
ORIGINAL RESEARCH
published: 18 July 2019

doi: 10.3389/fphy.2019.00103

Frontiers in Physics | www.frontiersin.org 1 July 2019 | Volume 7 | Article 103

Edited by:

Raul Vicente,

Max-Planck-Institut für Hirnforschung,

Germany

Reviewed by:

Haroldo Valentin Ribeiro,

State University of Maringá, Brazil

Reinaldo Roberto Rosa,

National Institute of Space Research

(INPE), Brazil

*Correspondence:

Miquel Alfaras

m.phy@live.com

Specialty section:

This article was submitted to

Interdisciplinary Physics,

a section of the journal

Frontiers in Physics

Received: 14 May 2019

Accepted: 03 July 2019

Published: 18 July 2019

Citation:

Alfaras M, Soriano MC and Ortín S

(2019) A Fast Machine Learning

Model for ECG-Based Heartbeat

Classification and Arrhythmia

Detection. Front. Phys. 7:103.

doi: 10.3389/fphy.2019.00103

A Fast Machine Learning Model for
ECG-Based Heartbeat Classification
and Arrhythmia Detection
Miquel Alfaras*, Miguel C. Soriano and Silvia Ortín

Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (UIB-CSIC), Palma de Mallorca, Spain

We present a fully automatic and fast ECG arrhythmia classifier based on a simple

brain-inspired machine learning approach known as Echo State Networks. Our classifier

has a low-demanding feature processing that only requires a single ECG lead. Its training

and validation follows an inter-patient procedure. Our approach is compatible with an

online classification that aligns well with recent advances in health-monitoring wireless

devices and wearables. The use of a combination of ensembles allows us to exploit

parallelism to train the classifier with remarkable speeds. The heartbeat classifier is

evaluated over two ECG databases, the MIT-BIH AR and the AHA. In the MIT-BIH

AR database, our classification approach provides a sensitivity of 92.7% and positive

predictive value of 86.1% for the ventricular ectopic beats, using the single lead II, and a

sensitivity of 95.7% and positive predictive value of 75.1%when using the lead V1’. These

results are comparable with the state of the art in fully automatic ECG classifiers and even

outperform other ECG classifiers that followmore complex feature-selection approaches.

Keywords: Echo State Networks, reservoir computing, arrhythmia classification, GPU, ECG

1. INTRODUCTION

Electrocardiogram (ECG) analysis has been established at the core of cardiovascular pathology
diagnosis since its development in the twentieth century. The ECG signals reflect the electrical
activity of the heart. Thus, heart rhythm disorders or alterations in the ECGwaveform are evidences
of underlying cardiovascular problems, such as arrhythmias. Non-invasive arrhythmia diagnosis
is based on the standard 12-lead electrocardiogram, which measures electric potentials from 10
electrodes placed at different parts of the body surface, six in the chest and four in the limbs. In order
to provide an effective treatment for arrhythmias, an early diagnosis is important. Early detection
of certain types of transient, short-term or infrequent arrhythmias requires long-term monitoring
(more than 24 h) of the electrical activity of the heart. The fast development of the digital industry
has allowed for improvements in devices, data acquisition and computer-aided diagnosis methods.

The open access to ECG databases [1] has led to the development of many methods and
approaches for computer-aided ECG arrhythmia classification over the last decades, fostering the
productive cross-disciplinary efforts that engineers, physicists or non-linear dynamics researchers
are no strangers to. Almost every computer-aided ECG classification approach involves four main
steps, namely, the preprocessing of the ECG signal, the heartbeat detection, the feature extraction
and selection and finally the classifier construction. The preprocessing of the ECG signal and
the heartbeat detection are out of the scope of this work, both widely studied, and the heartbeat
detection is close to optimal results [2].
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A large number of classifiers have been proposed for
arrhythmia discrimination. The proposed techniques range
from simple classifiers, such as linear discriminants (LD) [3–
5] or decision trees [5–7], to more sophisticated ones, such as
traditional neural networks [8–13], Support Vector Machines
(SVM) [9, 14–18], conditional random fields [19], and more
recently deep learning techniques [13, 20–22]. In addition, many
works have been devoted to finding the best combination of
features, sometimes even developing complex signal processing
methods, and to choosing the best subset (dimensionality
reduction) for the arrhythmia classification [23]. On the one
hand, popular choices for the input features are morphological
features extracted from the time domain (such as inter-beat
intervals, amplitudes, areas) [3, 14, 15, 24], frequency-domain
features [6, 7, 16, 17, 25], wavelet transforms [4, 8–11, 18,
26], complex heartbeat representations [16] or higher order
statistics (HOS) [4, 6, 7, 9]. On the other hand, feature selection
methods, such as the independent component analysis (ICA)
[18, 26], principal component analysis (PCA) [18], particle
swarm optimization (PSO) [16], or the genetic algorithm—
back propagation neural networks (GA-BPNN) [23], have
been used.

