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This article studies the existence and uniqueness of a weak solution of the time-fractional

cancer invasion system with nonlocal diffusion operator. Existence and uniqueness

results are ensured by adapting the Faedo-Galerkin method and some a priori estimates.

Further, finite element numerical scheme is implemented for the considered system.

Finally, various numerical computations are performed along with the convergence

analysis of the scheme.

Keywords: cancer invasion dynamic system, fractional differential equations, reaction-diffusion system, weak

solution, numerical solution

1. INTRODUCTION

In the past few decades, a large number of mathematical models have been applied for biological
studies. In addition, mathematical models give a deeper conceptual understanding of behavioral
dynamics of complex systems. Some of the advantages ofmathematical models include cost efficient
experiments, which can be performed speedily without disturbing biological variants. Cancer is
a disease defined by a normal cell which starts replicating out-of-control. Over the years, cancer
modeling has gained popularity with applied mathematicians because of its challenges, resulting
in numerous research findings on the dynamics of tumor invasion. Some of these propositions are
available in the literature to acquaint oneself with the developments in cancer modeling (see for
instance [1–4]).

On the other hand, fractional differential equations (FDEs) have been extensively used for
constructing biological models and other areas of science and engineering. We refer the following
monographs [5–7] and research articles [8–12] that have explored recent developments using
FDEs. Biological phenomena have an anomalous diffusion property which includes heterogeneous
systems that are witnessed in porous materials (see for example [13, 14]). Linear and nonlinear
models of anomalous diffusion, which have been experimented by researchers could not do justice
to the biological phenomena. But the fractional models have contributed to replicate the biological
phenomena with a greater accuracy. Diffusions in biological tissue has characterized as anomalous.
Therefore, it has been shown to be best described using fractional calculus tools. It means equations
involving non-integer derivatives and integrals. Cancer models adapting fractional differential
equations are studied by Ahmed et al. [15] and Iyiola and Zaman [16] and also see the references
there in.

Theoretical and numerical analysis of fractional partial differential equations (FPDEs),
concerned with only very few articles, are available in the literature. Alikhanov [17] applied
the method of energy inequalities to obtain the existence of solutions for a time-fractional
boundary value problem of the diffusion-wave equation. Jiao and Zhou [18] established an
existence result for a fractional boundary value problem with the application of the critical
point theory. Further, Zhou et al. [19] analyzed the time-fractional reaction-diffusion equation
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under nonlocal boundary condition. Zhou and Peng [11]
established the existence, uniqueness and regularity of time-
fractional Navier-Stokes equations. Further, they ensured the
existence of weak solutions and also provided the sufficient
conditions for optimal controls in Zhou and Peng [12]. Finite
volume method [20–22], meshless method [23, 24], finite
difference method [25–28], finite element method [29–31] and
the spectral method [32–35] are widely preferred numerical
methods in the literature to solve fractional partial differential
equations. Finite element methods have become popular for
numerical simulations of time-fractional diffusion equations
due to their good approximation and feasibility to work with
any domains. Recently, Esen et al. [36] studied the numerical
solutions of time-fractional diffusion equations and diffusion-
wave equations using Galerkin finite element method. Jin et al.
[29] analyzed the numerical solutions of multiple time-fractional
derivative using the Galerkin finite element method. Wang et al.
[37] combined second-order time approximation with the finite
element method to solve nonlinear fractional Cable equation.
Liu et al. [38] used fully discrete mixed finite element scheme
to study the second order convergence for nonlinear time-
fractional diffusion problem with fourth-order derivative term.
Jin et al. [39] solved proposed Crank-Nicolson-Galerkin finite
element scheme to solve the linear time FPDEs. Kumar et al.
[40] proposed Crank-Nicolson-Galerkin finite element scheme
to solve the time-fractional nonlinear diffusion equation using
Newton’s algorithm. However, according to author’s knowledge
there is no paper available in the literature to study the fractional
order cancer invasion system using finite element method.

Recently fractional reaction-diffusion systems are applied
for many applications in science and engineering. Fractional
models are proposed and used in chemical reactions, propagation
phenomena, transport systems, pattern formation processes and
spatiotemporal distribution of species [41–45] and references
therein. In this connection, we are interested to study
and analyze the time-fractional cancer invasion model with
nonlocal diffusion operator. Existence and uniqueness of a weak
solution and various numerical simulations are presented for
the below considered model. We considered a mathematical
model proposed in Solis and Delgadillo [46] with four unknown
variables namely two cancer cells density, normal cells density
and acidification medium concentration. Further, we extend the
same model for fractional differential equations and we show the
importance of fractional derivatives using numerical simulations.
The dynamics of cancer invasion system with time-fractional is
governed by the following nonlocal diffusion system:

∂αt u1 − d1
(

l(u1)
)

1u1 =
u1(1− u1)− β1u1u2 − ρu1 − γ1u1u3 in QT ,

∂αt u2 − d2
(

l(u2)
)

1u2 =
r2u2(1− u2)− β2u1u2 + ρu1 − δ1u2u3 in QT ,

∂αt u3 = r3u3(1− u3)
− γ2u1u3 − δ2u2u3 − σu3u4 in QT ,

∂αt u4 − d4
(

l(u4)
)

1u4 =
ξ (u1 + u2 − u4) in QT ,



















































(1.1)

with initial and boundary conditions

uj(x, 0) = uj,0(x), j = 1, 2, 3, 4 in�,

ui(x, t) = 0, i = 1, 2, 4 in6T ,

where QT = � × (0,T), 6T = ∂� × (0,T), T > 0 is final time
and α ∈ (0, 1]. Here,� is a bounded domain in R

N with smooth
boundary ∂�. The unknown functions u1(x, t) and u2(x, t),
respectively, describe the density of two types of cancer cells.
Further, u3(x, t) and u4(x, t), respectively, represent the density
of normal cells and medium acidification concentration due to
excess H+ ions. The constants β1 and β2, respectively, denote
the rates of interaction and the positive constant ρ delineates the
intrinsic mutation rate of cancer cells. Furthermore, γ1 and δ1
represent the rate of consumption of cancer cell populations. The
proliferation rate of cancer cells is given by r2 ≥ 0 and r3 ≥ 0.
Here, ξ represents the production rate of the H+ions. Moreover,
γ2 and δ2, respectively, denote the interaction rate of two types
of cancer cells with normal cells and σ denotes the degradation
rate of normal cells due to acidification. In (1.1), the diffusion
rates di : R → R are the Lipschitz continuous functions with
di(ξ ) ≥ mi > 0 where i = 1, 2, 4. Further, di, i = 1, 2, 4
are taken to be depend on the whole of each population in the
domain rather than on the local density. From a physical point
of view of biological models, especially migration of cancer cells
through normal cell is more like movement in a porous medium.
Therefore, we consider the cell random motility to be a function
of unknowns, see for example Szymańska et al. [47]. Therefore,
it is more realistic to work with density dependent diffusion like
nonlocal diffusion instead of linear diffusion function. Further,
we assume that linear continuous nonlocal operator l(s) ∈

(L2(�))′ where s ∈ R. This work investigates existence and
uniqueness of a weak solution and numerical solutions for the
time-fractional cancer invasion system (1.1).

It should be remarked that throughout the paper, we use
the Caputo sense fractional derivatives for time. The main
advantage the Caputo derivative, we can use initial conditions as
in integer order derivatives. However, for more details we refer
the interested readers to the book [48].

