

which allows to write the following Lagrangian terms

L1 =
[
y1ℓℓ′L

ℓTC(iτ 2)1LL
ℓ′ + µHT(iτ 2)1∗LH + h.c.

]

+M2
1Tr[11

†]. (19)

Diagonalisation of the type-II seesaw mass matrix [67, 124, 125]
then generates neutrino mass

MII
ν =

µv2

M2
1

y1 (20)

and forM1≫ v the required suppression is obtained.
Also this seesaw can be responsible for neutrino mass

generation in GUTs. For instance, in SO(10) unification the
left-handed scalar triplet is contained by the 126 Higgs field,
which is usually considered to be present in the scalar sector
of the theory. It has been shown that type-II seesaw can be the
dominant neutrino mass scheme within both SUSY [126] and
non-SUSY [127] SO(10) GUTs.

3.2.3. Seesaw Type III
The third option for a UV-completion of the Weinberg operator
in Equation (14) is to introduce new fermionic SU(2)L triplets
TI
F [128]5. Their interaction with the SM content is analogous to

the type I seesaw, namely,

LTF = yTFℓJ L
ℓTC(iτ 2)(TJ

F · τ )H +MTF
IJ (T

I
F)

TCT
J
F + h.c.. (21)

The neutrino mass matrix for type III seesaw then reads

MIII
ν = (yTF )Tv2[MTF ]−1yTF (22)

and forMTF ≫ yTFv the smallness of neutrino masses is ensured.
The incorporation of the type-III seesaw mechanism into

GUTs has been studied in literature [39, 120, 129]. When
implemented within SU(5) models, type-III seesaw comes
automatically in hand with the type-I seesaw, as both fields
responsible for these mechanisms share the same adjoint
representation 24F .

3.2.4. Inverse Seesaw
At low energies the light neutrino masses can be generated at
tree level via the so called inverse seesaw mechanism. This string
theory motivated [25] scheme can be constructed when a non-
minimal lepton content of a given theory is assumed. Namely,
extra singlet leptons must be added to the model, which is in
general allowed for any gauge theory [119]. The minimalistic
extension of the SM particle content leading to inverse seesaw
requires a pair of left-handed two-component lepton singlets Nc

and S [98]. Taking three generations of these new singlet fields,
one can write the 9× 9 mass matrix of the neutral leptons in the
basis {νℓL,NI c, SA} (with A = a, b, c) as

MIS =




0 mD 0
mT

D 0 M

0 MT µ


 , (23)

5Similarly to the right-handed neutrino singlets, only two triplets are necessary,
although three (one per flavor) are considered here.
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where M and µ are the mass matrices corresponding to the
SU(2)L singlets, while mD is the Dirac neutrino mass matrix as
usual. As predicted by some string models, the Majorana mass
entries corresponding to νL and N are zero. Thus, the only
Majorana mass parameter is the matrix µ, which corresponds
to the extra singlet S. This entry is then responsible for lepton
number violation. If µ is set to be zero, the B − L symmetry
is restored, the matrix MIS degenerates and the three oscillating
neutrinos become massless.

On the other hand, for non-vanishingµ such thatµ≪mD≪M
the resulting mass matrix of the light neutrino eigenstates reads

MIS
ν = mDM

−1µ[MT]−1mT
D. (24)

The main difference from the standard seesaw scenarios is that
in the present case neutrinos become light for µ → 0, not for
large values of Majorana mass parameter. This is also the reason
why one talks about “inverse” seesaw. As vanishing µ enhances
the symmetry of the theory, the assumption of its small value can
be considered to be natural [130, 131].

3.2.5. Linear Seesaw
A particularly interesting realization of the inverse seesaw
mechanism can be constructed within the SO(10) GUTs
framework with broken D-parity [132]. The so called linear
seesaw mechanism consists in extending the minimal fermionic
content of the SO(10) model, contained by three copies of the
16F representation, by three gauge singlets SA. The original
version of this scheme was designed within the supersymmetric
SO(10) framework; however, it can be constructed also in non-
supersymmetric scenarios. The mass matrix for the neutral
fermions in the basis {νℓL,NI c, SA} has the following form

MLS =




0 mD mL

mT
D 0 M

mT
L MT 0


 . (25)

Here, mD denotes the Dirac neutrino mass, M is the heaviest
Dirac neutrinomass termmixingN-S andmL stands for the small
term mixing ν-S, which breaks the (B − L) symmetry. The light
neutrino masses are then given by the expression

MLS
ν ≃ mT

DM
−1mL + (M−1mL)

TmD, (26)

which depends linearly on mD (and therefore also on
corresponding Yukawa couplings). In the present scenario it
is the large parameter M given by the unification scale what
ensures the smallness of neutrino masses. Hence, the lightness
of neutrinos is independent of the (B − L) symmetry breaking
scale, which can consequently lie at low, experimentally accessible
energies without spoiling the desired size of neutrino masses or
the unification.

3.2.6. Other Neutrino Mass Models
Despite the success of seesaw mechanisms, one can think of a
number of alternative neutrino mass generation schemes. From
the phenomenological point of view, these can be even more
interesting, as they often predict (unlike the three usual seesaws) a

low-energy origin of neutrino masses. The light neutrino masses
are obtained using a small lepton-number-violating parameter
(similarly as in the inverse seesaw), or they can be suppressed
by loops and small Yukawa couplings. While the former option
can be realized e.g., within supersymmetric models with R-parity
breaking [133], the latter possibility refers to the models of
neutrinomass generation via calculable radiative corrections (i.e.,
the Zeemechanism) [41, 134]. A two-loopmechanism generating
neutrino masses within a minimal SO(10) GUT was identified by
Witten [135] and the same scheme can be constructed also in the
flipped SU(5) context [136–138].

3.3. Yukawa Coupling Unification and
Fermion Masses
In fully unified theories, such as SU(5) and SO(10), the gauge
couplings must unify at some high energy scale. This is typically
achieved automatically in SUSY GUTs, as mentioned above, due
to the RGE flow of the MSSM gauge couplings (c.f. Figure 2),
but it can also be achieved through the addition of new scalar
representations [139] or with a multi-step symmetry breaking
pattern [91].

Along gauge coupling unification, SU(5) and SO(10) models
also require the unification of the Yukawa couplings. The largest
hierarchy on the fermion masses happens in the third generation
wheremt/mb ∼ 40 andmb/mτ ∼ 2.3, hence Yukawa unification
in GUTs is always studied within the third generation only. In
SU(5) the charged leptons live in the same representation as the
down-type quarks, 5, and as such it is expected that at the GUT
scale yb = yτ , whereas in SO(10) all SM fermions are embedded
into the same 16-dimensional representation, so the unification
condition becomes yt = yb = yτ .

Although a natural prediction of GUTs, Yukawa unification is
not easily achieved in the vanilla SU(5) and SO(10) models [29–
31]. As can be seen in the left-side plot of Figure 5, the Yukawa
couplings in the SM are far from unification. In spite of this, a few
successful attempts to solve the unification of yb and yτ in SU(5)
inspired models have been performed, either by including large
scalar SU(5) representations to the field content [31, 139, 140] or
by adding Planck scale suppressed interaction of the Higgs field
to the SM fermions [141].

In SUSY GUTs, however, Yukawa unification can often be
achieved in some regions of the full supersymmetric parameter
space. As can be seen in the right-side picture in Figure 5, the
Yukawa couplings in the MSSM tend to run toward convergence
at high scales, and they can be seen to almost unify for large values
of tanβ [142–145]. This occurs because the third generation
fermion masses depend on tanβ in the following way [146]

mt =
v√
2
yt sinβ , mb =

v√
2
yb cosβ , mτ =

v√
2
yτ cosβ ,

(27)
which can realize the hierarchy mt ≫ mb,mτ even in SO(10) or
E6 models where one expects yt ∼ yb ∼ yτ . These solutions
with large tanβ can spoil radiative EW symmetry breaking in

unified models, since Bµ ≃ M2
A

tanβ ≃ 0 implies thatm2
Hd
−m2

Hu
>

m2
Z [147], contrary to the unified picture wherem

2
Hu
= m2

Hd
. This

issue can often be resolved either by ad hoc splittings of the Higgs
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FIGURE 5 | One loop renormalisation group flow of the SM (left) and MSSM (right) Yukawa couplings, with m0 = 2 TeV, m1/2 = 3 TeV, A0 = 0 and tanβ = 40

(solid), tanβ = 30 (dashed) and tanβ = 15 (dotted).

soft masses at the GUT scale, or by considering the effect of D-
terms in the boundary conditions at the GUT scale [148], which
naturally imposes a splitting ofm2

Hd
−m2

Hu
= 4m2

D.
In addition to satisfying mt ≫ mb,mτ for unified Yukawa

couplings, one can lift the hierarchy betweenmb andmτ with the
inclusion of radiative corrections on the bmass. At one loop the b
quark couples toHu via a gluino or Higgsino loop [146], as can be
seen in Figure 6, which adds a correction tomb of the type [149]

δmb ≃
v√
2
yb

sinβ

16π2

(
8

3
g23
µmg̃

m
b̃2
+ y2t

µAt

mt̃2

)
. (28)

Though similar corrections appear for mt and mτ , they are
negligible compared to δmb. The correction on mt is not
proportional to tanβ , which is required to be large to satisfy
t−b−τ unification. Further, δmτ does not have a gluino loop and
the Higgsino contribution is inversely proportional tomν̃t which
is typically much larger thanmt̃ , and therefore the contribution is
small. These radiative corrections onmb are proportional to tanβ
and therefore can be significant, up to 50% [148], which can spoil
the hierarchymt≫mb. There are regions of the SUSY parameter
space, however, where it is possible to reduce δmb while keeping
tanβ large [148–150], thereby successfully predicting t − b − τ
unification, even factoring in LHC searches [151].

In SUSY SU(5) models the more straightforward boundary
condition yb = yτ is imposed. It was found that, in addition to
the large tanβ scenarios from above, b−τ unification can also be
achieved in a region of parameter space with low tanβ [152, 153].
However, a sufficiently low tanβ might struggle to lift sufficiently
the tree level Higgs mass to the observed value, and hence there
remains some tension between unified b− τ models of low tanβ
and the observed Higgs mass [154].

A number of other mechanisms have been proposed to satisfy
the Yukawa unification conditions. Intermediate breaking steps,
such as the Pati-Salam group, can modify the Yukawas RGEs
in a favorable manner achieving quasi-unification [155, 156].
Non-canonical seesaw mechanisms in neutrino models require
b − τ unification to match the observed neutrino mixings [157].

Or the inclusion of certain higher dimensional operators can
successfully yield Yukawa unification [158].

Beyond the unification of the Yukawa couplings for each of
the families of SM fermions, the mass hierarchies among the
different families remains an open question. Although GUTs
by themselves do not make predictions on the nature of this
hierarchy, they often include a fair amount of parameters and
mixing matrices that are unconstrained and can fit the fermion
masses. Additionally GUTs are often extended with family
symmetries, continuous or discrete, which can, with a smaller set
of parameters, accurately predict the fermion mass hierarchies,
as well as their mixings and CP phases encoded in the CKM
and UPMNS matrices [159–163]. We will not discuss family
symmetries any further since they fall beyond the scope of
this work.