Despite the good performance in classifying arrhythmias
achieved by these methods, many of them require long
computation times to optimize the classifiers. The use of
complex classification or preprocessing methods is not suitable
for online calculations or demand a lot of computational
power. In this work, we present a fully automatic and fast
classifier of arrhythmias that can be implemented online
and analyze long sequences of ECG records efficiently.
By loosening the requirements for feature extraction, we
propose an implementation fundamentally based on raw
signals, single lead information and heart rates that aims
at reducing computation time while achieving low error
classification results.

Cardiologists use mostly the raw ECG to diagnose. The
simplest and fastest method of feature extraction is then to
extract sampled points from an ECG signal curve. However, one
should be aware of the fact that the amount of the extracted
features used to characterize the heartbeat can be a burden for the
classification algorithm. For this reason, most of the works that
use the raw signal perform a down sampling of the waveform or
some feature selection in order to reduce the computation time
[3, 4, 15]. In order to circumvent this issue, a simple machine
learning method is chosen to classify the arrhythmias. One of the
advantages of the proposedmethod is that the number of features
barely affects the speed of the classification since the classifier
parameters related to the input are not optimized and remain
random, as it will be described in more detail later in the text.
As a result, the raw waveform of the heartbeat can be used for the
classification without compromising speed. This simple machine
learning method also allows a fast retraining of the classifier if
new ECG data become available.

In this work, we propose an ensemble of Echo State Networks
(ESNs) [27] as the classifier method, using the raw ECG
waveforms and time intervals between the heartbeats as the
input features. A particular advantage of the ESNs is that they

have recurrent connections, being able to take into account time
dependencies between neighboring heartbeats. This property is
beneficial since, in the case of a normal or an abnormal heartbeat,
there are more chances that the subsequent heartbeat will also be
a healthy or a pathological one. Moreover, the ESN method can
take advantage of the power of a parallel computing architecture,
such as a graphics processing unit (GPU). Hence, we compare the
computation times between a GPU and a central processing unit
(CPU), showing that the implementation in a GPU outperforms
its CPU counterpart in the classification of the heartbeats. The
computation times of the GPU outperform those of the CPU even
in the training part of the classifier, i.e., the entire system can be
trained extremely fast with a GPU.

Finally, it is worth noting that our classifier is based on a single
lead ECG. Long-term monitoring generally involves devices with
fewer electrodes than the standard 12 leads ECG in order to allow
the patient to have a normal activity, requiring computer-aided
techniques to analyze the huge amounts of data generated. We
show that our heartbeat classification method outperforms other
classifiers that rely on much more complicated feature selection
techniques and complex calculations. We evaluate the proposed
classifier in two different ECG databases and leads to test the
robustness of the proposed algorithm.

2. MATERIALS AND METHODS

2.1. Databases
The performance of the proposed heartbeat classificationmethod
has been evaluated in two internationally recognized ECG
databases: the MIT-BIH arrhythmia (MIT-BIH AR) [28] and the
AHA [29]. The MIT-BIH AR database is a golden standard to
evaluate arrhythmia classifiers. This benchmark database consists
of 48 half-hour ECG records sampled at 360 Hz. Each ECG
record contains two leads: lead II (modified limb lead II, obtained
from electrodes on the chest) and lead V1’ (modified lead V1,
and in some records V2, V4, or V5). The AHA database contains
154 ECG recordings of 3 h long but only the last 30 min have
information about the beat class. The AHA ECG recordings have
two leads (A,B) sampled at 250 Hz. The documentation of the
AHA database does not provide the name of the leads.