The rest of the manuscript is arranged as follows. In
section 2, we present some preliminaries of fractional calculus
and existence and uniqueness of weak solution of (1.1)
using the Faedo-Galerkin approximation method and priori
estimates. In section 3, we give the variational formulation of
(1.1), finite element discretization and temporal discretization.
Finally, in section 4, we present the convergence study of
the numerical scheme and some computations with various
numerical experiments.

2. EXISTENCE AND UNIQUENESS

The goal of this section is to prove existence and uniqueness of
a weak solution of nonlocal density dependent diffusion cancer
invasion parabolic system with time-fractional derivative (1.1).
By adopting the Faedo-Galerkin approximation method and
deriving uniform a priori estimates for approximation solution,
we show the existence of a weak solution in appropriate solution
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space. Here, we use the same notations and definitions as in Zhou
et al. [19, 49]. Further, in order to avoid too many notations, we
use a generic constant C instead of different constants.

Theorem 2.1 ([6]). Consider the fractional ordinary differential
equation (FODE)

C
0D

α
xu(x) = f (x, u(x)), 0 < x < T,

u(0) = b0,

}

(2.1)

where 0 < α < 1 and b0 ∈ R be a given constant. Suppose U be
an open and connected set in R and� = [0,T]× U. Assume that
f (x, y) :(0,T) × U → R be a continuous function satisfying the
Lipschitz condition. Then for any (x0, y0) ∈ �, there exists h > 0
such that the real interval [x0−h, x0+h] ⊂ (0,T) and there exists
a unique solution u(x) :[x0 − h, x0 + h] → U for (2.1) such that
u(x) ∈ C[x0 − h, x0 + h], and for any x ∈ [x0 − h, x0 + h].

Lemma 2.1. Suppose u :[0,T] −→ X where X : = L2(�) is a real
Hilbert space. Assume that there exists fractional derivative of u in
the Caputo sense, then the following inequality holds true:

(u(t), C0D
α
t (u(t))) ≥

1

2
C
0D

α
t ‖u‖

2
X .

Lemma 2.2. Let α ∈ (0, 1) and a non-negative integrable function
c1(t) for t ∈ [0,T] satisfies the inequality

C
0D

α
t u(t) ≤ c1(t), (2.2)

for almost all t ∈ [0,T]. Then

u(t) ≤ u(0)+
1

Ŵ(α)

∫ t

0
(t − s)α−1c1(s)ds. (2.3)

Lemma 2.3 ([50], p.9). Let α ∈ (0, 1). Suppose u, v are two
integrable functions, v is nondecreasing and g is a continuous
function in [a, b]. If

u(t) ≤ v(t)+ g(t)

∫ t

a
(t − s)α−1u(s)ds,∀t ∈ [a, b],

then

u(t) ≤ v(t)Eα

[

g(t)Ŵ(α)(t − a)α
]

,

where Eα(·) is one parameter Mittag-Leffler function.

Lemma 2.4. Let α ∈ (0, 1). Suppose u(·) is a non-negative,
absolute continuous function on [0,T], which satisfies for a.e. t the
following differential inequality

C
0D

α
t u(t) ≤ Cu(t), (2.4)

for constant C ≥ 0. Then

u(t) ≤ u(0)Eα
[

Ctα
]

.

Proof: From (2.4),

u(t) ≤ u(0)+
C

Ŵ(α)

∫ t

0
(t − s)α−1u(s)ds,

where we use the Lemma 2.2. Using the Lemma 2.3, we get

u(t) ≤ u(0)Eα
[

Ctα
]

.

Assume that X0,X1,X are Hilbert spaces. The Fourier transform

of u : R → X1 is defined by û(τ ) =

∫ ∞

−∞

e−2iθ tτu(t)dt (See [51]).

Then, we have

C
−∞Dαt û(τ ) = (2iθτ )α û(τ ).

For 0 < α ≤ 1, define a Hilbert space

W
α(R,X0,X1) =

{

u ∈ L2(R,X0)
C
:

−∞
Dαt ∈ L2(R,X1)

}

endowed with the norm

‖u‖Wα =
{

‖u‖2
L2(R,X0)

+ ‖τα û‖2
L2(R,X1)

}
1
2
.

For any set J ⊂ R, define a subspaceWα
J ofWα (see p. 274, [49])

as with support contained in J:

W
α
J (R,X0,X1) =

{

v ∈ W
α(R,X0,X1) : supp(v) ⊂ J

}

,

Further, we use the space

V : = H1
0(�)×H1

0(�)× L2(�)×H1
0(�);

throughout the article.

Theorem 2.2 ([51]). Assume that X0 −֒→ X −֒→ X1 is continuous
and X0 −֒→ X is compact. Then for any bounded set J and α > 0,
Wα

J (R,X0,X1) −֒→ L2(R,X) is compact.

Without loss of generality, we rewrite the nonlocal
density dependent diffusion cancer invasion parabolic
system (1.1) with time-fractional derivative in the
following form:

∂αt u1 − d1
(

l(u1)
)

1u1 + G1(x, t, u1, u2, u3) = (1− ρ)u1 in QT ,

∂αt u2 − d2
(

l(u2)
)

1u2 + G2(x, t, u1, u2, u3) = r2u2 + ρu1 in QT ,

∂αt u3 + G3(x, t, u1, u2, u3, u4) = r3u3 in QT ,

∂αt u4 − d4
(

l(u4)
)

1u4 = ξ (u1 + u2 − u4) in QT ,



















(2.5)

where

G1(x, t, u1, u2, u3) = u1(u1 + β1u2 + γ1u3),
G2(x, t, u1, u2, u3) = u2(β2u1 + r2u2 + δ1u3),
G3(x, t, u1, u2, u3, u4) = u3(γ2u1 + δ2u2 + r3u3 + σu4).
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Theorem 2.3. Suppose the initial conditions uj,0, j = 1, 2, 3, 4
are in L2(�). Then the system (2.5) admits a weak solution
u1, u2, u3, u4, which satisfies the following conditions:

u1, u2, u4 ∈ L∞(0,T; L2(�)) ∩ L2(0,T;H1
0(�)),

u3 ∈ L∞(0,T; L2(�)),

such that for every φj ∈ L2(0,T;H1
0(�)), j = 1, 2, 3, 4,

∫ T

0
∂αt (u1,φ1)dt + d1

(

l(u1)
)

∫

QT

∇u1∇φ1dxdt

+

∫

QT

G1(x, t, u1, u2, u3)φ1dxdt

= (1− ρ)

∫

QT

u1φ1dxdt,

∫ T

0
∂αt (u2,φ2)dt + d2

(

l(u2)
)

∫

QT

∇u2∇φ2dxdt

+

∫

QT

G2(x, t, u1, u2, u3)φ2dxdt

=

∫

QT

(r2u2 + ρu1)φ2dxdt,

∫ T

0
∂αt (u3,φ3)dt +

∫

QT

G3(x, tu1, u2, u3, u4)φ3dxdt

=

∫

QT

r3u3φ3dxdt,

∫ T

0
∂αt (u4,φ4)dt + d4

(

l(u4)
)

∫

QT

∇u4∇φ4dxdt

=

∫

QT

ξ (u1 + u2 − u4)φ4dxdt. (2.6)

Now, we use the following regularized system in order to find
weak solutions of the system (2.5). For ǫ > 0,

∂αt u
ǫ
1 − d1

(

l(uǫ1)
)