4. MODERN DAY GUTS

Since their first appearance in the late 70s, a large number of
GUT models have been proposed. These vary according to the
symmetry group employed, the symmetry breaking mechanism
and field content among others. Some of them were driven by
the experimental results of the time and other by new theoretical
insights. In this section we attempt to outline a small, non-
exhaustive, subset of GUT models, aiming to explore those
with strong phenomenological consequences and some that
have been in the spotlight in recent years. We thus focus on
left-right symmetric models, SUSY SO(10), trinification models
and E6SSM.

4.1. Left-Right Symmetric Models
One of the minimal extensions of the SM is the earlier mentioned
left-right symmetric model [16, 17, 62, 63, 67]. Despite not being
real GUTs, LR models can very conveniently play the role of an
intermediate symmetry restored between the electroweak scale
and theGUT scale [69, 164, 165]. The LR framework has attracted
a lot of attention particularly in connection with the LHC [166–
178], as it typically predicts new physics at energies that can be
probed by the collider searches.
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FIGURE 6 | One-loop radiative corrections to mb.

The fermionic particle content of LR models is given by a
straightforward LR symmetric extension of the SM content, i.e.,
the right-handed doublets are introduced

LℓR =
(
Nℓ

ℓR

)
↔
(
νℓL
ℓL

)
= Lℓ, (29)

Qi
R =

(
uiR
diR

)
↔
(
uiL
diL

)
= Qi. (30)

As a result, right-handed neutrinos are naturally includedmaking
the left-handed neutrinos acquire mass in the LR models, which
is a highly desirable feature of a BSM model. The presence of the
right-handed neutrino partners is also essential for cancellation
of the B− L gauge anomaly.

The Higgs sector of LR symmetric theories can vary. The
minimal scenarios mostly include a scalar bi-doublet6

8 ≡ {1, 2, 2, 0} =
(
φ01 φ+2
φ−1 φ02

)
, (31)

containing the SM Higgs, which subsequently gives masses to
quarks and leptons. The corresponding vev reads

〈8〉 =
(
v81 0
0 v82

)
, (32)

where v ≡
√
v21 + v22 and it mixes the left-handed and right-

handed gauge bosons as described below.
Besides the bi-doublet, typically a pair of scalar triplets

1L ≡ {1, 3, 1,−2}, 1R ≡ {1, 1, 3,−2}, (33)

or doublets

χL ≡ {1, 2, 1,−1}, χR ≡ {1, 1, 2,−1}, (34)

must be added to the Higgs sector in order to break the LR gauge
group to the SM. In fact, the right-handed scalar is enough to do
so, but inclusion of the left-handed triplet (or doublet) preserves

6Here, the representations are labeled the usual way in the order
{SU(3)C , SU(2)L, SU(2)R,U(1)B−L}.

the LR symmetry (so called “manifest LR symmetry”), i.e., the
SU(2)L and SU(2)R gauge couplings are equal: gL = gR.

If no additional fermions besides the SM fermionic content are
considered, at least two bi-doublets must be present in the scalar
sector to account for the correct SM flavor physics [164]. In a
model with a single bi-doublet the Yukawa Lagrangian implies
that the up-quark mass matrix is proportional to the down-quark
mass matrix (independently of the vev structure); thus, the CKM
matrix becomes trivial VCKM = 1.

Consequently, the LR symmetry breaking takes place in two
steps. At first, the neutral component of right-handed scalar
triplet (or doublet) gets the vev vR and breaks the LR gauge group
to the SM gauge group. Subsequently, the bi-doublet acquiring its
vev breaks the SM gauge group to SU(3)C ⊗U(1)Q. Based on the
observations it can be assumed that vR≫ v81, v82.

Depending on the scalar content of a particular LR model,
different ways of light neutrinomass generation can be employed.
Having right-handed neutrino singlets means that type-I seesaw
is always the option. In general, the neutrinomassmatrix can take
the form

Mν =
(
MM,L mD

mT
D MM,R

)
, (35)

where mD denotes the Dirac mass matrix, while MM,L and MM,R

are theMajorana mass matrices corresponding to the left-handed
and right-handed neutrinos, respectively.

The Yukawa couplings in LR models include the scalar
bi-doublet,

L
8
Yukawa = y8ℓℓ′L

ℓTC8Lℓ
′
R + ỹ8ℓℓ′L

ℓTC8̃Lℓ
′
R + h.c., (36)

where 8̃ = σ 28∗σ 2. Then the Dirac neutrino mass matrix
and the mass matrix of charged leptons are in the broken phase
given by

mD = y8v81 + ỹ8v82, (37)

mℓ = y8v82 + ỹ8v81. (38)

In case that the right-handed scalar triplet 1R is responsible
for the LR symmetry breaking, one can write also the Yukawa
couplings for the right-handed lepton doublet in the form

L
1R

Yukawa =
1

2
y1R

ℓℓ′ (L
ℓ
R)

TC(iτ 2)1RL
ℓ′
R + h.c., (39)
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where1R = 1R · τ . After the triplet acquires its vev

〈1R〉 =
(
0 0
vR 0

)
, (40)

the LR symmetry is broken and the right-handed neutrino
receives Majorana mass MM,R = y1RvR ≫ v, which allows for
type-I seesaw mechanism.

When the Higgs sector contains also the left-handed scalar
triplet1L with vev

〈1L〉 =
(
0 0
vL 0

)
, (41)

it generates the left-handedMajoranamassmatrixMM,L = y1LvL
switching on type-II seesaw mechanism.

In principle, the type-I and type-II seesaws can be combined
giving the “full” seesaw matrix (35). The resulting light neutrino
mass matrix reads

MI+II
ν = MM,L −mD[MM,R]

−1mT
D. (42)

Specifically, if v82 = 0 is assumed for simplicity, then the
formula (42) can be rewritten in terms of the parameters of the
LR models as

MLR
ν = y1LvL −

v281
vR

y8[y1R ]−1y8T . (43)

Hence, if the hierarchy vR ≫ v81 ≫ vL is satisfied, the neutrino
masses become small.

In models with the LR symmetry breaking driven by the right-
handed doublet χR instead of the triplet 1R the light neutrino
masses can be obtained employing the inverse [98, 179–181]
and/or linear [175, 182, 183] seesawmechanisms, provided that a
singlet fermion {1, 1, 1, 0} is added to the model particle content.
Alternatively, it is also possible to construct the type-III seesaw
mechanism, if a left-handed or right-handed fermionic triplet is
present within the LR model [184, 185]. Lastly, neutrino mass
generation in LR models via the Zee mechanism can be achieved
with the addition of a charged scalar boson {1, 1, 1, 2} [186].

4.2. SUSY SO(10) Models
Supersymmetric SO(10) models are rather appealing GUTs,
for they combine together the advantages of SUSY, Pati-Salam
and SU(5) models. As briefly outlined in section 2.4, SO(10)
models unify all fermions of a generation in the SM into a
single representation, of dimension 16. This decomposes into the
maximal subgroups as

16 → {4, 2, 1} + {4, 1, 2}, [SU(4)c × SU(2)L × SU(2)R],
16 → 10−1 + 53 + 1−5, [SU(5)× U(1)].

(44)

As mentioned before, at the renormalizable level the Yukawa
sector of SO(10) includes the Higgs representations 10, 120, and
126, which are promoted to superfields in SUSY SO(10). Hence,
the superpotential of the Yukawa sector is

WY = 16T
(
Y1010+ Y120120+ Y126126

)
16. (45)

where Yi are matrices of Yukawa couplings in family space. One
of the most remarkable features of SUSY SO(10) is that, starting
from a Yukawa unified scenario, Y10 and Y126 are sufficient
to reproduce the full mass spectrum of SM fermions, along
with the measured values of mixings in the quark and neutrino
sector [187–197]. The mass matrices of SM fermions Mi can be
written as [86]

Md = vd10Y10 + vd126Y126

Mu = vu10Y10 + vu126Y126

Ml = vd10Y10 − 3vd126Y126

MD = vu10Y10 − 3vu126Y126

ML = vLY126

MR = vRY126 (46)

where MD, ML, and MR are the Dirac and Majorana masses
in types I and II seesaw (c.f. section 3.2), and the v’s are the
various vacuum expectation values of 10, 126 and the left and
right-handed SU(2) triplets.

Theminimal SUSY SO(10)model therefore contains theHiggs
superfields 10 and 126, responsible for fermion masses, and a
pair of representations 126 and 210 which trigger the symmetry
breaking of SO(10) [198–200]. Although quite appealing due to
its minimal set of model parameters, this model does not achieve
the right level of gauge coupling unification and suffers from
rapid proton decay [87, 201].

Many solutions have been implemented to resurrect minimal
SO(10) models. The spectrum of soft masses in the low
energy MSSM strongly affects the outcome of gauge coupling
unification, as was seen in section 3.1, hence modifications on
the hierarchy of soft masses can help toward solving the issues
with SUSY SO(10) models [202–206]. Additionally, extended
scalar sectors, either containing a 120 [207, 208] or a 54 [209]
representation, can increase the unification scale through strong
threshold effects, thereby alleviating the constraint of nucleon
decay. Recently it has been shown that a combination of new
Higgs representations with a modified spectrum of soft masses
can accommodate gauge coupling unification and nucleon decay
constraints, while still being able to predict a suitable spectrum of
fermion masses [210].

As with many GUT models, SUSY SO(10) makes predictions
that can be tested in a number of different fronts. Collider
searches at the LHC [211, 212] as well as dark matter
searches [213] can discover the predicted light, TeV-scale, states.
Precision tests such as nucleon decays [214, 215], lepton flavor
violation [216] and flavor observables [217] can probe the validity
of the models at high scales. For more details on probing SUSY
SO(10) and GUTs in general see sections 5–7.

4.3. Trinification
As a maximal subgroup of E6, the trinification gauge group
SU(3)c × SU(3)L × SU(3)R is an alternative approach to SUSY
SO(10) on the road to E6 unification. The matter content of
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trinification models per generation typically looks like [218]

{1, 3, 3} =



h11 h22 e
h21 h22 ν
ec νc φ


 , {3, 3, 1} =

(
u d D

)
,

{3, 3, 1} =
(
uc dc Dc

)
(47)

where hij are the components of two Higgs doublets, φ a SM
singlet field and D and Dc color-triplets. An additional Z3
symmetry is often considered to make the gauge couplings unify
at the GUT scale, gc = gL = gR.

Given the presence of exotic fields in the matter multiplets,
trinification models struggle to trigger spontaneous symmetry
breaking without making the matter content impossibly
heavy. Additional Higgs multiplets [219–222] and/or non-
renormalizable operators [223–226] are usually introduced to
alleviate this issue. Unfortunately these models tend to produce
tension with current limits on proton decay [227] and collider
searches [228, 229].

The fundamental challenge behind the issues of trinification
is the complicated vacuum structures and the large number of
parameters they depend on. Solutions to this problem involve
the addition of family symmetries which reduce the number of
parameters and facilitate the study of the symmetry breaking
vacuum [230], further simplified by embedding the theory into
larger dimensional groups such as E8 [231, 232].