Both databases have annotations indicating the class of the
heartbeat and its position verified by independent experts.
Following the standards and recommendations of the American
National Standards Institute developed by the Association for
the Advancement of Medical Instrumentation (AAMI) for the
evaluation of ECG classifiers [30], all the heartbeat annotation
labels are converted to five heartbeat types: N (normal beats),
S (supraventricular ectopic beats), V (ventricular ectopic beats),
F (fusion beats), and Q (unclassifiable beats). The Q beats were
excluded in this research because they are not representative [31].
Also in accordance to the AAMI standard, ECG recordings with
paced beats are removed (i.e., four ECG records in the MIT-
BIH AR database and three ECG records in the AHA database
are excluded from the analysis). It is worth mentioning that the
original annotations of the AHA database do not differentiate
between N and S beats.
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2.1.1. Training and Test Datasets

Each database is split into two sets: one for training (DS1) and
one for testing (DS2). This division of the data is chosen to
balance the presence of the different types of heartbeats and
number of subjects in each dataset. It takes into account the
inter-patient division, i.e., the subjects used to construct or
optimize the classifier (DS1) are different from the subjects used
to evaluate it (DS2). It has been demonstrated [3] that models
which use heartbeats of the same patient in both the training
and test are biased and their results can not be replicated in
real environments.

For the MIT-BIH AR database we adopted the same set
division as in de Chazal et al. [3] for comparative purposes of the
results. 22 of the 44 ECG records of the MIT-BIH AR database
are part of the set DS1 and the other 22 are part of the set DS2.
For the AHA database, we use the recordings recommended for
the training and testing procedure in the original AHA database
description. In the AHA database, the set DS1 contains 79 ECG
recordings with the label series = 0 and the DS2, 75 recordings
labeled with series = 1. The division scheme for theMIT-BIH AR
and AHA databases is summarized in Tables 1, 2, respectively.
The beat class distributions of the different databases are given
in Table 3.

2.2. Performance Metrics
The performance of the proposed algorithm is evaluated using
the MIT-BIH AR and AHA databases on a single lead basis.
The performance of each classification algorithm is assessed
using four standard statistical measures: sensitivity (Se), positive
predictive value (PPV), specificity (Sp), and accuracy (Acc). They
are calculated as follows:

Se = TP/(TP + FN), (1)

PPV = TP/(TP + FP), (2)

Sp = TN/(TN + FP), (3)

Acc = (TP + TN)/(TP + TN + FP + FN) (4)

True positives (TP) indicate correctly predicted positive class
and true negatives (TN) indicate correctly predicted negative
class heartbeats. A good classifier is the one that minimizes false
negatives (FN) and false positives (FP).

The F1 score is the harmonic mean of Se and PPV, F1 =

2(Se · PPV)/(Se + PPV). The F1 score is used to choose the
optimum parameters of our classifier during the training phase.

2.3. The Heartbeat Classifier
The proposed heartbeat classifier is based on an Echo State
Network (ESN). It classifies the heartbeats of the processed ECG
recordings in two classes based on morphology: SVEB+ and
VEB+. SVEB+ class includes normal (N) and supraventricular
ectopic (S or SVEB) heartbeats. These heartbeats have a
normal morphology and a supraventricular origin as opposed
to VEB+ heartbeats that present ventricular origin or abnormal

TABLE 1 | Distribution of the MIT-BIH AR database ECG recordings into the

training (DS1) and testing (DS2) sets.

Dataset MIT-BIH AR recordings

DS1 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201,

203, 205, 207, 208, 209, 215, 220, 223, 230

DS2 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213,

214, 219, 221, 222, 228, 231, 232, 233, 234

TABLE 2 | Distribution of the AHA database ECG recordings into the training

(DS1) and testing (DS2) sets.

Dataset AHA recordings

DS1 1,001–1,004, 1,006–1,010, 2,001, 2,003–2,010, 3,001–3,010,

4,001–4,010, 5,001–5,010, 6,001–6,010, 7,001–7,010,

8,001–8,004, 8,006–8,010

DS2 1,101–1,110, 2,101–2,110, 3,101–3,110, 4,101–4,110,

5,101–5,105, 6,101–6,110, 7,101–7,110, 8,101–8,105,

8,107–8,110

The ECG recording names in the AHA database are of the form CSNN, where C is the

arrhythmia category, S is the series and NN is the file number in the category.