1uǫ1 + G1,ǫ(x, t, u
ǫ
1, u

ǫ
2, u

ǫ
3) = uǫ1 − ρu

ǫ
1 in QT ,

∂αt u
ǫ
2 − d2

(

l(uǫ2)
)

1uǫ2 + G2,ǫ(x, t, u
ǫ
1, u

ǫ
2, u

ǫ
3) = r2u

ǫ
2 + ρu

ǫ
1 in QT ,

∂αt u
ǫ
3 + G3,ǫ(x, t, u

ǫ
1, u

ǫ
2, u

ǫ
3, u

ǫ
4) = r3u

ǫ
3 in QT ,

∂αt u
ǫ
4 − d4

(

l(uǫ4)
)

1uǫ4 = ξ (uǫ1 + uǫ2 − uǫ4) in QT ,



























(2.7)

with initial and boundary conditions

uǫj (x, 0) = uǫj,0(x), j = 1, 2, 3, 4 in�,

uǫi (x, t) = 0, i = 1, 2, 4in6T ,

where Gj,ǫ =
Gj

1+ ǫ|Gj|
, j = 1, 2, 3.

We apply the Faedo-Galerkin method to solve (2.7). Let {el}
be a denumerable orthogonal base of H1

0(�) orthonormal with
respect to L2(�). We consider the sequence of finite dimensional

spaces Sn = span {el, l ≤ n}. Let uǫj,n(x, t) =

n
∑

l= 1

cj,n,l(t)el(x),

j = 1, 2, 3, 4, be the weak solution of system (2.7), where cj,n,l(t),
j = 1, 2, 3, 4 are unknowns of the nonlinear FODE system,

∫

�

∂αt u
ǫ
1,nemdx+ d1

(

l(uǫ1,n)
)

∫

�

∇uǫ1,n∇emdx

+

∫

�

G1,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n)emdx = (1− ρ)

∫

�

uǫ1,nemdx,

∫

�

∂αt u
ǫ
2,nemdx+ d2

(

l(uǫ2,n)
)

∫

�

∇uǫ2,n∇emdx

+

∫

�

G2,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n)emdx

=

∫

�

(r2u
ǫ
2,n + ρu

ǫ
1,n)emdx, (2.8)

∫

�

∂αt u
ǫ
3,nemdx+

∫

�

G3,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n, u

ǫ
4,n)emdx

=

∫

�

r3u
ǫ
3,nemdx,

∫

�

∂αt u
ǫ
4,nemdx+ d4

(

l(uǫ4,n)
)

∫

QT

∇uǫ4,n∇emdx

=

∫

�

ξ (uǫ1,n + uǫ2,n − uǫ4,n)emdx,

for all em ∈ Sn. Thus, we get

C
0D

α
t c1,n,m(t) = −d1

(

l(uǫ1,n)
)

∫

�

∇uǫ1,n∇emdx

−

∫

�

G1,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n)emdx+ (1− ρ)

∫

�

uǫ1,nemdx,

= : Fm1 (t, {c1,n,l}
n
l= 1, {c2,n,l}

n
l= 1, {c3,n,l}

n
l= 1, {c4,n,l}

n
l= 1),

C
0D

α
t c2,n,m(t) = −d2

(

l(uǫ2,n)
)

∫

�

∇uǫ2,n∇emdx

−

∫

�

G2,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n)emdx+

∫

�

(r2u
ǫ
2,n + ρu

ǫ
1,n)φ2,ndx,

= : Fm2 (t, {c1,n,l}
n
l= 1, {c2,n,l}

n
l= 1, {c3,n,l}

n
l= 1, {c4,n,l}

n
l= 1),

(2.9)

C
0D

α
t c3,n,m(t) = −

∫

�

G3,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n, u

ǫ
4,n)emdx

+

∫

�

r3u
ǫ
3,nemdx,

= : Fm3 (t, {c1,n,l}
n
l= 1, {c2,n,l}

n
l= 1, {c3,n,l}

n
l= 1, {c4,n,l}

n
l= 1),

C
0D

α
t c4,n,m(t) = −d4

(

l(uǫ4,n)
)

∫

�

∇uǫ4,n∇emdx+

∫

�

ξ (uǫ1,n + uǫ2,n − uǫ4,n)emdx,

= : Fm4 (t, {c1,n,l}
n
l= 1, {c2,n,l}

n
l= 1, {c3,n,l}

n
l= 1, {c4,n,l}

n
l= 1).

Further, it is east to see that all Fmj , j = 1, 2, 3, 4 are continuous

functions of cj,n,l(t). From the Theorem 2.1, the system (2.9) has
a local solution cj,n,l(t), j = 1, 2, 3, 4 on some interval [0, tn),
0 < tn < T. The extension of these solutions to the whole interval
[0,T] is a consequence of the following apriori estimates.
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Lemma 2.5. Assume the hypothesis of Theorem 2.3. Then there
exists a constant C > 0 is independent on n such that

‖(uǫ1,n, u
ǫ
2,n, u

ǫ
3,n, u

ǫ
4,n)‖L∞(0,T;L2(�))

≤ C, ‖(uǫ1,n, u
ǫ
2,n, u

ǫ
4,n)‖L2(0,T;H1

0 (�))
≤ C,

‖G1,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n)u

ǫ
1,n‖L1(QT )

+‖G2,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n)u

ǫ
2,n‖L1(QT )

+‖G3,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n, u

ǫ
4,n)u

ǫ
3,n‖L1(QT ) ≤ C.































(2.10)

Proof: Now, we set φj,n(x, t) =

n
∑

l= 1

bj,n,l(t)el(x), j = 1, 2, 3, 4.

the coefficients {bj,n,l}, j = 1, 2, 3, 4. are absolutely continuous
functions. Then, from (2.8), the Faedo-Galerkin approximation
solution satisfy the following weak formulation

∫

�

∂αt u
ǫ
1,nφ1,ndx+ d1

(

l(uǫ1,n)
)

∫

�

∇uǫ1,n∇φ1,ndx

+

∫

�

G1,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n)φ1,ndx

= (1− ρ)

∫

�

uǫ1,nφ1,ndx,

∫

�

∂αt u
ǫ
2,nφ2,ndx+ d2

(

l(uǫ2,n)
)

∫

�

∇uǫ2,n∇φ2,ndx

+

∫

�

G2,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n)φ2,ndx

=

∫

�

(r2u
ǫ
2,n + ρu

ǫ
1,n)φ2,ndx, (2.11)

∫

�

∂αt u
ǫ
3,nφ3,ndx+

∫

�

G3,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n, u

ǫ
4,n)φ3,ndx

=

∫

�

r3u
ǫ
3,nφ3,ndx,

∫

�

∂αt u
ǫ
4,nφ4,ndx+ d4

(

l(uǫ4,n)
)

∫

QT

∇uǫ4,n∇φ4,ndx

=

∫

�

ξ (uǫ1,n + uǫ2,n − uǫ4,n)φ4,ndx.