4.4. E6SSM
The Exceptional Supersymmetric Standard Model (ESSM or
E6SSM) [233, 234] is an extension of the MSSM motivated as a
low energy effective theory from a E6 unified GUT model at high
scales. At low scales it has the gauge group SU(3)c × SU(2)L ×
U(1)Y×U(1)N , where the additionalU(1)N factor is leftover from
the symmetry breaking of E6. All the superfields in the theory are
contained in three copies of the 27 representation of E6, which
decompose under the SU(5)× U(1)N subgroup as [235]

27i → 10i1 + 5
i
2 + 5

i
−3 + 5i−2 + 1i5 + 1i0, (48)

where 10i1 and 5
i
2 are the matter multiplets for all three

generations, with the standard embeddings of matter fields in

SU(5) (c.f. section 2.1). The superfields 5
i
−3 and 5i−2 contain the

two Higgs doublets of the MSSM, Hu and Hd, plus two copies
of pairs of exotic doublets, H1,2

u and H1,2
d

and three copies of

exotic tripletsDi andDi. Lastly, the singlets 1i5 and 1
i
0 correspond

to exotic singlet fields Si, responsible for U(1)N breaking at low
scales, and right-handed neutrino fields Ni, respectively.

Anomaly cancellation of theU(1)N factor in the E6SSMmodel
is guaranteed so long as the only decoupled state is the singlet
neutrino field. Ni can be as large as necessary to provide light
neutrino masses through type I seesaw mechanism and generate
the baryon assymmetry of the Universe via leptogenesis [236,
237]. The remaning fields of the 27i multiplets charged under
U(1)N remain at energies below the breaking of U(1)N and
hence anomalies cancel. Light colored states have dangerous
consequences, however, for they can mediate baryon and lepton

number violating interactions leading to rapid proton decay. In
order to avoid that, the original E6SSM model postulates the
existence of an approximate Z2 symmetry that forbids those
interactions. An exact Z2 symmetry can also be considered [238,
239], but in such a case additional exotic states must be
introduced to ensure that the exotic quarks are not stable.

Gauge coupling unification in the E6SSM model requires the
addition of incomplete multiplets of E6 at low scales, since full
multiplets do not modify the unification properties of the RGE
flow. A pair of fields H and H in conjugate representations are
added, to ensure no anomalies are reintroduced. Alternatively, a
Pati-Salam intermediate step has been postulated that achieves
gauge coupling unification without the need of additional
superfields. This “minimal” E6SSM model, however, predicts
unification at the Planck scale so quantum gravity corrections
may play a role and affect the outcome of unification [240].

The E6SSM has a rather rich phenomenology since most of
the predicted exotic states live at low energies. The constrained
E6SSM (cE6SSM) is a version of the full E6SSM that exploits the
properties of unification of E6 and assumes universal scalar and
gaugino soft masses at the GUT scale [241, 242]. Predictions of
the cE6SSM include contributions to the Higgs mass and rare
decays [243, 244] together with light exotic states, such as the
Z′N associated with the U(1)N broken symmetry, and the color
triplet fermions D and D, all of which can be probed at the
LHC [245]. Lastly, as in the MSSM the lightest supersymmetric
particle is stable, so it is a valid candidate for dark matter. In
contrast with the regular neutralino dark matter in the MSSM,
the dark matter candidate in the E6SSM is a mixture of binos,
winos and higgsinos, as well as the inert singlinos and higgsinos
in Hi

u,d and Si [246–250].

5. COSMOLOGY AND THE EARLY
UNIVERSE

5.1. Inflation and GUTs
Cosmic inflation plays an important role in theories of Grand
Unification, as it is needed to dilute relics such as magnetic
monopoles, which are produced ubiquitously in GUT models7.
The requirement to dilute these relics therefore determines the
scale of inflation in specificmodels [251]. Moreover, since generic
inflation models are associated with a scale3inflation ∼ 1016 GeV,
it becomes attractive to associate the inflaton with a GUT scalar.

To agree with observations, inflation models need to predict
a large number of observable e-folds (N =

∫ te
t0
Hdt & 60), as

well as small spectrum density of fluctuations δρ/ρ ∼ 10−5.
For an effectively single field model, this can be illustrated by the
tension between the Lyth bound (a measure of the field excursion
necessary to solve the problems inflation was invented to solve)
given in terms of the number of e-foldings N [252],

1φ ∼
( r

0.002

)1/2 ( N

60

)
Mp (49)

7However, there are exceptions, most notably the flipped SU(5) SUSY GUT
theories.
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and the amplitude of the Cosmic Microwave Background (CMB)
anisotropies, which implies [253, 254],

34
inf =

(
2.2× 1016 GeV

)4 ( r

0.2

)
. (50)

It is clear, then, that inflation requires a very flat scalar potential.
Hence, it is attractive to consider inflation models in which the
potential is dynamically generated [255–258].

A successful example of such a model was realized as early
as 1983 [259]. This paper considered a potential of a Coleman-
Weinberg form [255],

V(φ) = Aφ4

(
log

φ2

v2φ
− 1

4

)
+ C (51)

Such a potential can only be made compatible with CMB
constraints if A is very small (presently, A . 10−14 [260]).
Therefore, the potential in Equation (51) cannot be due to
loops of SU(5) gauge bosons. Instead, [259] considered a
model in which the inflaton transformed as a singlet of SU(5),
couples weakly to the adjoint and fundamental Higgs fields,
and therefore obtains a vacuum expectation value when SU(5)
breaks into the SM. The original CW-GUT inflation model
[259] predicts primordial gravitational waves with tensor-to-
scalar index 0.02 ≤ r ≤ 0.1 [261]. Although this is
currently not in tension with the CMB-constraints [253, 254],
several modifications have been proposed which predict smaller
r [260, 262–264].

An alternative class of GUT inflation models are based
on no-scale supergravity. It was realized in 2013 [265] that
particular realizations of no-scale supergravity (SUGRA) models
of inflation can be equivalent to the Starobinsky model [266], in
which inflation is realized from a non-minimal Einstein-Hilbert
action S = 1

2

∫
dx
√−g(R + R2/6M2). The correspondence can

be seen by a conformal transformation, such that the model is
equivalent to canonical gravity plus a scalar field [265, 267]. The
scalar potential then becomes

V(φ) = 3

4
M2

(
1− e−

√
2/3φ

)2
. (52)

Starobinsky-like models are attractive candidates for inflation
models, as they make viable predictions for inflationary
observables without the need to introduce a large set of
finely tuned parameters. Examples of no-scale SUGRA inflation
models include sneutrino inflation, which can be consistently
implemented in flipped SU(5) SUSY GUTs [268–272]. Other
no-scale GUT inflation models identify the inflaton with the
Higgs boson, and circumvent the problems associated with
conventional Higgs inflation [273, 274].

A phenomenological approach was taken by Hertzberg and
Wilczek [275]. Here it was assumed that inflation is driven by
the vacuum energy associated with unification. It was shown that
several examples of large-field (1φ ∼ Mp) models of inflation
give predictions consistent with the CMB-constraints [253, 254].

GUT-inflation has also been studied in combination with
other cosmological scenarios, most importantly with non-
thermal leptogenesis and the seesaw mechanism for neutrino

masses [276–278]8. Models of sneutrino inflation are well suited
for this purpose [268–272].

5.2. Cosmological Constraints on Cosmic
Strings
Cosmic strings are generic cosmological predictions of many
GUT theories [279–281]. Field theories with broken gauge
symmetries may have a vacuum state that is not unique, such
that different points in physical space may have distinct (but
degenerate) vacuum configurations. By continuity of the field,
the interpolating field values must be taken on in between these
points, which gives rise to an energetic object called a topological
defect, or (in the one-dimensional case) a string.

The simplest description of cosmic strings after their
formation approximates the fundamental Nambu-Goto strings.
Nambu-Goto strings are characterized by the dimensionless
string tension Gµ, where µ is the mass per unit length and G
is Newton’s constant. Strings produced at the GUT scale typically
have a mass per unit length of the order of µ ∼ 1021 kgm−1 and
a thickness of 10−24m, such that the tension is Gµ ∼ 10−6 [282].
For comparison, strings formed around the electroweak scale
are expected to have much smaller tensions, Gµ ∼ 10−34. As
the expansion of the Universe stretches strings, while the string
tension stays constant and in the absence of a decay mechanism,
ρstrings would grow with the scale factor and eventually dominate
the energy density of the Universe. Cosmic strings can decay into
gravitational or scalar radiation, however. In the presence of such
a decay channel an attractor scaling solution is reached, in which
the strings maintain a constant fraction of the energy budget.

Cosmic strings could be detected through gravitational lensing
and anisotropies in the CMB [283, 284]. Cosmic strings imprint
on the CMB as line-like discontinuities, caused by a boost of
photons toward the observer as a string moves across the line of
sight [285, 286]. Planck data constrains the Nambu-Goto string
tension Gµ < 1.8 × 10−7 [287], the non-local string tension
Gµ < 10.6 × 10−7 [287] and the Abelian Higgs string model
Gµ < 2.0× 10−7 [288].

If the strings decay gravitationally, such radiation can be
observed in Gravitational Wave (GW) experiments [289–293].
Strong gravitational radiation bursts may be produced by
cusps [294–298]: the LIGO/VIRGO collaboration reported an
experimental upper limit of Gµ < 10−8 in some regions
of the parameter space, in which gravitational backreaction
determines the size of the loops [299]. Pulsar Timing Arrays
(PTAs) potentially give more stringent bounds, as they can
already probe the stochastic GW background; depending on the
model,Gµ < O(10−12−10−11) [300–302]. However, the relative
importance of the gravitational decay channel has been the source
of some disagreement in the literature. Simulations of Nambu-
Goto strings [303–308] and full field-theoretic simulations of
the Abelian Higgs model [309–311] differ in the typical scale
on which the strings form loops. Loops of the order of the
string width rs can radiate heavy particles (as the natural mass
of coupled particles is m ∼ r−1s ); loops of the typical inter-
string spacing ξ are expected to decay gravitationally [312].

8We expand more on the topic of the baryon assymmetry in subsection 5.4.
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Recent field-theory simulations [311] suggest a mechanism to
transport energy from large to small scales, which is not currently
understood. Numerical results [313–315] also indicate that the
simplest analytical models are due an update, when non-Abelian
gauge groups are considered. Furthermore, different groups
simulating Nambu-Goto strings differ in the distribution of the
loop size. Simulations in which the gravitational radiation back-
reacts on the string have smoother features, which hinders the
formation of smaller loops [303–305]. In these simulations, the
PTA constraints on the stochastic background and LIGO/VIRGO
constraints on burst are stronger [301].

The shape of the fractional energy density �GW ≡
f /ρc(dρGW/df ) power spectrum from cosmic strings is expected
to be nearly scale-invariant, with an amplitude defined by the
characteristic string tension Gµ, such that if it has a large enough
amplitude, the signal would be seen in frequency windows
of different experiments [316]. This distinguishes the power
spectrum from other sources. In particular, an observation of GW
at pulsar timing arrays, if coming from cosmic strings, will draw
attention to interferometer searches for this source.

