
METHODS
published: 25 June 2019

doi: 10.3389/fphy.2019.00091

Frontiers in Physics | www.frontiersin.org 1 June 2019 | Volume 7 | Article 91

Edited by:

Pietro Ferraro,

Italian National Research Council

(CNR), Italy

Reviewed by:

Chikara Sato,

National Institute of Advanced

Industrial Science and Technology

(AIST), Japan

Naveen Kondru,

Iowa State University, United States

*Correspondence:

Oskar A. Sachenkov

4works@bk.ru

Specialty section:

This article was submitted to

Biophysics,

a section of the journal

Frontiers in Physics

Received: 05 March 2019

Accepted: 03 June 2019

Published: 25 June 2019

Citation:

Yaikova VV, Gerasimov OV,

Fedyanin AO, Zaytsev MA, Baltin ME,

Baltina TV and Sachenkov OA (2019)

Automation of Bone Tissue Histology.

Front. Phys. 7:91.

doi: 10.3389/fphy.2019.00091

Automation of Bone Tissue Histology

Viktoriya V. Yaikova 1, Oleg V. Gerasimov 1, Artur O. Fedyanin 2, Mikhail A. Zaytsev 2,

Maxim E. Baltin 2, Tatyana V. Baltina 2 and Oskar A. Sachenkov 1*

1Department of Theoretical Mechanics, Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia,
2Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University,

Kazan, Russia

In abstract methods of automation of histology, bone structure is considered. Possible

inputs are snapshots from a microscope or computed tomography slices. An algorithm

is proposed that differentiates objects according to their color (or grayscale) and

recover morphology topology. An algorithm to separate morphological objects by their

dimensions and color parameters was built. Measured parameters were bone surface,

bone area, porosity, cortical thickness, canal number, canal area, and etc. Additionally,

we measured the anisotropy properties of the bone tissue: distribution of porosity

direction and degree of porosity elongation. A bone example was scanned by computed

tomography. All data were measured by the proposed method and the results presented.

An example algorithm of work on computed tomography data is shown in this work.

Keywords: quantitative phase imaging, label-free, microscopy, interferometric microscopy, holographic

microscopy, microtomography

INTRODUCTION

Analysis of bone tissue quality is important in various branches of medicine. Knowledge about bone
tissue state can help to understand the processes which happen in it, as traditionally, analysis of the
biological data is manual and the quality of the analysis depends on a specialist’s experience [1–7].
In general, automatization of such analysis is complicated because of random input data [8–12].
The following approaches to image processing can be distinguished: the elimination of necessary
elements by various filters, image segmentation, and analysis of elements. The proposed approach
is in some way a hybrid of these approaches. But in many cases, there are typical problems to
solve: count the number of a biological object, analyze the orientation of some biological object
in snapshot and etc. In the paper, we introduce a method to analyze bone tissue and generalized
problems are presented. The main idea of applying the proposed algorithm is to reduce manual
labor in image processing. The analysis of the results obtained when comparing various investigated
groups (different age, sex, etc.) remains on the shoulders of the researcher. Computed tomography
data were used to illustrate the method proposed below [13–15].

MATERIALS AND METHODS

Macro Scale Data
At first, let’s consider analysis of the macro scale of bone tissue. We interpret macro scale data of
the bone sample in the case when a whole bone slice is presented. In such data, usually cells (e.g.,
osteocyte) can’t be seen properly, but information about blood vessels is complete. For such data it
is important to calculate some traditional morphology information [16–19], such as bone surface
(B.PM), bone area (B.Ar), porosity (Po), cortical thickness (Ct.Wi), canal number (N.Ca), canal
area (Ca.Ar), and etc. Additionally, the degree of anisotropy can be measured. For these tasks it
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is important to split all data into, at least, three major groups:
external environment, bone tissue, and inclusions.

Origin data is denoted as S.

S =
{

sij
}

, sij∈ R

At the first step, all data should be clustered into 2 clusters.
Clusterization had been done by means of the Euclidean
distance in color space K-means clustering algorithm for cluster
classification was used. Clustered data let’s denote as Scl.