Choosing φj,n = uǫj,n, j = 1, 2, 3, 4,, respectively, in the above

system (2.11) and summing the resulting terms, we get

1

2
C
0D

α
t

∫

�

4
∑

j= 1

|uǫj,n|
2dx+

∫

�

(m1|∇uǫ1,n|
2 +m2|∇uǫ2,n|

2 +m4|∇uǫ4,n|
2)dx

+

∫

�

G1,ǫ (x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n)u

ǫ
1,ndx+

∫

�

G2,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n)u

ǫ
2,ndx

+

∫

�

G3,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n, u

ǫ
4,n)u

ǫ
3,ndx ≤ C

∫

�

4
∑

j= 1

|uǫj,n|
2dx,

where C is the positive constant which does not depend on n and
t. Further, using the Lemma 2.3, we have,

∫

�

4
∑

j= 1

|uǫj,n|
2dx ≤ C, (2.12)

for some positive constant C depending only on the given data
and independent of n. From (2.12), we get

‖(uǫ1,n, u
ǫ
2,n, u

ǫ
3,n, u

ǫ
4,n)‖L∞(0,T;L2(�)) ≤ C,

‖(uǫ1,n, u
ǫ
2,n, u

ǫ
4,n)‖L2(0,T;H1

0 (�))
≤ C.

(2.13)

Using the results (2.12) and (2.13), we get

‖G1,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n)u

ǫ
1,n‖L1(QT )

+‖G2,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n)u

ǫ
2,n‖L1(QT )

+‖G3,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n, u

ǫ
4,n)u

ǫ
3,n‖L1(QT ) ≤ C.

(2.14)

Lemma 2.6. Assume the hypothesis of Theorem 2.3. Then
{ũǫ1,n, ũ

ǫ
2,n, ũ

ǫ
4,n} is bounded set ofW

α(R,H1
0(�), L

2(�)), where

z̃ǫ,n(x, t) =

{

zǫ,n(x, t) t ∈ [0,T],
0 R \ [0,T].

(2.15)

Proof: In order to prove the result, Theorem 2.2 with Lemma 2.5,
we have to show that

∫ ∞

−∞

|τ |2γ |ûǫj,n(τ )|dτ ≤ C, j = 1, 2, 4, (2.16)

for some γ > 0, where ûǫj,n, j = 1, 2, 4 denote the Fourier

transform of ũǫj,n, j = 1, 2, 4.

Now, rewritten is defined as in (2.7),

(C0D
α
t ũ
ǫ
1,n,φj) = 〈F̃n1 ,φj〉 + (u1,n(0),φj)−∞I1−αt δ0

−(u1,n(T),φj)−∞I1−αt δT ,

(C0D
α
t ũ
ǫ
2,n,φj) = 〈F̃n2 ,φj〉 + (u2,n(0),φj)−∞I1−αt δ0

−(u2,n(T),φj)−∞I1−αt δT ,

(C0D
α
t ũ
ǫ
4,n,φj) = 〈F̃n4 ,φj〉 + (u4,n(0),φj)−∞I1−αt δ0

−(u4,n(T),φj)−∞I1−αt δT ,



































(2.17)

where F̃ni is defined as in (2.15),

Fn1 = d1
(

l(uǫ1)
)

1uǫ1 − G1,ǫ(x, t, u
ǫ
1, u

ǫ
2, u

ǫ
3)+ uǫ1 − ρu

ǫ
1,

Fn2 = d2
(

l(uǫ2)
)

1uǫ2 − G2,ǫ(x, t, u
ǫ
1, u

ǫ
2, u

ǫ
3)+ r2u

ǫ
2 + ρu

ǫ
1,

Fn4 = d4
(

l(uǫ4)
)

1uǫ4 + ξ (u
ǫ
1 + uǫ2 − uǫ4).

Here δ0 and δT denote the Dirac distribution at 0 and T.
Indeed, it is classical that since ũm has discontinuities at 0
and T, the Caputo derivatives of ũn is given by Zhou and
Peng [12] and Zhou et al. [19]. Substitute φj,n = ûǫj,n j =

1, 2, 4,, respectively, in (2.11), and using the Fourier transform,
we get

(2iπτ )α |ûǫ1,n(τ )|
2 = 〈F̂n1 , û

ǫ
1,n〉 + (u1,n(0), û

ǫ
1,n(τ ))(2iπτ )

α−1

−(u1,n(T), û
ǫ
1,n(τ ))e

−2iπTτ ,

(2iπτ )α |ûǫ2,n(τ )|
2 = 〈F̂n2 , û

ǫ
2,n〉 + (u2,n(0), û

ǫ
2,n(τ ))(2iπτ )

α−1

−(u2,n(T), û
ǫ
2,n(τ ))e

−2iπTτ ,

(2iπτ )α |ûǫ4,n(τ )|
2 = 〈F̂n4 , û

ǫ
4,n〉 + (u4,n(0), û

ǫ
4,n(τ ))(2iπτ )

α−1

−(u4,n(T), û
ǫ
4,n(τ ))e

−2iπTτ .































(2.18)
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It is obvious that the boundedness of solution
shows that,

sup
τ∈R

‖F̂ni (τ )‖H−1(�) ≤ C, ∀n, i = 1, 2, 4,

where C > 0 is a positive constant. On account of
{(uǫ1,n, u

ǫ
2,n, u

ǫ
4,n)} is bounded set in L∞(0,T; L2(�)),

we get

(

|u1,n(0)|, |u2,n(0)|, |u4,n(0)|
)

≤ C and
(

|u1,n(T)|, |u2,n(T)|, |u4,n(T)|
)

≤ C,

and from (2.18), we get

|τ |α|ûǫi,n(τ )|
2 ≤ Cmax{1, |τ |α−1} ‖ûǫi,n(τ )‖H1

0 (�)
, i = 1, 2, 4.

For γ fixed, γ < α
4 , we see that

|τ |2γ ≤ C(γ )
1+ |τ |α

1+ |τ |α−2γ
.

Accordingly

∫ ∞

−∞

|τ |2γ |ûǫi,n(τ )|
2dτ ≤ C(γ )

∫ ∞

−∞

1+ |τ |α

1+ |τ |α−2γ
|ûǫi,n|

2dτ

≤ C1(γ )

∫ ∞

−∞

‖ûǫi,n‖
2
H1
0 (�)

dτ

+C2(γ )

∫ ∞

−∞

|τ |α−1‖ûǫi,n(τ )‖H1
0 (�)

1+ |τ |α−2γ
dτ .

Applying the Parseval identity, the first integral is
bounded as n → ∞, and we have to prove that

∫ ∞

−∞

|τ |α−1‖ûǫi,n(τ )‖H1
0 (�)

1+ |τ |α−2γ
dτ ≤ C. (2.19)

From the Schwarz inequality, we prove (2.19) as follows.

∫ ∞

−∞

|τ |α−1‖ûǫi,n(τ )‖H1
0 (�)

1+ |τ |α−2γ
dτ ≤

(∫ ∞

−∞

dτ

(1+ |τ |α−2γ )2

)
1
2

(∫ ∞

−∞

|τ |2α−2‖ûǫi,n(τ )‖
2
H1
0 (�)

dτ

)

,

the first integral is finite due to γ < 1
4 . On the other hand, it

follows from the Parseval identity that

∫ ∞

−∞

|τ |2α−2‖ûǫi,n(τ )‖
2
H1
0 (�)

dτ =

∫ ∞

−∞

(‖−∞I1−αt ũǫi,n(t)‖H1
0 (�)

)2dt

=

∫ T

0
‖0I

1−α
t uǫi,n(t)‖

2
H1
0 (�)

dt

≤

(

T1−α

Ŵ(2− α)

)2 ∫ T

0
‖uǫi,n(t)‖

2
H1
0 (�)

dt.