5.3. Gravitational Waves From Phase
Transitions
Grand unification models can accommodate a rich scalar sector,
which can result in a complicated cosmological history involving
exotic phase transitions. Some GUT inspired possibilities are:
a color breaking phase transition where color is broken and
restored when leptoquarks acquire a vacuum expectation value in
an intermediate transition, which can catalyse baryogenesis [317,
318], B − L and L violating phase transitions [319–322], hidden
sector phase transitions [323–326], and a Pati-Salam transition
[327]. If any such phase transition occurs through bubble
nucleation, an observable relic gravitational wave spectrum can
be seen today, for a review see Mazumdar and White [328],
Caprini and Figueroa [329], and Weir [330]. Furthermore, GUT
models often require the existence of extra singlets. For example,
the E6SSMmodel studied in Athron et al. [241] had 3 generations
of singlets and such singlets can, in principle, catalyse the
electroweak phase transition to be strongly first order as well
[331–333].

The gravitational wave spectrum generated from a cosmic
phase transition has three contributions: a contribution from
the collision of scalar shells, and potentially long-lasting
contributions from sound waves and turbulence in the plasma.
The total spectrum can thus be written as,

�(f )h2 = �coll(f )h
2 +�sw(f )h

2 +�turb(f )h
2 . (53)

Although much uncertainty remains about the precise form of
these spectra, all three are controlled by four thermal parameters,
which can be computed by first principles [328, 334]: the latent
heat released during the transition (conventionally normalized
by the radiation energy density), denoted α, the nucleation rate
(conventionally normalized to the Hubble parameter) β/H, the
temperature at which the transition occurs T∗ and the velocity
of the bubble wall vw. The collision term is expected to be sub-
dominant for transitions associated with a broken gauge group

[335]. The sound wave contribution to the power spectrum is
[334] and [336]

h2�sw = 8.5× 10−6
(
100

g∗

)−1/3
Ŵ2U

4
f

(
β

H

)−1
vwSsw(f ), (54)

where U
2
f ∼ (3/4)κf αT is the rms fluid velocity, Ŵ ∼ 4/3 is

the adiabatic index, κf is the efficiency of converting the latent
heat into gravitational waves and g∗ the number of relativistic
degrees of freedom. The frequency dependence is captured by the
spectral state

Ssw =
(

f

fsw

)3




7

4+ 3
(

f
fsw

)2




7/2

,

fsw = 8.9× 10−7Hz
1

vw

(
β

H

)(
T∗
Gev

)( g∗
100

)1/6
.

The other notable, albeit sub-dominant, contribution is the
contribution from magneto-hydrodynamic turbulence in the
plasma. The power spectrum from this contribution is given
by [337],

h2�turb = 3.354× 10−4
(
β

H

)−1 (
κǫα

(1+ α

)3/2

(
100

g∗

)1/3

vwSturb(f ), (55)

where ǫ is the fraction of the energy that contributes to
turbulence, typically taken to be in the range (0.05, 0.1) [334]. In
this case the spectral form is a function of two time scales,

Sturb =
(f /fturb)

3

[1+ (f /fturb)]11/3(1+ 8π f
h∗

)
,

fturb = 27µHz
1

vw

(
TN

100GeV

)
β

H

(
g∗

100

)1/6

,

where h∗ is the Hubble rate at the transition temperature9.
For a single scalar field transition, without a tree-level barrier

between the true and the false vacuum, β/H tends to be O(103)
or greater [232]. The transition temperature is the same order
of magnitude as the mass of the scalar. Therefore, transitions
with scalar masses O(105) GeV can be probed by ground-based
interferometers such as the Einstein Telescope [338], Kagra [339]
and cosmic explorer [340], whereas space-based LISA will probe
transitions at the electroweak scale [334]. The former can be
more directly related to studies of GUTs-we show benchmark
examples for a Pati-Salam phase transition are shown in Figure 7.
The visibility of the spectrum tends to grow with the ratio v/m,
the gauge coupling constant g, the rank of the (sub) group being
broken and the number of other particles acquiring amass during

9Note that the existence of two time scales in the spectral formmeans that the peak
amplitude for the turbulence contribution cannot be found simply be setting the
frequency to either h∗ or fturb in Equation 55.
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FIGURE 7 | Plane of thermal parameters with contours of constant sound

wave (in black) and turbulence (in blue) peak amplitude. The thicker line shows

the peak sensitivity of the Einstein telescope [338]. Points denote thermal

parameters produced by a Pati-Salam phase transition with a Pati-Salam

scale of MPS = 105 GeV. The peak frequency for the sound wave spectrum is

indicated by the color scaling. Figure taken from Croon et al. [327].

the transition [323]. Furthermore, it was found in Croon et al.
[323] that some non-trivial model discrimination is possible if
one observes a primordial power spectra due to the increase
in visibility as well as moderate correlations between thermal
parameters, shown in Figure 8 for SU(N)/SU(N − 1) cosets.

If multiple scalar fields are involved in a transition the barrier
between the true and false vacuum can persist at zero temperature
due to triscalar or non renormalizable operators [333, 343]. In
such a case significantly more supercooling is possible and the
transition temperature is no longer confined to be the same
order of magnitude as the scalar mass. This implies that β/H
can be quite small and the latent heat can be large, increasing
the visibility of the gravitational wave and reducing the peak
frequency. A caveat to this is that recent work found that phase
transitions that involve a large amount of supercooling may
fail to complete due to the onset of inflation [344]. Regardless,
the thermal parameter space in the case of multifield phase
transitions is broader, which minimizes model discrimination
somewhat, though not completely [323].

5.4. Baryo-/Leptogenesis
The existence of a baryon asymmetry in the Universe (BAU) is
one of the central problems of modern cosmology [345, 346]. At
the same time, the concordance between different measurements
of the primordial baryon asymmetry is a triumph of modern
cosmology with BBN and CMB limits giving [347, 348]

ηB =
{

(6.2± 0.4)× 10−10 BBN
(6.14± 0.03)× 10−10 CMB

(56)

respectively. Any explanation for the baryon asymmetry must
satisfy the three Sakharov conditions [349]

• Baryon number B violation
• C and CP violation
• A departure from thermal equilibrium.

Early attempts at generating the BAU focused on B violating
decays (for a review see [350]). Such decays typically violate
B + L while conserving B − L (for an exception see [351]). For
example, SU(5) GUTs are invariant under changes to a global
phase conjugate to B − L number, whereas SO(10) has a local
U(1)B−L symmetry. However, any primordial B+L asymmetry is
washed out by B+L violating electroweak sphalerons. Therefore,
only a primordial B − L asymmetry will be preserved unless
sphalerons are quenched.

Leptogenesis allows for a B − L violating operator, mνcRνR,
that is also responsible for a light neutrino mass via type-
I seesaw mechanism (see section 3.2). CP violating decays
of such sterile neutrinos ensure a net B − L asymmetry
which electroweak sphalerons convert to a baryon asymmetry.
Electroweak baryogenesis by contrast uses the sphalerons
themselves to generate a net B + L asymmetry which cannot be
washed out before the sphalerons are quenched [345, 346]. More
specifically, if the electroweak phase transition is strongly first
order, bubbles of electroweak broken phase populate a medium
of symmetric phase with sphalerons quenched only inside such
bubbles. Particles can have CP violating interactions with the
bubble wall which biases the sphalerons to produce a net B + L
asymmetry. Some of this asymmetry is swept up in the expanding
bubble wall where it is preserved.

GUTs are only relevant to electroweak baryogenesis if
the GUT model motivates some light BSM states. Recent
work on electroweak baryogenesis in the E6-SSM utilized
three generations of singlet superfields to motivate a CPV
source involving singlino-Higgsino interactions with the bubble
wall [331].

A feature of leptogenesis during GUTs is the possibility of new
CP violating decay channels due to the presence of leptoquarks
[352, 353]. This allows a lower minimum mass for the lightest
sterile neutrino than in theminimal scenario [236]10. Much of the
recent focus on baryogenesis within GUTs involves leptogenesis
with some intriguing concordance achieved in the case of
SU(5) [355] and SO(10) GUTs [271, 278, 356–360]. A generic
feature of SO(10) GUTs is normal ordering of neutrino masses
and a negative Dirac phase [361], both of which are favored by
current observational limits [360]. Furthermore, many GUTs,
including SO(10), predict a Dirac neutrino mass matrix that is
not too different from the up quark mass matrix and SO(10)
leptogenesis also achieves agreement in the currently observed
atmospheric mixing angle in the first octant. Realistic models
with two right-handed neutrinos can emerge in 1(27) × SO(10)
models and A4 × SU(5) supersymmetric models [362, 363]. The
third right-handed neutrino can either decouple because it is
very heavy or because its Yukawa coupling is very small. The

10This limit of course is for the non resonant regime. In case of resonant
leptogenesis the masses of the sterile neutrinos can be very low [354].
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FIGURE 8 | Thermal parameters from a renormalizable potential for a scalar field in the fundamental representation of SU(NG) which gets broken to SU(NG − 1) (left).

Right panel is the same aside from the inclusion of a non-renormalizable sextet term in the potential and the gauge coupling constant is fixed to unity. In the above NG
denotes the order of the group, Nf is the number of fermions in the fundamental representation that are strongly coupled to the scalar field, in direct analogy with the

SM save that the Yukawa couplings are set to unity. Note that ξ is the ratio of latent heat to radiation energy density more commonly denoted α. Contours of constant

peak amplitude for the sound wave spectrum are shown with the darker line corresponding to LISA sensitivity range for a power law spectrum that has been

integrated over frequency [341]. Note in the above vw = 0.5 for the left plot and vw = 1 for the right plot using the efficiency terms in Espinosa et al. [342]. Figure

taken from Croon et al. [323].

latter case implies a stable particle that can play the role of dark
matter [364].

6. DIRECT COLLIDER SEARCHES FOR
GUTS

6.1. Searches for Supersymmetry
As we have seen in section 3.1 supersymmetry plays a rather
important role on many unified theories and motivates the
unification of gauge couplings at large scales. However, both its
solution to the hierarchy problem and gauge coupling unification
often rely on a light sparticle spectrum, around or below the
TeV scale. Thus, searches for supersymmetric particles has been
part of the research programme in collider physics for the last
few decades, from searches at LEP and the Tevatron, to the
recent results of the LHC, and it is still part of the proposed
physics programme for future colliders, e.g., CLIC, ILC, or
VLHC [365–368].

In R-parity conserving SUSY the lightest supersymmetric
particle (LSP) is stable. This has strong consequences for SUSY
searches, for the LSP will escape the collider in the form of
missing transverse energy (MET)11 [369]. In addition, R-parity
requires that sparticles are pair-produced in colliders, hence the
different searches for supersymmetry are classified according

11In cases where a charged next-to-lightest SUSY particle (NSLP) is stable at
detector timescales, no clear MET signal is produced, since the NLSP will decay
to the LSP outside the detector.

to the particle that is produced in pairs. The production cross
sections of the different sparticle species are rather different and
often determine the exclusion or detection power of a particular
channel. For instance, the strongest exclusion limits at the LHC
across the sparticle spectrum are on first and second generation
squarks and gluinos which, as can be seen in Figure 9, have the
largest production cross sections [370, 371].

Squarks and gluinos are produced in pairs at the LHC in the
combinations g̃g̃, q̃q̃ and q̃g̃ and their main decay channels are
q̃ → qχ̃0

1 and g̃ → qqχ̃0
1 , with the neutralino LSP escaping

the collider. Hence the typical signature for these processes has
multiple jets and large missing energy. The decay topologies for
these signatures are depicted in Figure 10. Other decay modes
for squark and gluinos involve the production of charginos or
heavier neutralinos, q̃ → qχ̃0

2 , q̃ → q′χ̃±1 , g̃ → qqχ̃0
2 and

g̃ → qqχ̃±1 , which then decay to W and Z bosons and χ̃0
1 .