Scl =
{

sclij

}

, sclij∈ {0, 1}

To separate inclusions from the external environment, data
should be smoothed. This was achieved by means of the gradient
filter as well as filling the transform and watershed components.
The gradient filter provides data corresponding to the magnitude
of the input’s gradient and is computed using discrete derivatives
of a Gaussian of pixel radius gfPixelRadius. For the gradient filter
options, we should use about 1–5% of lower dimension. Filling
transform fills all extended minima with depth fthMinima or
less by lifting their values to the lowest value found among the
surrounding pixels. Where an extended minimum is a connected
to a set of pixels surrounded by pixels by a radius that all have
a greater value than the pixels in the set. For filling transform
maximum depth should be in range 0.002–0.02. Watershed
components find basins at each regional minimum in the image.

Smoothed data is denoted as Ssm.

Ssm =
{

ssmij

}

,ssmij ∈ {0, 1}

To get inclusions received data should be binary subtracted from
clustered data, where inclusions data is denoted as Sin. Denote
binary subtraction as an inversion of converse implication:

Sin = Scl←Ssm

Sin =
{

sinij

}

, sinij ∈ {0, 1}

Proposed method depends only on values of input.
And this fact allows us to keep using the same option for sets

of images, which improves the quality of automation [20–22].
On Figure 1 all mentioned sets are shown: set S (upper left), Scl
(upper right), Ssm (bottom left), and Sin (bottom right). In this
case, histological parameters can be calculated easily:

B.Ar =

∫

A
ScldA

Po =
1

B.Ar

∫

A
SindA

B.PM =

∮

∂A
Scldl

Ca.Ar =

∫

A
SindA

Canal number can be calculated as number of related subsets in
Sin. Thus, average canal area can be calculated:

< Ca.Ar > =
1

N.Ca

∫

A
SindA

FIGURE 1 | Schematic representation of original data S (upper left), clustered

data Scl (upper right), smoothed data Ssm (bottom left), and data of inclusions

Sin (bottom right).

Algorithm 1: Preparing the data.

Input: Dataset S and parameters for filters: gfP, ftP, wcP.

Output: Datasets Scl, Ssm, Sin.

1. Scl = 2MeanClustering(S);

2. temp1 = GradientFilter (S, gfPixelRadius);

3. temp2 = FillingTransform (temp1, fthMinima);

4. Ssm = WatershedComponents (temp2);

5. Sin = Scl/Ssm;

To calculate Ct.Wi, a polar coordinate system is introduced in
the center of mass of Scl. Then, using radial vectors of the
distance between interfaces (bone and void) can be calculated.
Distribution of these values is a function of polar angle.

The algorithm of preparing the data can be described as:
To calculate the degree of anisotropy, a fabric tensor was

used [23–26]. For this purpose, all data should meshed by
2-D Cartesian grid and fabric tensor should be calculated
for every element. Inclusions data was used to improve the
quality of the mesh. An adaptive algorithm was used to
tailor the mesh. The algorithm based on the calculation of
relative abundances of inclusions in an element. For every
element B.Ar should be calculated, to check if there are some
bone tissue compare B.Ar with preset infimum εB.AR. Then
if the size of the element allows it can be remeshed. Then
the presence of inclusions should be checked. To do this
comparison of Po with preset infimum εPo needed. If true,
then MIL can be calculated. According to the abundances, the
element can be thrown away and then remeshed or taken into
the calculation (see Figure 2). The algorithm of meshing can
be described as:
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FIGURE 2 | Schematic representation of remeshing algorithm. Initial mesh (left). The first step of improving the mesh (middle), void elements highlighted with red. The

second step of improving the mesh (right), elements suitable for calculation highlighted with green.

Algorithm 2: Meshing algorithm.

Input: Datasets S, Scl, Ssm, Sin. Initial regular mesh.

Output: Improved mesh.

1. while numbers of changes on previous and actual step not equal to 0 do

2. for every element in the mesh do

3. Ar = sum of Ssm in the element;

4. if Ar < lowThreshold then delete the element;

5. if Ar < uppThreshold then remesh the element;

end

end

Will consider fabric tensor as a quadratic approximation of
mean intercept length (MIL) [23–26].

L−2 (n)=
−→x ˜·M·−→x

where L – MIL data, x – space vector, M – fabric tensor.
Degree of anisotropy can be calculated as an aspect ratio of the

eigenvalues of fabric tensor.

η = λ2/λ1

where λ1 – the 1st eigenvalue, λ2 – the 2nd eigenvalue.
To expand analyze of inclusions distribution the eigenvectors

field were investigated. For this purpose, additional data set Srs
should be formed. The polar coordinate system with a pole in the
center of mass of clustered data is introduced below.