From the above integral, we understand that (2.19) is true. Thus,
{ũǫ1,n, ũ

ǫ
2,n, ũ

ǫ
4,n} is bounded set ofWα(R,H1

0(�), L
2(�)).

Theorem 2.4. Suppose the hypotheses of Theorem 2.3 hold true,
then the regularized system (2.7) possesses a weak solution
(uǫ1, u

ǫ
2, u

ǫ
3, u

ǫ
4), which satisfies the following conditions:

uǫ1, u
ǫ
2, u

ǫ
4 ∈ L∞(0,T; L2(�)) ∩ L2(0,T;H1

0(�)),

uǫ3 ∈ L∞(0,T; L2(�)),

such that for every φj ∈ L2(0,T;H1
0(�)), j = 1, 2, 3, 4,

∫ T
0 ∂

α
t (u

ǫ
1,φ1)dt + d1

(∫

�
uǫ1dx

) ∫

QT
∇uǫ1∇φ1dxdt

+
∫

QT
G1,ǫ(x, t, u

ǫ
1, u

ǫ
2, u

ǫ
3)φ1dxdt = (1− ρ)

∫

QT
uǫ1φ1dxdt,

∫ T
0 ∂

α
t (u

ǫ
2,φ2)dt + d2

(∫

�
uǫ2dx

) ∫

QT
∇uǫ2∇φ2dxdt

+
∫

QT
G2,ǫ(x, t, u

ǫ
1, u

ǫ
2, u

ǫ
3)φ2dxdt =

∫

QT
(r2u

ǫ
2 + ρu

ǫ
1)φ2dxdt,

∫ T
0 ∂

α
t (u

ǫ
3,φ3)dt +

∫

QT
G3(x, t, u

ǫ
1, u

ǫ
2, u

ǫ
3, u

ǫ
4)φ3dxdt

=
∫

QT
r3u

ǫ
3φ3dxdt,

∫ T
0 ∂

α
t (u

ǫ
4,φ4)dt + d4

(∫

�
uǫ4dx

) ∫

QT
∇uǫ4∇φ4dxdt

=
∫

QT
ξ (uǫ1 + uǫ2 − uǫ4)φ4dxdt.

Proof: By Lemma 2.5, Lemma 2.6 and Theorem 2.2, we can
extract the subsequences of (uǫ1,n, u

ǫ
2,n, u

ǫ
3,n, u

ǫ
4,n) such that as n →

∞, we get

(uǫ1,n, u
ǫ
2,n, u

ǫ
3,n, u

ǫ
4,n)⇀ (uǫ1, u

ǫ
2, u

ǫ
3, u

ǫ
4) weak * in L∞(0,T; L2(�)),

(uǫ1,n, u
ǫ
2,n, u

ǫ
4,n)⇀ (uǫ1, u

ǫ
2, u

ǫ
4) weakly in L2(0,T;H1

0(�)).

It is enough, we show that

dj(l(u
ǫ
j,n)) → dj(l(u

ǫ
j )) in L2(0,T),∀T > 0, j = 1, 2, 4.

Since dj is continuous functions, it is enough to show that

l(uǫj,n) → l(uǫj ) strongly in L2(0,T).

Now,

∫ T

0
|l(uǫj,n)− l(uǫj )|

2dt =

∫ T

0
|l(uǫj,n − uǫj )|

2dt ≤ C

∫ T

0
|uǫj,n − uǫj |

2dt.

This result concludes that

dj(l(u
ǫ
j,n)) → dj(l(u

ǫ
j )) in L2(0,T),∀T > 0, j = 1, 2, 4.

Substitute φ1,n = v and integrate the first equation of (2.11)
from 0 to t and 0 to t0, respectively. Then, subtract the resulting
equation, we get

(uǫ1,n(t0), v)− (uǫ1,n(t), v)

=

∫ t0

0
(t0 − s)α−1 − (t − s)α−1((d1(l(u

ǫ
1,n))∇uǫ1,n,∇v)

+(G1,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n)− (1− ρ)uǫ1,n, v)ds

−

∫ t0

0
(t − s)α−1((d1(l(u

ǫ
1,n))∇uǫ1,n,∇v)

+(G1,ǫ(x, t, u
ǫ
1,n, u

ǫ
2,n, u

ǫ
3,n)− (1− ρ)uǫ1,n, v)ds.
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Using the Lemma 2.6 and the Lebesgue dominated convergence
theorem, we can prove that (uǫ1(t), v)− (uǫ1(t0), v) → 0 as t → t0
as in Zhou and Peng [12] and Zhou et al. [19]. Similarly, it can
be show that (uǫ2(t), v) − (uǫ2(t0), v) → 0 as t → t0, (u

ǫ
3(t), v) −

(uǫ3(t0), v) → 0 as t → t0 and (uǫ4(t), v) − (uǫ4(t0), v) → 0 as
t → t0.

Now, we prove the Theorem 2.3 and some priori estimates and
compactness results.

Lemma 2.7. Assume that the assumptions of Theorem 2.3 are
satisfied, then

‖uǫ1, u
ǫ
2, u

ǫ
3, u

ǫ
4‖L∞(0,T;L2(�)) ≤ C, ‖uǫ1, u

ǫ
2, u

ǫ
4‖L2(0,T;H1

0 (�))
≤ C,

‖G1,ǫ(x, t, u
ǫ
1, u

ǫ
2, u

ǫ
3)u

ǫ
1‖L1(QT ) + ‖G2,ǫ(x, t, u

ǫ
1, u

ǫ
2, u

ǫ
3)u

ǫ
2‖L1(QT )

+‖G3,ǫ(x, t, u
ǫ
1, u

ǫ
2, u

ǫ
3, u

ǫ
4)u

ǫ
3‖L1(QT ) ≤ C.







(2.20)

Proof: Let us presume u−ǫj = sup(0,−uǫj ), j = 1, 2, 3, 4.

Multiplying the first equation (2.7) by u−ǫ1 and integrating over
�, we get

1

2
C
0D

α
t

∫

�

|u−ǫ1 |2dx+m1

∫

�

|∇u−ǫ1 |2dx

+

∫

�

G1,ǫ(x, t, u
−ǫ
1 , u−ǫ2 , u−ǫ3 )u−ǫ1 dxleq

∫

�

(1− ρ)|u−ǫ1 |2dx.

Using the assumptions of the given data, we get

1

2
C
0D

α
t

∫

�

|u−ǫ1 |2dx ≤ 0.

This concludes that the solution uǫ1 is a nonnegative solution.
Similarly, we can claim that solution uǫ2, u

ǫ
3, u

ǫ
4 are nonnegative.

We prove (2.20) as in Lemma 2.5, by replacing uǫi,n by uǫj , j =

1, 2, 3, 4.

Lemma 2.8. Assume the hypothesis of Theorem 2.3 are hold true.
Then {ũǫ1, ũ

ǫ
2, ũ

ǫ
4} is bounded set ofW

α(R,H1
0(�), L

2(�)), where

z̃ǫ(x, t) =

{

zǫ(x, t) t ∈ [0,T],
0 R \ [0,T].

Proof: As similar as proof of the Lemma 2.6.