The final state signatures depend on the decay modes of the
gauge bosons, and can have (0–4) leptons, jets and MET. ATLAS
and CMS have reported results from the last run of the LHC
at 13 TeV and 36 fb−1 for searches with jets and MET final
states [372–374], with one lepton, jets and MET [375–377], same
and opposite-sign dilepton pairs, jets andMET [378, 379], two or
three leptons, jets and MET [380, 381], 3rd generation squarks
(with and without Higgs reconstruction) and MET [382–384]
and hadronic τ decays, jets and MET [385], among others. These
searches set a lower limit for a range of simplified models on the
mass of the gluino ofmg̃ & 2.1 TeV and the mass of the first and
second generation squarks ofmq̃ & 1.5 TeV.
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The next strongest production cross section is that of stop and
sbottom pairs. The main decay channel for stops and sbottoms is

t̃ → tχ̃0
1 and b̃ → bχ̃0

1 , respectively. This topology is similar
to the decay of first and second generation squarks, with the
added complexity that neither t or b produce a clean jet, but
rather have many decay channels that can result in numerous
jets, leptons and, of course, MET. Secondary decay channels for

t̃ and b̃ involve decays to a chargino, t̃ → bχ̃±1 and b̃ → tχ̃±1 ,
with subsequent decays involving W bosons, or decays into a

heavy neutralino, t̃ → tχ̃0
2 and b̃ → bχ̃0

2 , which in turn
decays into a Z or a Higgs boson and χ̃0

1 . The latest searches
of the LHC experiments for pair-produced stops and sbottoms
target final states with jets and MET [374, 386, 387], b-jets and
MET [388, 389], one lepton, jets and MET [390, 391], two and
three leptons, jets and MET [379–381, 392, 393] and final states
with a h or a Z boson and MET [394], among others. These
searches exclude masses of stops and sbottoms up tomt̃ ∼ 1 TeV
andm

b̃
∼ 900 GeV for some simplified models.

In the cases where the colored sector of a supersymmetric
model has large masses, the direct production of chargino,
neutralino and slepton pairs dominate. A pair of directly

produced sleptons decay typically like l̃ → lχ̃0
1 . Neutralinos

and charginos are produced in pairs in a number of different

FIGURE 9 | Pair production cross sections as a function of the mass of

sparticle φ̃ at center of mass energy
√
s = 13 TeV.

combinations, the most commonly studied of which are χ̃0
2 χ̃
±
1

and χ̃±1 χ̃
±
1 . The decays of heavy neutralinos and charginos

produce W, Z or Higgs bosons and the lightest neutralino.
Further decay ofW and Z sets the final states targeted by ATLAS
and CMS searches, such as the final state with two leptons and
MET [395–397], many leptons and MET [397–400], leptons,
jets and MET [393], taus and MET [401, 402], and b-jets plus
MET [403], among others. Due to their low production cross
sections, the exclusion limits on slepton masses from direct
production are quite weak and they only reach up to aroundm

l̃
∼

500 GeV. Stronger limits on slepton masses can be inferred from
neutralino/chargino production with sleptons in the cascade,
reaching up to ∼ 850 GeV. The limits on electroweakinos
(neutralinos and charginos) are very sensitive to the parameter
choices for the simplified model analyses performed by the
experiments, hence the exclusion limits on χ̃0

2 and χ̃±1 vary from
search to search and from signal region to signal region, roughly
in the rangemχ̃0

2
,mχ̃±1

∈ (500 GeV, 1.1 TeV). Similarly the limits

on the lightest neutralino varies in the range mχ̃0
1
∈ (200, 700)

GeV. In addition, there is a hint of an excess in one of the two
and three lepton final state analyses by the ATLAS collaboration
in the lowmχ̃0

1
region, with a reported significance of 2 and 3σ in

the 2l and 3l channels, respectively [399].
In addition to sparticle searches, SUSY can also be probed

through searches for heavy and charged Higgs bosons. The
MSSMpredicts the existence of two CP-even scalars, h andH, one
CP-odd pseudoscalar, A, and a charged scalar H±. The lightest
CP-even scalar, h, is said to be “SM-like,” as its mass and couplings
are aligned with the Higgs boson discovered at the LHC [4, 5], the
so called alignment limit. Neutral heavy Higgses can be produced
at the LHC in the same manner as the SM Higgs, that is by gluon
fusion, vector boson fusion (VBF) and associated production,
with a t and/or b quark. Thus, the same mechanisms that lead to
the discovery of the SMHiggs are employed to set exclusion limits
on heavier neutral (pseudo)scalars, including signatures whereH
is produced in resonance and decays into two light Higgs bosons
pp → H → hh. The final states targeted by these exotic Higgs
searches consist of 2–4 leptons, jets and MET from on- and off-
shell W and Z bosons [404, 405], two leptons and MET [406,
407], final states with four b-jets [408, 409] or two b-jets and
WW [410], γ γ [411, 412], ττ [413, 414], µµ [415], or tt [416]

FIGURE 10 | Most simple topologies for the production of squarks and gluinos at the LHC with decays to jets + MET.
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decays, ditau final states [417, 418] and diphotons, with and
without associated W bosons [419–421]. Charged Higgs bosons,
H± can typically be produced with associated resonant and non-
resonant top-quark production. Their main decay channels are
H± → W±Z [422, 423], H± → t(c)b [416, 424] and H± →
τ±ν [416, 425]. Since no excess has been found for either heavy
H or H±, the experiments set upper limits that strongly depend
on the production cross section and, in turn, on tanβ . For H the
limits range from mH < 400 GeV for tanβ = 2 and production
cross sections limits of 0.1 pb for larger masses. For H± with
mH± < 160 GeV excluded for all values of tanβ and mH± < 1.1
TeV excluded for tanβ = 60.

Many unified theories automatically preserve R-parity, such as
left-right symmetric or Pati-Salammodels, as well as supergroups
of them, SO(10) or E6. This is because they contain a gauged
U(1)B−L subgroup which effectively makes the LSP stable [76].
Other models, such as SU(5), may have R-parity violating
(RPV) interactions, though in general they will be suppresed
since they can lead to rapid proton decay. Since the LSP is
no longer stable, collider signatures of RPV typically contain
multiple leptons [400], multiple jets [426–429] or both [430,
431] in the final state. These searches often impose strong
upper limits on sparticle masses that range from 150 GeV to
a few TeV for t̃, depending on the channel, and from 1 to 2
TeV, for g̃.

If the LSP is metastable or the lightest chargino and neutralino
are almost degenerate, they can live long enough to leave
a displaced vertex or a disappearing track on the detector.
Detailed searches have been performed by ATLAS [432–436] and
CMS [437–439] to search for these long-lived particles, and they
have reached exclusion limits comparable to those of the detailed
searches above.

Most of the searches described above assumed a neutralino
LSP, which is typically the case in gravity mediated SUSY
breaking. In gauge mediated SUSY breaking (GSMB)
and general gauge mediation (GGM) the LSP is actually
a nearly massless gravitino. In these cases new decay
channels are open with photons [440–443], Z’s [400, 403],
Higgses [400, 403, 444], and τ s [385, 445] in the final state
(see Figure 11).

Although the LHC results are the most recent and,
for the most part, they supersede the results of previous
collider experiments, such as those at the Tevatron,
some experimental limits from LEP still remain relevant
today. In particular for models with a significant
production of neutralino/chargino or slepton pairs,
the limits from ALEPH [446, 447], OPAL [448, 449],
L3 [450, 451], and DELPHI [452] on sleptons and
electroweakino masses are rather pertinent, as they are largely
model independent.

Many of the SUSY searches above are performed using
simplified models, e.g., ATLAS jets and MET search assumes a
50–50 split between the decay modes of gluinos [372]. Therefore,
the mass and cross section limits obtained are weakened in more
complicated models. In order to assess the relevance of many
of these exclusion limits on several popular SUSY models, a full
global fit of the parameter space of the model is required. Several

of these fits have been performed for the CMSSM, NUMH1 and
NUMH2 [453–459], phenomenological MSSM models [460–
462], SUSY GUT models [463] and electroweak-sector MSSM
models [116], by the Zfitter [464]12, SuperBayes [465, 466]13,
Fittino [467]14, MasterCode [468]15, and GAMBIT
[469–476]16 collaborations.

6.2. Collider Searches for Leptoquarks
Leptoquarks (LQs) are associated either with the vector (spin
1) particles that correspond to the gauge bosons of the unified
gauge group or they can be scalars (spin 0) and belong
to a Higgs sector of a unified theory. Vector LQ mass is
typically of the order of the unification scale and can only
be accessible directly at colliders if the unification scale is
low enough (e.g., Pati-Salam models). Scalar representations
can also contain light fields, most notably the SM Higgs, but
come at the cost of severe fine tuning, as discussed in the
section 2 on the example of doublet-triplet splitting problem in
5-dim. representation of SU(5). In non-supersymmetric unified
models the presence of light colored scalars tends to aid
unification (see e.g., [477]). Another important difference is that
the scalar LQ interactions can be analyzed without specifying
the concrete GUT completion in the ultraviolet. On the other
hand, vector (gauge) LQs are sensitive to the mass generation
mechanism that is specified in the ultraviolet. Therefore,
effective vector LQ models are not renormalizable [478].
Furthermore, even the couplings of vector LQs to the SM
gauge sector are not completely fixed by the gauge quantum
numbers [479, 480].

Altogether there are six scalar and six vector leptoquarks,
listed in Table 1, that couple to the SM matter at the
renormalizable level [480–482]. The fermionic number F ≡
3B + L of leptoquarks that do not couple to diquarks (φqq) and
are potentially B and L conserving, must be F = 0, whereas
LQs with |F| = 2 in general destabilize the proton via B − L
conserving decays.

The most important phenomenological characteristic of light
LQs (of mass of the order few TeV) is their color triplet nature
allowing them to be produced in pairs via strong interactions
in a largely model independent manner. In this section we
will focus on the on-shell production of LQs at pp colliders,
since the current mass constraints are dominated by LHC
searches. For specific signatures of LQ production in colliders
with alternative initial states (see [480]). Pair production of
leptoquarks is model independent for the gg → LQLQ partonic
process, while the parton level process qq → LQLQ is affected
also by the t-channel lepton exchange diagram (bottom right
diagram in Figure 12) that introduces some model dependence
when the leptoquark flavor couplings are non-negligible. The
partonic cross sections for pair production at leading order

12zfitter.desy.de/
13www.ft.uam.es/personal/rruiz/superbayes
14flcwiki.desy.de/Fittino
15cern.ch/mastercode/
16gambit.hepforge.org
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FIGURE 11 | Topologies for SUSY searches with gravitino LSP and γ and h/Z final states.

TABLE 1 | List of scalar and vector LQs.