Srs= {ϕi,ri |

[

ηi,
−→
h

1

i ,
−→
h

2

i

]

}

where ϕ, r – polar coordinate of i-th element’s center, an
investigated parameter can be a degree of anisotropy η in the i-
th element, h – 1st or 2nd eigenvector (analogically in the i-th
element). The algorithm calculation the fabric tensor distribution
can be described as:

Algorithm 3: Calculate fabric tensor distribution.

Input: Datasets S, Scl, Ssm, Sin. Improved mesh.

Output: Datasets of eigenvectors, eigenvalues, aspect ratio and porosity.

1. for every element in the mesh do

2. calculate the MIL;

3. calculate the fabric tensor;

4. calculate and save eigenvectors, eigenvalues, aspect ratio and

coordinates of the element;

end

The description of the algorithm presented in detail in
Semenova et al. [23] with an example for estimation the
quality of collagen recovery using microscopy data. For the
data, the correlation matrix was calculated and singular value
decomposition was used. Not affecting the parameter coordinates
can be determined by defining infinitesimal singular values.
On the basis of this analysis, average parameter can be
calculated. Described methods were used on µCT orthogonal
slices of diaphysis femur. Origin data consists of about a
100 slices.

Results and Discussion
The methods described were used for analyzing bone tissue
samples. For this purpose, µCT data of bone tissue slices (n
= 100) were used [27]. Micro / nanofocal X-ray inspection
system for CT and 2D inspections of Phoenix V|tome|X S240
was used for scanning. The system is equipped with two X-ray
tubes: microfocus with a maximum accelerating voltage of 240
kV power of 320W and nanofocus with a maximum accelerating
voltage of 180 kV power of 15W. For primary data processing
and creating a volume (voxel) model of the sample based on x-ray
images, the datos|x reconstruction software was used. The sample
fixed in the holder was placed on the rotating table of the X-ray
computed tomography chamber at the optimum distance from
the X-ray source. The survey was carried out at an accelerating
voltage of 90–100 kV, and current 140–150mA. Described data
can be useful in histology analysis [28–35]. The dimension of
slices was 449 × 610 pixels, pixel’s dimension −7.985µm. The
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FIGURE 3 | Example of sets for two different slices (left and right sides): the

first (on top)—origin data, the second—clustered data Scl, the

third—smoothed data Ssm, and the fourth—data of inclusions Sin.

options used for the calculations depended on properties of
inputs and it is an advantage of the method. It means that for all
arrays of slices, the options selected will be constant. Nowadays
options should be picked up manually. For the presented data,
a gradient filter with 8 pixels value was used (gfPixelRadius),
filling transform−0.03 (fthMinima). For meshing algorithm low
Threshold was equal to 5% and upper Threshold was equal
to 70%. On Figure 3 original data S (the first row), clustered
data Scl (the second row), smoothed data Ssm (the third row)
and data of inclusions Sin (the fourth row) for the arbitrary
slices are shown.

Marked above histological parameters were calculated and
analyzed. On Figure 4 all results are shown. Po was linear
in a longitudinal direction, correlation coefficient was −0.30
(r2 = 0.921). B.Ar was linear in longitudinal direction,
correlation coefficient was −0.26 (r2 = 0.978). B.Pm. was
quadratic in longitudinal direction (r2 = 0.931). Ca.Ar was
linear in longitudinal direction, correlation coefficient was
−0.21 (r2 = 0.962).

Results for fabric tensor were close to results from previous
work [26], and the difference can be explained by dimensions of
data (2D via 3D). The second eigenvector of the fabric tensor
was almost radial directed (deviation about ± 10◦), the first
eigenvector of the fabric tensor was in the orthogonal direction.
Eigenvectors do not depend on radial coordinates. Aspect ratio
of eigenvalues was 0.58± 0.07 (13%).

CONCLUSION

Method of automatic analyses of a microscope or µCT data
is presented. The proposed method allows splitting bone
tissue and inclusions. Such an approach allows simplifying the

FIGURE 4 | Distribution in longitudinal direction of results (blue dots) and their trends (dashed line): porosity (upper left), bone area (upper right), canal area (bottom

left), and bone surface (bottom right).
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calculation of histological parameters. Additionally, a method
to analyze the spatial distribution of inclusion is offered. To do
this the sample should be meshed, and for every element mean
intercept length distribution should be restored. The described
technique was used to analyze µCT slices of bone. And the
received results illustrate the effectiveness of the method. The
described algorithm can be easily transferred in some software
for biological analyze, e.g., ImageJ.
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