Proof of Theorem 2.3: From Lemma 2.7, Lemma 2.8 and
Theorem 2.2, we understand that sequences have convergent
subsequences which are still denoted by (uǫ1, u

ǫ
2, u

ǫ
3, u

ǫ
4). Then

there exists (u1, u2, u3, u4) as n → ∞, we get

(uǫ1, u
ǫ
2, u

ǫ
3, u

ǫ
4)⇀ (u1, u2, u3, u4) weak * in L∞(0,T; L2(�)),

(uǫ1, u
ǫ
2, u

ǫ
4)⇀ (u1, u2, u4) weakly in L2(0,T;H1

0(�)).

This concludes the proof of the Theorem 2.3.

Theorem 2.5. The solution (u1, u2, u3, u4) of system (1.1)
is unique.

Proof: Let (v1, v2, v3, v4) and (ṽ1, ṽ2, ṽ3, ṽ4) be any two solutions
of (1.1). Now, we consider ui = vi − ṽi, i = 1, 2, 3, 4 and choose
φi = ui, i = 1, 2, 3, 4 in (2.6), we get

1

2
C
0D

α
t

∫

�

|u1(x, t)|
2dx+

∫

�

(d1(l(v1))∇v1

−d1(l(ṽ1)∇ ṽ1))∇u1dx+

∫

�

(G1(x, t, v1, v2, v3)

−G1(x, t, ṽ1, ṽ2, ṽ3))u1dx ≤ (1− ρ)

∫

�

|u1|
2dx,

1

2
C
0D

α
t

∫

�

|u2(x, t)|
2dx+

∫

�

(d2(l(v2))∇v2

−d2(l(ṽ2)∇ ṽ2))∇u2dx+

∫

�

(G2(x, t, v1, v2, v3)

−G1(x, t, ṽ1, ṽ2, ṽ3))u1dx

≤ r2

∫

�

|u2|
2dx+ ρ

∫

�

u1u2dx,

1

2
C
0D

α
t

∫

�

|u3(x, t)|
2dx+

∫

�

(G3(x, t, v1, v2, v3, v4)

−G1(x, t, ṽ1, ṽ2, ṽ3, ṽ4))u3dx ≤ r3

∫

�

|u3|
2dx,

1

2
C
0D

α
t

∫

�

|u2(x, t)|
2dx+

∫

�

(d4(l(v4))∇v4

−d2(l(ṽ4)∇ ṽ4))∇u4dx

≤ ξ

∫

�

(u1 + u2 − u4)u4dx.

Using the Lipschitz assumptions of di, i = 1, 2, 4, the non-
negativity and boundedness of solutions of (2.7) with the Young
inequality, we obtain

1

2

∫

�

|u1(x, t)|
2dx ≤

1

2

∫

�

|u1(x, 0)|
2dx

+
C

Ŵ(α)

(∫

Qt

(t − s)α−1(|u1|
2 + |u2|

2 + |u3|
2 + |u4|

2)dxds

)

,

1

2

∫

�

|u2(x, t)|
2dx ≤

1

2

∫

�

|u2(x, 0)|
2dx

+
C

Ŵ(α)

(∫

Qt

(t − s)α−1(|u1|
2 + |u2|

2 + |u3|
2 + |u4|

2)dxds

)

,

1

2

∫

�

|u3(x, t)|
2dx ≤

1

2

∫

�

|u3(x, 0)|
2dx

+
C

Ŵ(α)

(∫

Qt

(t − s)α−1(|u1|
2 + |u2|

2 + |u3|
2 + |u4|

2)dxds

)

,

1

2

∫

�

|u4(x, t)|
2dx ≤

1

2

∫

�

|u4(x, 0)|
2dx

+
C

Ŵ(α)

(∫

Qt

(t − s)α−1(|u1|
2 + |u2|

2 + |u3|
2 + |u4|

2)dxds

)

.

Summing up the above inequalities and using the Lemma 2.3,
we get

∫

�

4
∑

j= 1

uj|uj(x, t)|
2dx ≤

∫

�

4
∑

j= 1

|uj(x, 0)|
2dxEα

[

Ctα
]

.

This concludes the proof of the theorem.
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3. FINITE ELEMENT SCHEME

In this section, we present a finite element scheme for the
consideredmodel (1.1). Here, first we present a weak formulation
for time-fractional cancer invasion system (1.1), where the time-
fractional derivative is the Caputo derivative. Further, the spatial
and temporal discretization are presented. Furthermore, an
iteration fixed point type is proposed to handle the nonlinear
terms of the system as in Ganesan and Shangerganesh [52, 53]
and Ganesan and Tobiska [54].

3.1. Finite Element Semi-discretization
Let Th be a partition of� into non overlapping triangles Tk ∈ Th

cells, and use the piecewise linear (P1) finite elements on each
cell. Now, let Vh ⊂ V be a conforming finite element subspace
of V with basis function {φk}

N
k=1

such that Vh = span{φk}, where
N is the number of degrees of freedom. Then the semidiscrete
problem, based on (2.6) is to find a solution wh ∈ Vh such that
for a.e t ∈ (0,T), for all ψ ∈ Vh

(

∂αt wh,ψ
)

+ B(wh,ψ) = F(wh,ψ), (3.1)

where B(wh,ψ) =









bu1 (u1,h; u1,h; u2,h; u3,h,ψ1)
bu2 (u2,h; u1,h; u2,h; u3,h,ψ2)
bu3 (u3,h; u1,h; u2,h; u3,h; u4,h,ψ3)
bu4 (u4,h; u4,h,ψ4)









&

TABLE 1 | Errors and order of convergence when α = 0.4.

Solution DOF E1 Order E2 Order

1,681 8.8022e-04 – 6.7042e-05 –

3,721 3.7878e-04 2.0796 2.6989e-05 2.2441

6,561 2.0931e-04 2.0618 1.4391e-05 2.1858

u1 10,201 1.3242e-04 2.0517 8.9000e-06 2.1535

14,641 9.1204e-05 2.0451 6.0329e-06 2.1327

19,881 6.6591e-05 2.0404 4.3525e-06 2.1179

1,681 7.6859e-04 – 4.5739e-05 –

3,721 3.4022e-04 2.0099 1.9983e-05 2.0423

6,561 1.9106e-04 2.0057 1.1160e-05 2.0248

u2 10,201 1.2217e-04 2.0038 7.1161e-06 2.0167

14,641 8.4801e-05 2.0027 4.9308e-06 2.0122

19,881 6.2283e-05 2.0020 3.6174e-06 2.0093

1,681 6.6151e-04 – 3.9619e-05 –

3,721 3.0022e-04 1.9484 1.7969e-05 1.9500

6,561 1.7139e-04 1.9485 1.0230e-05 1.9581

u3 10201 1.1087e-04 1.9520 6.6013e-06 1.9632

14,641 7.7621e-05 1.9555 4.6120e-06 1.9669

19,881 5.7394e-05 1.9585 3.4044e-06 1.9696

1,681 7.4462e-04 – 4.3353e-05 –

3,721 3.3183e-04 1.9934 1.9333e-05 1.9917

6,561 1.8706e-04 1.9925 1.0897e-05 1.9930

u4 10201 1.1991e-04 1.9926 6.9836e-06 1.9937

14,641 8.3381e-05 1.9929 4.8548e-06 1.9943

19,881 6.1324e-05 1.9932 3.5696e-06 1.9947

F(wh,ψ) =









0
f1(u1,h,ψ2)
0
f2(u1,h, u2,h,ψ4)









.