LQ symbol [SU(3),SU(2),U(1)] Spin F

S3 (3, 3, 1/3) 0 −2
S̃1 (3, 1, 4/3) 0 −2
S1 (3, 1, 1/3) 0 −2
S1 (3, 1,−2/3) 0 −2
R2 (3,2, 7/6) 0 0

R̃2 (3,2, 1/6) 0 0

U3 (3,3, 2/3) 1 0

Ũ1 (3,1, 5/3) 1 0

U1 (3,1, 2/3) 1 0

U1 (3,1,−1/3) 1 0

V2 (3, 2, 5/6) 1 −2
Ṽ2 (3, 2,−1/6) 1 −2

are [483–488]:

σ̂ (gg → φφ)

= α23π

96ŝ

[
β(41− 31β2)+ (18β2 − β4 − 17) log

1+ β
1− β

]
, (57)

σ̂ (q q→ φφ) = 2α23π

27ŝ
β3, (58)

where ŝ is the partonic center-of-mass energy squared, α3

is the strong coupling constant, and β =
√
1− 4m2

φ/ŝ.

A model independent study of weak doublet scalar LQs at
the LHC and the interplay with low energy flavor processes
was performed in [489], where it was also shown that
searches for single LQ production could be more sensitive
in the regime of large Yukawas and/or LQ masses. An
analysis of pair and single production, along with the
corresponding UFO model files LQ_NLO, both for scalar
and a vector leptoquark has been presented in Doršner and
Greljo [490].

On the other hand, single leptoquark production at pp
colliders is always model dependent (Figure 13). Single
leptoquark searches are more effective at larger LQ masses [489].

FIGURE 12 | Representative diagrams for leptoquark pair production at pp

colliders. Dots denote the LQ-q-ℓ coupling.

On the decay side of the process, experimental searches for
pair and single LQ production are targeting a resonance in
the jℓ channel. The decay width of a scalar leptoquark into a
lepton-quark final state is given by [490] and [491]:

Ŵ(φ→ qℓ) =
|yqℓ|2m2

φ

16π

[
1+ αs

π

(
9

2
− 4π2

9

)]
. (59)

Current bounds from dedicated leptoquark pair production
have been commonly extracted in the framework that assumed
LQ coupling only to a single generation of SM fermions,
whereas realistic LQ scenarios could posses richer flavor
structure [480, 492]. The experimental upper bounds are given
for the product of cross section and the LQ branching fraction
probability β2, where β is the probability for LQs to decay to
a final state with charged leptons. There have been numerous
analyses performed at the LHC for leptoquarks being either
of 1st [493], 2nd [494], or 3rd [495–499] generation. More
recent studies, motivated by the observed lepton universality
violation in B-meson decays, allow also for cross-generational
couplings, e.g., [500]. Finally, also single LQ production
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FIGURE 13 | Representative diagrams for single leptoquark production at pp

colliders. Dots denote the LQ-q-ℓ coupling.

channels are being studied [501]. To conclude, the current
lower bounds on leptoquark masses from direct searches at
the LHC range from several 100 GeV to above the TeV
scale, where the exact bound depends on the size of the
flavor couplings.

6.3. Other Exotic Searches
Many unified theories include heavy sterile neutrinos that
contribute to the mass of the light neutrinos via type-I seesaw
mechanism (see section 3.2). These are often associated with
the symmetry breaking of a left-right sector of the theory,
and thus they are expected to be heavier than the EW scale.
Direct searches for heavy neutrinos at colliders often target a
decay channel where final state has two same-sign leptons, via
s or t-channel production of a gauge boson that can be left
or right handed [502]. Figure 14 shows the Feynman diagram
for the golden channel for heavy neutrino searches, pp →
W → Nl → Wll → lljj. The ATLAS and CMS experiments
at the LHC have performed searches for heavy neutrinos in
LR models with masses MN ≈ (20, 1, 600) GeV and have
imposed strong limits on the couplings between active and sterile
neutrinos [503–505].

Other searches for sterile neutrinos are performed in
beam dump experiments [506], where the neutrinos are
produced in semileptonic decays of mesons, with masses
below 2 GeV [507–510]. For intermediate masses below
the Z resonance, the strongest limits come from the
decay Z bosons by the LEP experiments DELPHI and
L3 [511, 512].

In addition to singlet fermions and colored leptoquarks, the
LHC looks for heavy colorless vector bosons as part of their exotic
searches programme. Charged W′ and neutral Z′ vector bosons
are predicted in a number of GUT frameworks and they can
often live at low scales, which positions them within the reach
of colliders. Clear examples of this are the left-right symmetric
models described in section 4.1, that predict light WR and ZR
bosons, or the light ZN appearing in E6SSM models .

These states are produced at pp colliders through Drell-
Yan processes pp → W′/Z′ and subsequently decay into
leptons or jets. One of the most targeted processes for W′

involve the decay into heavy neutrinos, as in Figure 14, with
two same or opposite sign leptons (depending on the Majorana
or Dirac nature of the heavy neutrinos) and jets [503, 504].
These searches often use a simplified model where gR =
gL and MN = M′W/2 resulting in high exclusion limits
with MW′ & 4.5 TeV, but it has been shown that these

FIGURE 14 | Diagram for direct searches of neutrinos via WL/R production.

limits weaken somewhat in more general models [173–175].
CMS also reported a search for W′ where the vector boson
decays to τντ , the τ decaying hadronically [513], with slightly
weaker limits.

Narrow resonance searches for Z′ have been performed by
ATLAS and CMS, targeting final states with two opposite-sign
leptons. These searches have yielded model-dependent exclusion
limits on MZ′ . For E6-inspired Z′, the limits vary around MZ′ &

(3, 3.5) TeV, whereas for LR models they are moderately stronger
MZ′ & 4 TeV [514, 515].

Lastly, GUTs predict a plethora of different scalar states
that can be observed at the LHC if they are light enough,
e.g., 1L,R in LR symmetric models. Searches for neutral and
singly charged scalar bosons are identical to the searches for
supersymmetric Higgs bosons in section 6.1, so we will not
repeat them here. Doubly-charged scalars, such as the δ±±L ∈
1L in LR models, have been studied by ATLAS and CMS in
multilepton final states [516, 517], diboson final states [518] and
in long-lived particle studies [519] with model-dependent limits
below 1 TeV.

7. PRECISION TESTS OF UNIFICATION

7.1. Proton Decay
Unified theories may contain gauge or scalar bosons that mediate
transitions between leptons and quarks. These transitions violate
baryon B and lepton L number separately and hence can cause
the rapid decay of nucleons [520–529].

In the language of Effective Field Theory, nucleon decay
transitions are generated by higher dimensional operators
suppressed by the mass of the heavy mediator. The most
relevant contribution to nucleon decay comes from dimension-
6 operators of the form qqql, mediated either by a gauge
or scalar boson. In SUSY GUTs, however, dimension 4
and 5 operators can appear, involving R-parity violating
interactions and mixing among sfermions, respectively.
Assuming the conservation of R parity and minimal flavor
violation (MFV) in the sfermion sector, however, dimension
4 and 5 contributions can be made negligible [530–532].
Therefore, dimension 6 operators dominate the contributions
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to nucleon decay. These are, in general, model dependent, so
calculating the decay width requires knowledge of the flavor
structure at the GUT scale and varies among the different
decay channels [533, 534]. However, with some simplifying
assumptions one can approximate the decay width of the proton
as [535]

Ŵp ≈ α2GUT
m5

p

M4
GUT

. (60)

There are several decay channels for the proton and neutron,
each with a different experimental bound. The most stringent
of them, known as the gold channel for proton decay is
p → e+π0, whose parton-level diagrams can be seen in
Figure 15, and with a lower limit on the half-life, set by
the Super-Kamiokande, of τ > 1.6 × 1034 years [43].
Other processes with slighly lower bounds are τ (p →
µ+π0) > 7.7 × 1033 years [43], τ (p → νK+) > 5.9 ×
1033 years [536] and τ (nn → e±µ∓) > 4.4 × 1033

years [537].
The next generation of experiments for nucleon decay has

already been proposed. Hyper Kamiokande will take the place
of Super-K and has a projected sensitivity in the golden channel
p → e+π0 of ∼ 1035 years [538]. The Deep Underground
Neutrino Experiment (DUNE) [539] expects to improve the
limit on p → νK+ to ∼ 3 × 1034 years. These increased
limits will probe unified teories at the highest scales and could
be the smoking gun for them. In case of a positive signal
from either of these experiments, precision calculations of
proton decay processes with controlled uncertainties will become
invaluable [84, 540].

7.2. Flavor Phenomenology of Light
Leptoquarks
Several flavor couplings of scalar leptoquarks to leptons
and quarks, which are in general connected to the GUT
contractions of scalar and fermionic representations,
allow their virtual effects to be tested in low-energy flavor
observables. Such are the decays of hadrons or leptons,
precision observables at LEP, and static properties of
particles such as dipole moments. On the high-pT front,
the LHC is also becoming competitive as a flavor probe
for virtual effects of particles that are too massive to be
produced on-shell.

The correlations between lepton-quark-LQ couplings are
determined at low scales by the weak isospin and hypercharge. As
an example, consider the weak doublet leptoquark R2(3, 2, 7/6)

FIGURE 15 | Parton level s and t-channel diagrams for the proton decay

channel p→ e+π0 for a gauge or scalar boson mediator X.

(see Table 1), which can couple to two-types of lepton-
quark bilinears:

L = Y
ij
RQ
′
iℓ
′
RjR2 + Y

ij
Lu
′
RiR̃

†
2L
′
j

= (VYR)
ijuLiℓRjR

5
3
2 + Y

ij
RdLiℓRjR

2
3
2

+ Y
ij
LuRiνLjR

2
3
2 − Y

ij
LuRiℓLjR

5
3
2 .

(61)

Here i, j are the flavor indices, primed fields are written in
the interaction basis, unprimed fields are in the mass basis,
except for the neutrinos which are aligned with charged leptons.
There are three important features in the above Lagrangian.
First, since R2 is a weak doublet it must couple to left-
handed quark doublets, which implies that CKM matrix V
relates the couplings of up-type and down-type quarks. Second,
R2 couples to both chiralities of quarks and leptons, which
leads to scalar and/or tensor effective interactions and could
lead to enhanced effects in meson mixing amplitudes, dipole
moments, and radiative decays [480]. Third, as F = 0 for R2
we cannot construct interaction term with diquark coupling,
implying that proton cannot decay via 1(B − L) = 0 process.
Generalizing to other LQ states, weak triplets only talk to
the left-handed fermions (2 ⊗ 2), leading to strictly chiral
interaction, whereas singlet LQs can talk to 2 ⊗ 2 and 1 ⊗ 1
fermion bilinears.

Among the flavor constraints, leptoquarks naturally (at tree-
level) contribute to semileptonic effective operators at low scales,
therefore the most relevant observables are (semi-)leptonic
decays of mesons, baryons, or τ leptons. The most notable
charged-current and flavor changing neutral current (FCNC)
constraints, and the general framework to address them in
leptoquark models, have been spelled out in Leurer [541],
Davidson et al. [482], and Doršner et al. [480]. The most
constraining are the FCNC observables, where the tree-level
LQ contribution can easily stand out of the SM signal, which
is 1-loop suppressed in the case of quark FCNC and absent
in the case of lepton FCNC. Effective dimension-6 interactions
for 4 lepton or 4 quark operators, which drive the ℓ →
ℓ′ℓ′ℓ′′ (see section 7.4) and meson mixing processes, occur
at one-loop [480]. Therefore, meson mixing is in general not
among the strictest constraints on LQs (for Bs mixing see
e.g., [542]).