TABLE 3 | Heartbeat class distribution of the training (DS1) and testing (DS2) sets.

SVEB+ class VEB+ class

Database N S V F

MIT-BIH AR (DS1) 45,783 943 3,785 414

MIT-BIH AR (DS2) 44,179 1,834 3,216 388

AHA (DS1) 158,587 15,075 292

AHA (DS2) 156,992 15,855 437

The beats at the beginning and at the end of the recordings are discarded as they do not

provide information about the temporal distance to the neighboring beats.

morphology. The VEB+ class comprises the ventricular ectopic
beats (V or VEB) and the fusion beats (F).

The overall process is schematically represented in Figure 1.
The two stages are clearly differentiated:

• Stage 1–Processing of the ECG recordings: this procedure
involves the filtering, heartbeat detection, heartbeat
segmentation, and feature extraction. We include
morphological and time intervals between heartbeats in
our model.

• Stage 2–Classification between SVEB+ and VEB+ classes: we
use an ensemble of ESNs with ring topology to perform this
classification task.

We discuss the classification procedure in stage 2 in more detail
later in the text.

2.4. Processing of the ECG and Feature
Extraction
In order to accomplish arrhythmia classification, minor
preprocessing needs to be applied to the source ECG records. In
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FIGURE 1 | Schematic representation of the fully automatic heartbeat classifier.

our system, the processing of the ECG recordings includes the
following steps:

1. ECG re-sampling: ECG signals are processed with a common
sampling rate of 250 Hz. The AHA database (250 Hz) keeps
its original sampling rate and the MIT-BIH AR database (360
Hz) is resampled to 250 Hz using the PhysioToolkit software
package [1].

2. ECG filtering: All ECG recordings are filtered in a bandwidth ν

(Hz) ∈ [0.5, 35], to correct the baseline and remove unwanted
high frequency noise. A Butterworth high-pass filter (with a
cutoff frequency νc = 0.5 Hz) and a finite impulse response
filter of 12th order (35 Hz, at 3-dB point) are used, following
standard procedure.

3. Heartbeat detection: To determine the position of the
heartbeats, the annotated positions provided by the databases
are used. In theMIT-BIHAR database the annotation position
occurs at the largest of the local extrema of the QRS complex.
Beat detection is beyond the scope of this study. Highly
accurate automated beat detection methods have already been
reported [32].

4. RR calculation: The RR interval is defined as the time interval
between successive heartbeats. The RR interval associated to a
heartbeat i, RR(i), corresponds to the time difference between
the heartbeat i and the previous heartbeat (i− 1).

5. Heartbeat segmentation: The ECG signal is segmented around
the annotated position given by each database. The size of the
segmented heartbeat is 240 ms (60 samples at 250 Hz) and it is
centered around the annotation position.

6. Heartbeat normalization: Each segmented heartbeat is
normalized between [−1, 1]. This scaling operation
results in a signal that is independent of the original
ECG recording amplitude.

After processing the ECG recordings, each heartbeat is
represented by a set of features. One of the main goals related to
the feature selection in ourmodel is to avoid complicated features
with a high computational cost, since we aim to design a fast and
real-time heartbeat classifier. Therefore, we focus on simple ways

to extract features. In our case, we use the raw waveform of each
heartbeat around the heartbeat position to represent it. The raw
data of each beat was represented by an equal number of samples
from each side from the point of the beat annotation. In order to
learn from the temporal characteristics of each beat, information
about the RR intervals is also added to the heartbeat features.
The RR intervals are features used in almost all the methods
to classify arrhythmic heartbeats. For instance, it is well-known
that VEB heartbeats are characterized by shorter RR intervals
than the N heartbeats. We found that using the logarithm of
the RR intervals, as in Llamedo and Martinez [33], leads to a
slightly better performance of the classifier. All the features that
characterize the ith heartbeat are listed below:

• 60 raw samples of the segmented heartbeat waveform centered
around the position annotated for the heartbeat.

• ln(RR(i)): logarithm of the current RR interval.
• ln(RR(i+ 1)): logarithm of the next RR interval.
• ln(RRmean) logarithm of an average of the previous 250 RR

intervals (averaging over the n available RR intervals when
n < 250).