Further,

bu1 (u1,h; u1,h; u2,h; u3,h,ψ1) =

∫

�

d1
(

l(u1,h)
)

∇u1,h∇ψ1dx

+

∫

�

u1,h(u1,h + β1u2,h

+ρ + γ1u3,h − 1)ψ1dx,

bu2 (u2,h; u1,h; u2,h; u3,h,ψ2) =

∫

�

d2
(

l(u2,h)
)

∇u2,h∇ψ2dx

+

∫

�

u2,h(r2u2,h + β2u1,h

+δ1u3,h − r2)ψ2dx,

bu3 (u3,h; u1,h; u2,h; u3,h; u4,h,ψ3) =

∫

�

u3,h(r3u3,h + γ2u1,h

+δ2u2,h + σu4,h − r3)ψ3dx,

bu4 (u4,h; u1,h; u2,h; u4,h,ψ4) =

∫

�

d4
(

l(u4,h)
)

∇u4,h∇ψ4dx

+

∫

�

ξu4,hψ4dx,

f1(u1,h,ψ2) =

∫

�

ρu1,hψ2dx, f2(u1,h, u2,h,ψ4)

TABLE 2 | Errors and order of convergence when α = 0.7.

Solution DOF E1 Order E2 Order

1,681 7.7526e-04 – 4.6665e-05 –

3,721 3.4257e-04 2.0143 2.0324e-05 2.0500

6,561 1.9216e-04 2.0096 1.1325e-05 2.0327

u1 10,201 1.2279e-04 2.0072 7.2090e-06 2.0242

14,641 8.5179e-05 2.0058 4.9887e-06 2.0193

19,881 6.2534e-05 2.0048 3.6562e-06 2.0159

1,681 7.6487e-04 – 4.4678e-05 –

3,721 3.3948e-04 2.0034 1.9742e-05 2.0144

6,561 1.9086e-04 2.0018 1.1081e-05 2.0075

u2 10201 1.2212e-04 2.0011 7.0844e-06 2.0046

14,641 8.4795e-05 2.0007 4.9169e-06 2.0032

19,881 6.2293e-05 2.0005 3.6111e-06 2.0023

1,681 7.1022e-04 – 4.2731e-05 –

3,721 3.2366e-04 1.9382 1.9221e-05 1.9703

6,561 1.8433e-04 1.9569 1.0875e-05 1.9798

u3 10,201 1.1884e-04 1.9672 6.9836e-06 1.9847

14,641 8.2922e-05 1.9737 4.8606e-06 1.9878

19,881 6.1129e-05 1.9780 3.5766e-06 1.9898

a 1,681 7.4845e-04 – 4.3789e-05 –

3,721 3.3488e-04 1.9835 1.9527e-05 1.9918

6,561 1.8900e-04 1.9885 1.1001e-05 1.9945

u4 10201 1.2119e-04 1.9912 7.0474e-06 1.9958

14,641 8.4270e-05 1.9930 4.8970e-06 1.9967

19,881 6.1969e-05 1.9941 3.5993e-06 1.9972
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=

∫

�

ξ (u1,h + u2,h)ψ4dx.

Furthermore, using the basis {φk}
N
k=1

, we describe the discrete
solution wh ∈ Vh, in terms of the basis of Vh as

uj,h =

N
∑

k=1

uj,k(t)φk(x), j = 1, 2, 3, 4,

where uj,k(t), j = 1, 2, 3, 4, t ∈ [0,T], are the unknown
coefficients to be determined. Thus, we have

M
C
0D

α
t ω(t)+Aω = F, (3.2)

where ω = (u1,1, u2,2, . . . , u1,N , u2,1, u2,2, . . . , u2,N , u3,1, u3,2, . . . ,
u3,N , u4,1, u4,2, . . . , u4,N ) is unknown vector. Further, mass

FIGURE 1 | Evaluation of u1 and u2 at T = 10, 20 with the different values of α = 0.1, 0.7, and 1.
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matrix M, stiffness matrices A and known vectors F1, F2 are
given by

M =









M 0 0 0
0 M 0 0
0 0 M 0
0 0 0 M









, (M)pq =

∫

Th

φp(x)φq(x),

A =









A(U1)

A(U2)

A(U3)

A(U4)









,

(A(U1))pq =

∫

Th

d1

(

l

(

N
∑

k=1

u1,k(t)φk(x)

))

∇φp(x)∇φq(x)dx

FIGURE 2 | Evaluation of u3 and u4 at T = 10, 20 with the different values of α = 0.1, 0.7, and 1.
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+

∫

Th

(

N
∑

k=1

u1,k(t)φk(x)+ β1

N
∑

k=1

u2,k(t)φk(x)

+ρ + γ1

N
∑

k=1

u3,k(t)φk(x)− 1

)

φp(x)φq(x)dx,

(A(U2))pq =

∫

Th

d2

(

l

(

N
∑

k=1

u2,k(t)φk(x)

))

∇φp(x)∇φq(x)dx

+

∫

Th

(

r2

N
∑

k=1

u2,k(t)φk(x)+ β2

N
∑

k=1

u1,k(t)φk(x)

+δ1

N
∑

k=1

u3,k(t)φk(x)− r2

)

φp(x)φq(x)dx,

(A(U3))pq =

∫

Th

(

r3

N
∑

k=1

u3,k(t)φk(x)+

γ2

N
∑

k=1

u1,k(t)φk(x)+ δ2

N
∑

k=1

u2,k(t)φk(x)

+σ

N
∑

k=1

u4,k(t)φk(x)− r3

)

φp(x)φq(x)dx,

(A(U4))pq =

∫

Th

d1

(

l

(

N
∑

k=1

u4,k(t)φk(x)

))

∇φp(x)∇φq(x)dx,

F =









0
F1
0
F2









, (F1) =

∫

Th

ρ

N
∑

k=1

u1,k(t)φk(x)φq(x)dx,

(F2) =

∫

Th

ξ

(

N
∑

k=1

u1,k(t)φk(x)φq(x)

+

N
∑

k=1

u2,k(t)φk(x)φq(x)

)

dx.

The system (3.2) is a FODE system. Solvability of (3.2) can be
achieved as in Theorem 2.3 and Theorem 2.5.

3.1.1. Temporal Discretization and Linearization

We present now the time discretization of (3.2). Let 0 = t0 <
t1 < t2 < · · · < tN = T be a decomposition of the considered
time interval [0,T] and δt = tr − tr−1, r = 1, 2, 3, . . . ,N
represents the uniform time step. We discretize the Caputo
fractional time derivative be using finite difference scheme as in
Lin and Xu [55] and Sun and Wu [56]. The approximation is

FIGURE 3 | Evaluation of u1, u2, u3, and u4 at t = 5 along the line y = x.
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given by

∂αt u(x, tr) =
δ−αt

Ŵ(2− α)

r
∑

l=0

al

(

u(x, tr+1−l)− u(x, tr−l)
)

, (3.3)

al = (l + 1)α−1 − (l)α−1, l = 1, 2, 3, . . . , r.
Substitute (3.3) in (3.1), we have

(

δ−αt

Ŵ(2− α)

r
∑

l=0

al

(

wr+1−l − wr−l

)

,φ

)