7.3. Lepton Flavor Universality
Lepton flavor universality (LFU) ratios, defined as ratios
between rates for processes that differ only in lepton flavor,
are very well suited to test the validity of the SM. The
main advantage is that in the Standard Model LFU is
respected by all gauge interactions, the only breaking comes
from mass splitting among leptons, which leads to efficient
cancellation of hadronic and parametric uncertainties in LFU
ratios. Recently, two LFU ratios in B-meson decays have
been observed

RD(∗) =
B(B→ D(∗)τντ )

B(B→ D(∗)lν l)
, RK(∗) =

B(B→ K(∗)µµ)

B(B→ K(∗)ee)
, (62)
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where l = e,µ. Several experiments found that the ratios RD(∗)

are larger than RSM
D(∗) . The measurements of RD [13, 543, 544]

differ by ∼ 2 σ with respect to the SM prediction [545] and
by ∼ 3 σ in the case of RD∗ [546–548]. Combined significance
reaches 4σ deviation from the SM [549]. The LHCb experiment
has also measured RK(∗) LFU ratios, related to the neutral-current
process b → sll, and found them to be lower than expected
in the SM. While RK was measured in a single kinematical
region, q2 ∈ [1.1, 6] GeV2 [12], RK∗ was measured also in
the ultra-low region q2 ∈ [0.045, 1.1] GeV2 [550]. Each of
the RK(∗) measurements is ∼ 2.5 σ below the SM prediction
level [551, 552], and furthermore, there are discrepancies in b→
sℓℓ driven decays that are coherent with the deviation in R

(∗)
K

if there is ∼ 20% reduction in the vector Wilson coefficient
C9 [553, 554].

Light leptoquarks are prime candidates to explain one or both
of those puzzles. For the RD(∗) the effective Lagrangian contains
four relevant operators:

L
b→cτντ
eff = −4GF√

2
Vcb

[
(1+ gVL )(cLγµbL)(τLγ

µντL)

+ gSL (µ) (cRbL)(τRντL)+ gSR (µ) (cLbR)(τRντL)

+ gT(µ) (cRσµνbL)(τRσ
µνντL)

]
.

(63)

Model independently it has been shown that RD(∗) can be
explained either by rescaling the SM semileptonic operator
(gVL ), by turning on gT , or by particular combinations of scalar
and tensor operators, gSL = ±4gT operators, that arise in
presence of a non-chiral LQ [555–558]. In order to address RK(∗)

one has to modify the vector Wilson coefficient C9 whereas
the axial Wilson coefficient C10 may also be present in the
effective Lagrangian:

H
b→sµµ
eff = −αGFVtbV

∗
ts√

2π
(sLγµbL)(µγ

µ(C9 + C10γ
5)µ. (64)

Also purely left-handed scenarios with C9 = −C10 ≈
−0.6, which are characteristic of LQ weak-singlet or triplet
exchange, are in good agreement with RK(∗) and the global
fit of b → sℓℓ. Such left-handed leptoquark solutions have
been put forward: triplet scalar S3, singlet vector U1, triplet
vector U3 [557, 558]. For loop-level explanation of RK(∗) one
can also invoke singlet S1 [559] or doublet R2 [560], but
at the price of large couplings. There are several proposals
with scalar leptoquarks that address RK(∗) and/or RD(∗) [559,
561–566], some in the context of unified theories such as
SU(5) [567–569], left-right symmetry [570], Pati-Salam [571,
572], SO(10) [573] and others [574]. Recently it was realized that
a singlet vector leptoquark U

µ
1 (3, 1, 2/3) generates left-handed

interactions and partially resolves both LFU puzzles, in many UV
frameworks [575–577], including three-flavor extensions of the
Pati-Salam model [578–584].

Finally, moderately large leptoquark couplings dictated by
the above LFU anomalies can be also observed in processes
with virtual LQ exchange, typically in the t-channel, resulting
in a final state with at least one charged lepton. Inspired

by the abovementioned LFU anomalies, processes with final
state leptons have been studied, which can probe LQ scenarios
for LFU violation observed in B meson decays [585–588].
In this case, LQ cannot be produced on-shell and the
sensitivity does not deteriorate abruptly with rising LQ
mass. Instead there is a smooth transition to the effective
theory picture, where heavy LQ is integrated out. Thus,
among the LQ induced processes the t-channel has the
best mass reach for LQs and it is thus complementary to
pair and single production [489, 490]. Another recent set
of observables at the LHC, targeting the LQ scenarios that
are well suited to explain the LFU anomalies RD(∗) , are the
searches with a single τ lepton in the final state [589]17.
Third generation leptoquarks could also be probed in tt final
states [591].

7.4. Lepton Flavor Violation and Dipole
Moments
In the SM with massive neutrinos, lepton flavor violation
(LFV) can occur via the mixing in the neutrino sector. It is,
however, heavily suppressed due to the GIM mechanism [592],
as the rate depends on the neutrino masses resulting in an
unobservable prediction of order 10−55 [593]. Extensions
of the SM modify this prediction by introducing additional
sources of lepton flavor violation [594–596]. New physics
can then be probed by testing the deviations of certain
lepton flavor violating processes with respect to the
experimental limits.

Charged lepton flavor violating processes are typically of
three types: l−α → l−β γ , l

−
α → l−β l

−
γ l
+
δ (with α 6= β) and

µ − e conversion in nuclei [597]. One-loop contributions
to the first two processes can occur through a dipole
and box diagrams as depicted in Figure 16, with a
scalar or vector mediator(s) X(X′) and a SM or exotic
fermion(s) f (f ′) running in the loop. Contributions to
µ − e conversion follows from the penguin (center)
and box (right) diagrams with lα = µ, lβ = e and
lγ ,δ = q.

Unified theories often contain a number of exotic states
capable of fulfilling the role of X and f in Figure 16, violating
lepton flavor either by interactions between the leptons and
mediators or by mixing in the leptonic sector. The latter case
is realized in GUT models with heavy neutrinos (c.f. left-right
models in section 4.1), where the mixing between active and
sterile neutrinos enhances the LFV contribution [598–600]. The
contribution to the branching ratios of the most constraining
LFV processes, µ → eγ , µ → eee and µ − e conversion, in
these models, with heavy neutrinos of mass MNI , active-sterile
mixing 2αI , a right-handed gauge boson WR and left and right-
handed scalar triplets δL and δR, can be written as [601], [602],
and [174]

17See also [590] for constraints on couplings to light quarks.
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FIGURE 16 | Diagrams contributing to LFV processes, l−α → l−
β
γ (left) and l−α → l−

β
l−γ l
+
δ

(center and right) with X and X ′ scalar or vector mediators and f and f ′

fermions.

BR(µ→ eγ ) ∼ 1.5× 10−7|2∗eI2µI |2
(
gR

gL

)4 ( mNI

mWR

)4 (1 TeV

MWR

)4

,

BR(µ→ eee) ∼ 1

2
|2∗eI2µI |2|2eI |4

(
gR

gL

)4 ( mNI

mWR

)4
(
M4

WR

M4
δR

+
M4

WR

M4
δL

)
, (65)

RN(µ− e) ∼ 0.73× 10−9XN |2∗eI2µI |2
(
gR

gL

)4 ( mNI

mWR

)4 (1 TeV

MδR

)4
(
log

m2
δR

m2
µ

)2

.

In supersymmetric GUTs there are many possible sources of
lepton flavor violation, parametrised by the mixing in the slepton
sector of the MSSM, which has contributions to LFV processes of
the type [603]

BR(lα → lβγ ) ≈
48π3αem

G2
F

|(m2
L̃
)ij|2 + |(m2

ẽ )ij|2

M8
SUSY

BR(lα → lβνανβ ).

(66)
Off-diagonal entries in the sleptonmassmatrices can be the result
of non-minimal flavor violating interactions or non-canonical
Yukawa textures at the GUT scale, where the soft masses
are supposed to unify [604, 605]. In addition, slepton mixing
can be induced in minimal flavor violating (MFV) SUSY via
seesaw mechanisms [606–612] or, for Yukawa-unified theories
(see section 3.3), it can depend on the CKM matrix at the
GUT scale [596]. LFV contributions can also arise in SUSY
models where R-parity is violated, explicitly or spontaneously,
with interaction terms of the type liljν̃k that induce tree-level
contributions to l → lll decays and µ → e conversion, as well
as new dipole contributions to l→ lγ [613–617].

The anomalous electric, di, and magnetic, ai, dipole moments
of quarks and leptons follow from processes identical to the
diagram on the left in Figure 16, where lα and lβ have the same
flavor. Hence contributions from heavy states running in the
loops can have a strong effect that can be tested experimentally.
As with LFV, the SM contribution to electric dipole moments
(EDMs) is tiny, as it is proportional to the CP-violation phase
in the CKM matrix [618, 619]. EDMs have not been observed
experimentally, so deviations from the SM prediction due to CP-
violation in other sectors is strongly constrained [620]. Other
sources of CP violation can appear in neutrino mixing [619],
phases in fermion-sfermion couplings [621] or extended Higgs
sectors [622]. Anomalous magnetic moments (AMM), on the
other hand, have been measured with extreme accuracy. In
fact, the precision of both the experimental measurement and

theoretical prediction for aµ has shown a discrepancy of more
than 3 standard deviations [34]. New physics contributions have
been shown to resolve that tension, particularly in the context of
supersymmetry [623].

In the presence of light leptoquarks anomalous dipole
moments of leptons or quarks are one-loop processes [480].
A special feature of non-chiral leptoquarks, such as R2 with
couplings (61), is that both lij and rij are non-zero in the
interaction Lagrangian qi

[
lijPR + rijPL

]
ℓjφ which then leads to

the anomalous moment of the muon:

aµ = −
3m2

µ

8π2m2
φ

∑

q

[
(
|lqµ|2 + |rqµ|2

) (
Qφ/4− 1/6

)

−
mq

mµ
log

m2
q

m2
φ

Re(r∗qµlqµ)
(
Qφ − 1

)
]
,

wheremφ andQφ are the charge andmass of the leptoquark and q
is the flavor of the quark in the loop (see the leftmost diagram in
Figure 16). Shown is the leading order contribution in mq. The
first term increases aµ only when Qφ > 2/3 and it is present
for all scalar LQ states that couple to a muon. The second term is
relevant for non-chiral LQs and it is chirally enhanced bymq/mℓ,
possibly leading to large effects with moderate couplings to b or t
quark. Furthermore, the sign of the non-chiral term is adjustable.
On the other hand, the same mechanism also enhances dipole
LFV transitions, e.g., µ → eγ , τ → µγ [560]. Non-chiral LQs
may also generate quark or lepton electric dipole moments at
1-loop [624, 625].

Whichever the mechanism, it is clear that LFV and anomalous
dipole moments are predicted by many GUT models, with
varying strengths for different processes. The full list of processes
and their current experimental upper bounds and measurements
can be seen in Table 2, where the experiments that have studied
the processes are detailed. Furthermore, new experiments are
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TABLE 2 | Upper bounds at 90% C.L on LFV processes and EDMs, and

measurements of AMMs, along with the experiments that provided them.