At the end of the processing and feature extraction stage,
each heartbeat is represented as a d-dimensional vector
containing three features related to the RR intervals and 60
morphological features, which are simply the samples of the
ECGwaveform around the position annotated for each heartbeat.
This d-dimensional vector (d = 63) is the input for the
classification algorithm.

2.5. Classification Algorithm: Echo State
Network
Our classifier is built upon an ESN with a ring topology.
ESNs are a popular implementation of Reservoir Computing
(RC). RC is an established paradigm in machine learning
that has been successfully applied in a variety of different
tasks [27, 34]. This computing paradigm is made of three
layers: input, reservoir and output (see general ESN scheme
in Figure 2A. In the case of the ESN, the reservoir is a
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recurrent neural network with random input and random
connection weights between the neurons. Thanks to the
recurrence of the network, current reservoir responses depend
on the previous state of the reservoir, yielding an ESN
capable of performing context-dependent computations. The
reservoir benefits from a high-dimensional non-linear mapping
of the input, so that the reservoir response is easier to
classify than the original input by means of a simple linear
regression technique.

At the input stage, the ECG data must be fed into the reservoir
network. In this process, dimensions must change from d × Hb

to N ×Hb, where d, Hb, and N are the number of input features,
heartbeats, and network neurons, respectively. The mapping
from the input into the reservoir is done through a random input
matrix Win

N×d
generated from a uniform distribution ∈ [−1, 1].

Hence, the ECG data original features vector ud×Hb is modified
according to:

XN×Hb = (Win
N×d × ud×Hb). (5)

Once the first data is fed into the reservoir, the input proceeds
sequentially and further reservoir responses are computed

FIGURE 2 | Schematic illustration of (A) traditional ESN, depicting the high-dimensional non-linear mapping of the input to a reservoir with random and sparse internal

node connectivity and (B) ring ESN, depicting the high-dimensional non-linear mapping of the input to a reservoir with a specific ring topology internal node

connectivity. Weights optimized during the learning process are indicated by black arrows (Wout ), whereas random weights are depicted with red arrows (Win).

Random (A) or predefined (B) weights are depicted with blue arrows (W). Although it is not explicitly depicted in the figure, the d-dimensional input x is augmented

with an additional constant node accounting for the bias term.

FIGURE 3 | Performance map of the F1 score obtained for the MIT-BIH AR and AHA databases from a 5-fold cross-validation on the set DS1. The number of neurons

is N = 500 and the results have been averaged over 100 different input random matrices. η ranges from 0 to 1 and γ from 0.1 to 1. Top panels correspond to the

MIT-BIH AR database lead II (left) and V1’ (right). Bottom panels correspond to the AHA database lead A (left) and B (right). Each performance map adapts the color

range so that optimal values can be easily identified by visual inspection.

Frontiers in Physics | www.frontiersin.org 5 July 2019 | Volume 7 | Article 103

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Alfaras et al. Machine Learning for Heartbeat Classification

iteratively. The reservoir matrix response r for the nth heartbeat
for the standard ESN is obtained as follows:

r(n) = F(γX(n)+ ηWr(n− 1)), (6)

where W is the random connection square matrix, with
dimensions N × N, F is the ESN activation function and γ and
η are the input and connection scaling parameters, respectively.
For the standard ESN, W is also generated from a uniform
distribution ∈ [−1, 1] and defines the connection weights
between the internal neurons. For the non-linear function, we
choose the classical sigmoid function with exponent −4 and a
bias of 0.5, i.e., F(x) = 1

1+e−4x − 0.5. Reservoir computers with
these sigmoid functions have shown optimal results solving
different tasks [35]. Other activation functions, such as rectifiers
can also be used.

In this method, only the connections between the reservoir
responses and the output are optimized using, usually, some
simple linear regression. The response of the ESN to the input,
r(n), is used to calculate the expected output, ŷ(n), according to:

ŷ(n) = Woutr(n), (7)

where Wout
l×N

are the output weights of the ESN and l the
number of output nodes. The output weights are computed by
minimizing the squared error between the train outputs and
their corresponding target class values, usually employing a
linear regression method [36]. In addition, the normal equation
formulation is adopted. For the heartbeat classifier we have found
that due to the experimental noise present in the original data,
simple linear regression results are similar to ridge regression
results. For this reason, we prefer the use of linear regression.
In this work we deal with a classification task that requires a
binary output, e.g., 0 and 1, for the SVEB+ and VEB+ classes,
respectively. Thus, the continuous output given by Equation (7)

FIGURE 4 | Performance (F1 score) obtained from a 5-fold cross-validation on

the set DS1 as a function of the number of neurons (N). Results for η = 0.2,

γ = 0.1, which have been averaged over 100 different input random matrices.

is converted into a binary one by means of a decision threshold
of 0.5.