+B(wr+1,φ) = F(wr+1,φ),

(3.4)

where al = (l + 1)α−1 − (l)α−1, r = 1, 2, 3, . . . ,N and ψ ∈

V . Moreover, we use fixed point iteration technique to control
the nonlinear terms of the given system. Initiate with u0j,n+1 =

uj,n, j = 1, 2, 3, 4, then the nonlinear terms in (3.4) can be
written as

bu1 (u
m
1,r+1; u

m
1,n+1; u

m
2,r+1; u

m
3,r+1,φ) ≃ bu1

(um
1,r+1; u

m−1
1,r+1; u

m−1
2,r+1; u

m−1
3,r+1,φ),

bu2 (u
m
2,r+1; u

m
1,r+1; u

m
2,r+1; u

m
3,r+1,φ) ≃ bu2

(um
1,r+1; u

m−1
1,r+1; u

m−1
2,r+1; u

m−1
3,r+1,φ),

bu3 (u
m
3,r+1; u

m
1,r+1; u

m
2,r+1; u

m
3,r+1; u

m
3,r+1,φ) ≃ bu3

(um
3,r+1; u

m−1
1,r+1; u

m−1
2,r+1; u

m−1
3,r+1; u

m−1
4,r+1,φ),

for m = 1, 2, 3, . . .. In addition, we iterate until the residual
is less than the prescribed threshold value (10−10) or the given
maximal number of iterations is reached. In computations, the
fixed point iteration converges within six or seven iterations for
the prescribed residual value. Furthermore, the number of fixed
point iteration increases when δt is increased.

4. NUMERICAL EXPERIMENT

In this section, we perform series of numerical computations
to understand the impact of α in cancer invasion system. Here,
all numerical computations are performed in the unit square
domain � = [0, 1] × [0, 1]. We used Freefem++ [57] for
finite element scheme and UMFPACK [58, 59] is used to solve
the resulting algebraic system. All computations are carried out
by using Intel (R) Core (TM) i7-7700 CPU with 3.60GHz and
8 GB RAM.

4.1. Convergence Study
We consider the cancer invasion model (2.5)

∂αt u1 − d1
(

l(u1)
)

1u1 − u1(1− u1)+ β1u1u2 + ρu1 + γ1u1u3 = fu1 ,

∂αt u2 − d2
(

l(u2)
)

1u2 − r2u2(1− u2)+ β2u1u2 − ρu1 + δ1u2u3 = fu2 ,

∂αt u3 − r3u3(1− u3)+ γ2u1u3 + δ2u2u3 + σu3u4 = fu3 ,

∂αt u4 − d4
(

l(u4)
)

1u4 − ξ (u1 + u2 − u4) = fu4 ,























(4.1)

FIGURE 4 | Evaluation of u1, u2, u3, and u4 at t = 10 along the line y = x.
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where fu1 , fu2 , fu3 , and fu4 are forcing terms. They are chosen such
that following smooth solutions are satisfies (4.1).

u1 = (1+ t2)((x− x2)(y− y2)),

u2 = (1+ t)((x− x2)(y− y2)),

u3 = (1+ 3t2)((x− x2)(y− y2)),

u4 = (1+ t2)((x− x2)(y− y2)).

Moreover, we fixed di(l(ui)) = Di sin(l(ui)) where l(u) =

∫

�

udx.

Further all other parameters of the model are chosen as

D1 = 0.0035, D2 = 0.035, D4 = 0.0002,

β1 = 0.0015,β2 = 0.0015, γ1 = 0.0015, γ2 = 0.003,

r2 = 0.0012, r3 = 0.001,

ξ = 0.1, δ1 = 0.25, δ2 = 0.35, ρ = 0.0015, σ = 0.001.

A set of finite element computations on uniformly refinedmeshes

with δt = h
2

2−α are performed. In order to compare the
discretization errors at different mesh levels and verify the order
of convergence of numerical scheme, the following errors are
computed for each unknowns uj, j = 1, · · · , 4 of the system.

E1 : = L2(0,T; L2(�)) =

(

∫ T

0

(

‖u(t)− uh(t)‖
2
L2(�)

)

dt

)
1
2

,

E2 : = L∞(0,T; L2(�)) = sup
i= 1,2,3,...,n

‖u(ti)− uh(t
i)‖L2(�).

First, for α = 0.4 then the obtained numerical errors and
corresponding convergence rates are depicted in Table 1. Then,
for α = 0.7 obtained results are shown in Table 2. Tables 1, 2
clearly shows that existence of second order convergence for the
errors E1 and E2, respectively, for all unknowns of the system.

4.2. Numerical Results and Discussion
We understand the influence of fractional derivative on cancer
invasion system (1.1) by performing numerical simulations with
different values of α. All computations are performed until at end
time T = 20. Further, uniform time step size δt is taken as 0.1.
We discretize the unit square domain using triangular elements
with characteristic element length 140 × 140 and a uniform
mesh size h = 0.0101015. We used 19881 degrees of freedom
for each unknown in all computations with total 79,524 degrees
of freedom. We assumed the homogeneous Dirichlet boundary
conditions for all unknowns with the following initial conditions.

u1(x, 0) = 1.01 exp

(

−(x− 0.5)2 − (y− 0.5)2

ǫ1

)

, u2(x, 0) = 0,

u3(x, 0) = 1− 0.99 exp

(

−(x− 0.5)2 − (y− 0.5)2

ǫ1

)

,

u4(x, 0) = 1.01 exp

(

−(x− 0.5)2 − (y− 0.5)2

ǫ2

)

,

FIGURE 5 | Evaluation of u1, u2, u3, and u4 at t = 15 along the line y = x.
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FIGURE 6 | Evaluation of u1, u2, u3, and u4 at t = 20 along the line y = x.

where ǫ1 = 0.005, and ǫ2 = 0.075. We performed simulations
for α = 0.1, 0.4, 0.7, 1 and all other parameters are taken of the
model of the previous section 4.1.

Now numerical simulations are carried out to analyse the
influence of fractional parameter α on the cancer invasion system
(2.5). The first two rows of Figure 1 show the comparison
between the fractional derivatives when α = 0.1&0.7 and the
integer order derivative for cancer density u1 at time T = 10&20.
Similarly rows (iii) & (iv) of Figure 1 show the effects on cancer
density u2 at time T = 10&20. Differences on the evolution
of u1 and u2 can be observed depending on the value of α.
We observed huge morphological changes in the invasion of
cancer cells with fractional derivatives than the integer order
derivative. We note that investigations with different fractional
order derivatives suggest that they have relatively little impact
on general properties of the cancer invasion system. Fractional
derivative equips the distinct sequence of cancer cells (type I
and II) migration toward the normal cell domain, see Figure 1

when α = 0.1&0.7. Similar pattern changes also observed
in the evolution of normal cells density (u3) and acidification
concentration (u4) due to the influence of fractional derivatives,
see Figure 2 (i)− (iv).

Further, the influence of fractional derivatives α =

0.1, 0.4&0.7 compared with α = 1.0 on the evolution of cancer
density u1&u2, normal density u3 and acidification concentration

u4 are discussed along the y = x. Numerical results are
depicted in Figures 3–6 at time T = 5, 10, 15, and 20. From
the these figures (Figures 3–6), it is clear that density of cancer
cells (both type I and II) increasing when α decreases. At the
same instance, acidification concentration (due to H+ions) u4
increases, when α decreases. By comparing all these numerical
results, we understand that fractional derivatives increase the
population of cancer cells at some position of the domain.
Therefore, by comparing all the simulation results in Figures 1–
6, it is not difficult to find the that fractional derivatives change
the invasion of cancer cells toward normal cells by comparing
with integer order derivatives. Therefore, we conclude that
proposed computational model can be employed to foresee the
location and the shape of the tumor at a particular instance
during cancer growth and invasion.
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