Process Branch. Frac. Reference

µ− → e−γ 4.2× 10−13 MEG [626]

τ− → e−γ 5.4× 10−8 BaBar [627], Belle [628]

τ− → µ−γ 5.0× 10−8 BaBar [627], Belle [628]

µ− → e−e−e+ 1.0× 10−12 SINDRUM [629]

τ− → e−e−e+ 1.4× 10−8 BaBar [630], Belle [631]

τ− → µ−µ−µ+ 1.2× 10−8 ATLAS [632], BaBar [630],

Belle [631], LHCb [633]

τ− → µ−e−e+ 1.1× 10−8 BaBar [630], Belle [631]

τ− → e−e−µ+ 0.84× 10−8 BaBar [630], Belle [631]

τ− → e−µ−µ+ 1.6× 10−8 BaBar [630], Belle [631]

τ− → µ−µ−e+ 0.98× 10−8 BaBar [630], Belle [631]

µ− e (Ti) 1.7× 10−12 SINDRUM II [634]

µ− e (Pb) 4.6× 10−11 SINDRUM II [635]

µ− e (Au) 8.0× 10−13 SINDRUM II [636]

de 1.1× 10−29 e cm ACME II [637]

dµ 1.9× 10−19 e cm Muon g-2 [638]

dτ 4.5× 10−17 e cm Belle [639]

ae (10
−13) 11596521809.1± 2.6 [640]

aµ(10
−10) 11659208.9± 8.7 Muon g-2 [641]

The HFLAV average is quoted for limits by different experiments [549].

being developed at this moment that will attempt to improve
the limits on processes like µ → eee (Mu3e [642]) and µ − e
conversion (COMET [643], Mu2e [644]), with projected limits
up to four orders of magnitude stronger than previous studies.
Additionally, a new measurement of aµ has been performed
by the Muon g-2 experiment and it is expected to be released
soon [645], which may confirm the deviation observed before,
and thus further motivate the need of new physics.

7.5. Neutrinoless Double Beta Decay
This rare nuclear process corresponding to a simultaneous
conversion of two neutrons to two protons and two electrons
within the nucleus [646] is of great interest for particle physics,
as it clearly does not conserve lepton number, and thus violates
the corresponding accidental Abelian global symmetry of the
SM. Consequently, a strong experimental effort is being made
to observe this unique process. Unfortunately, its observation
will be very difficult, as 0νββ decay is expected to be extremely
rare. There is a number of experiments, some in operation, other
being constructed or planned, attempting to measure the decay.
An overview of the major collaborations is shown in Table 3. The
current experimental lower limits on its half-life are around 1026

years [647, 648] and the future searches should reach sensitivities
by one or two orders of magnitude higher.

As can be shown, the existence of 0νββ decay implies the
Majorana nature of neutrinos (and vice versa) [649–651] and as
such it represents one of the best probes of this BSM hypothesis.
Therefore, in GUT models allowing for Majorana neutrino mass
generation 0νββ decay can be in principle always triggered.
This, however, does not say anything about the underlying
mechanism and the resulting 0νββ decay rate. The prominent
standard (mass) mechanism of 0νββ decay assumes a light
Majorana neutrino exchange between the two beta-decaying

TABLE 3 | An overview of both current and future major 0νββ decay searches.

Experiment Isotope Status M [kg] T
0νββ

1/2
limit [y]

CUORE 130Te running 200 (3.5× 1026)

EXO-200 136Xe running 110 1.1× 1025

nEXO 136Xe R&D 5000 (1027-1028)

GERDA 76Ge running 21.6 5.3× 1025

in progress 40 (∼ 1026)

KamLAND-Zen 136Xe running 383 1.1× 1026

in progress 600 (2× 1026)

LEGEND 76Ge R&D 200 (∼ 1027)

R&D 1000 (∼ 1028)

Majorana Dem. 76sGe running 44.1 1.9× 1025

NEXT 136Xe in progress (demo) 100 (5.9× 1025)

SNO+ 130Te in progress 1300 (2× 1026)

SuperNEMO 82Se (150Nd) in progress (demo) 100 (∼ 1026)

For each experiment the following information is shown: used isotope, operational status,

the deployed mass M of the isotope in question and the measured or expected (for

experiment in preparation these values are shown in parentheses) sensitivity T
0νββ
1/2 . For

some experiments (GERDA, KamLAND-Zen, LEGEND) characteristics of more stages of

development are given. In case of SuperNEMO, the primary isotope to be tested is 82Se

and in the future the measurement will be repeated with a 150Nd source.

neutrons. In the SM with light massive neutrinos this process
can be depicted as shown in Figure 17, left. Besides the standard
scenario a number of non-standard mechanisms triggering 0νββ
decay can be constructed. The effective treatment of these exotic
mechanisms can be conveniently employed (see e.g., [652–656]).

As for the UV-complete 0νββ decay mechanisms, a variety of
interesting ones can be constructed within GUTs. For instance, in
the left-right symmetric models (where, of course, the standard
light neutrino exchange is available) one can think of several
exotic mechanisms involving exchange of heavy neutrino as well
as light and heavy W vector bosons [657]. In the simplest exotic
case the light neutrino exchange is substituted by a heavy right-
handed neutrino exchange, which means that the involved vector
currents and emitted electrons must be also right-handed. Due
to the large mass of the propagating neutrino, the interaction can
be considered to be contact and we refer to this contribution
as to short-range mechanism. Since the right-handed currents
are present in left-right symmetric models, it is also possible to
draw 0νββ decay mechanisms, in which the neutrino exchange
does not violate chirality. This means that the contribution is
not proportional to the neutrino mass and the two outgoing
electrons are of opposite chiralities. A possible mechanism of this
type is depicted in Figure 17, right. As apparent, the diagram
involves one right-handed and one left-handed vector current
and since the light neutrino propagator is present, one refers to
this contribution as to a long-range 0νββ decay mechanism.

Leptoquarks, particles appearing prominently in GUTs, can
also trigger non-standard 0νββ decay contributions. It has
been described that this is the case, when different leptoquark
multiplets mix via a possible leptoquark-Higgs coupling violating
lepton number [658, 659]. Diagrams of this type of contributions
to 0νββ decay are shown in Figure 18. The specific helicity
structure of the effective four-fermion interaction leads to the
fact that this contribution can dominate over the standard
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FIGURE 17 | The standard mass mechanism of 0νββ decay (left) and a non-standard contribution that can be constructed in the left-right symmetric models using

vector currents of opposite chiralities (right).

FIGURE 18 | The exotic 0νββ decay mechanisms involving scalar or vector leptoquarks S, Vµ.

mass mechanism. The current lower limits on 0νββ decay
half-life then allow to derive the bounds on corresponding
leptoquark parameters.

Neutrinoless double beta decay can be triggered also in
supersymmetric theories aspiring for grand unification. In the
simplest case, if the MSSM with broken R parity is considered,
0νββ decay diagrams involving R-parity-violating couplings and
supersymmetric mediators can be drawn [660–664]. An example
of a supersymmetric 0νββ decay mechanism is depicted in
Figure 19. Again, from non-observation of 0νββ decay it is
possible to derive limits on the unknown model parameters.

8. OUTLOOK AND FUTURE PROSPECTS
FOR GUTS

Among the vast landscape of theories beyond the Standard
Model, Grand Unified Theories stand out as appealing
candidates. As we have seen, GUTs are a collection of ideas from
group theory, supersymmetry, neutrino physics, flavor physics
and more, which positions them as some of the most complete
and attractive theories in the literature. Indeed they are among
the few BSM theories capable of simultaneously affecting the

FIGURE 19 | An example of a 0νββ decay mechanism that can be triggered in

R-parity-violating MSSM.

highest energy scales, influencing the cosmology of the early
Universe, and the low energies, within reach of colliders and
terrestrial experiments.

Throughout this review article we have provided a rough
sketch of the status of GUTs and some of the associated research
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in the field. We have described the basic principles behind them
and their first appearance in the world of particle physics in the
late 70s. A lot of effort was spent in the years after and many of
the greatest models were designed at that time. Research in GUTs
has continued since, focusing either on specific topics within and
alongside them, or on particular models that compiled a few
advances in the field.We have thus summarized a non-exhaustive
selection of topics andmodels that are at the forefront of research
in unified theories, aiming to provide an overview of the current
state of the art.

We are fortunate enough to live in a time where experimental
searches are abundant and they cover a rather vast range of fronts.
The most cutting-edge technologies have been and are being
developed to push the boundaries of our current understanding
of particle physics and cosmology. Grand unified theories are and
will be put under the microscope by many of these experimental
advances, which will confirm, constrain or outright exclude some
of the existing models.

The recent observation of gravitational wave signatures
opens a new window into the history of the Universe, where
events and phenomena that ocurred in the early Universe can
be observed with gravitational wave detectors. Cosmic phase
transitions associated with patterns of symmetry breaking in
unified theories are such events, as they can be the source
of stochastic gravitational waves that can be observed today.
Transition temperatures above the EW scale, typically associated
with the breaking of some intermediate step in a GUT model,
can be studied by future gravitational wave experiments such as
a LISA, the Einstein telescope, Kagra, the Cosmic Explorer, BBO
and DEIGO. Also in the cosmological frontier, GUTs can have a
serious impact on the inflationary epoch of the Universe, testable
in measurements of the CMB, and can contribute to the baryon
asymmetry of the Universe, via baryo and leptogenesis.

At the time of writing we have reached the end of the
second run of the LHC, with an outstanding recorded integrated
luminosity of about 150 fb−1. Analyses of the accumulated data,
however, are still under way and they will probably spill well into
the start run 3 in 2021. Many of the analyses already published
have strong consequences for the predictions of unified theories,
as are direct searches for supersymmetry, leptoquarks or other
exotics at ATLAS and CMS. Upcoming results from ongoing
and future analyses of the results from the LHC experiments
may strengthen the bounds on light states as predicted by
SUSY GUTs and other models, or they might show hints of
the existence of new particles, whose relevance for GUTs would
need to be determined. Upgraded versions of the LHC (HL-
LHC, VLHC or FCC) or other future colliders (ILC, CLIC) will

certainly boost this programme with increased accuracy and
higher energies, which will further probe the low-hanging states
predicted by GUTs.

Where colliders search for the low scale predictions of GUTs,
precision experiments can explore the intermediate and high
scales associated with unification. Nucleon decay limits are often
among the strongest probes of fully unified theories and future
experiments such as Hyper-Kamiokande and DUNE may set
even stronger exclusion limits or perhapsmeasure signs of proton
decay, which would be a smoking gun for GUTs. Furthermore,
GUTs can provide contributions to a number of flavor and
precision observables, such as LFU, LFV, EDM, AMM, or 0νββ ,
some of which are in tension with the SM. Confirmation of these
flavor anomalies with more collected data by LHCb and other
experiments would be undeniable evidence of the need for new
physics models and GUTs are very well suited for that purpose.

To conclude, Grand Unified Theories are still at the vanguard
of research in BSM models. They can explain many of the issues
of the SM and can accommodate the recent results from the
cosmological, precision and collider frontiers with relative ease.
Contrary to “simplified”models, GUTs are complete theories that
can simultaneously make a large number of testable predictions
on the different fronts. Fortunately, these predictions can be
explored by upcoming analyses and future experiments, which
can set strong exclusion limits in a subset of GUT models. On
a more optimistic note, any observation in, for instance, SUSY
searches at colliders, gravitational waves signatures or proton
decay will stack the odds in favor of some GUT models and will
significantly shape the future of the research in particle physics.
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