In most of the ESN approaches, the connection matrix W

is a sparse random matrix. This general form is schematically
represented in Figure 2A. However, it has recently been shown
that simpler ESN with ring topologies perform as well as those
with a standard random connection matrix [37]. The ring ESN
presents fixed random connections at the input layer Win and
fixed deterministic weights between internal reservoir neurons,
with a connection matrix W of only non-zero elements in the
lower sub-diagonal Wi+1,i = 1 and at the upper-right corner
W1,N = 1. The ring ESN is schematically illustrated in Figure 2B.

In this work, we use a ESNwith ring topology for convenience.
The simplicity of the ring ESN allows for an easy exploration
of the system parameters in contrast to the computationally
demanding trial and error process in ESNs with random
topologies [37]. Moreover, this simplicity also allows an easy
hardware implementation of the ring ESN using delay-coupled
systems [38–41].

2.6. Parameter Optimization of the ESN for
the SVEB+ and VEB+ Classification
The ring ESN topology allows for a simple optimization
procedure, in contrast to the complex trial and error ESN
construction with random topologies. The typical model
construction decisions in a ring ESN include: setting the network
size (N), the scaling parameters γ and η and the random input
connections (Win). In this heartbeat arrhythmia classification
task, the data are very imbalanced [the number of VEB+ cases
is much smaller than the SVEB+ ones (see Table 3)], and the
system is prone to have a high accuracy but a poor classification
performance. Thus, the criterion to choose the optimum ring
ESN parameters to discriminate between the SVEB+ and VEB+
classes is the one that maximizes the F1 score over the training
set DS1.

The optimal η and γ values for each lead and database are
determined via a 5-fold cross-validation over the corresponding
training set. Figure 3 shows the performance of the combinations
of the pair (η, γ) with a fixed number of neurons N = 500
for the MIT-BIH AR and the AHA databases. To avoid an
undesired dependence on the sparsity and randomness of the
input connections, we average over 100 different input random
matrices (Win). The parameter pair that yields the best overall
classification is η = 0.2 and γ = 0.1. It is worth mentioning
that the memory of past heartbeats helps the classification of
heartbeats because the case of η = 0 (where ESN has no recurrent
connections and it is just a feed-forward neural network with
one hidden layer) is out of the optimum performance area.
This suggests that the memory of past heartbeats helps the
classification of present heartbeats. Once the pair (η, γ) is set,
their optimal values are used to explore the dependence on the
number of neurons (N) via a 5-fold cross-validation over the
corresponding training set. The F1 score as a function of the
number of neurons for the value pair (η = 0.2, γ = 0.1) is
represented in Figure 4. As expected, the performance improves
with the number of neurons but it starts to saturate for network
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sizes over 700 neurons. One of the advantages of the ESN is
that they are not prone to overfitting. Performance vs. N in
the test set follows a similar trend than in the training set. We
choose a value of N = 1, 000 that suits a compromise between
good performance for all the studied databases and leads and
the computational time. The performance for N = 1, 000 is
only slightly lower than the one obtained for a larger number
of neurons but requires a moderate computational time. The
outcome of the optimization must be a fast algorithm suitable
for real-time monitoring that, in addition, can be easily retrained
when new data are available.

Subsequently, we search for the optimum input connectivity
matrix Win. A usual approach would be to randomly generate
several input matrices and choose the one that performs better
in the training set. However, we note that optimizing the input
matrix for the training set does not necessarily yield the optimum
performance in the test set. Instead, we use a parallel ensemble
method in our case since it yields an improvement in the
performance. Ensemble methods have already been successfully
used for arrhythmia classification [12, 15, 42]. Parallel ensemble
methods are learning models that combine the outputs of
multiple base classifiers generated in parallel. They exploit
the independence between the base classifiers to obtain more
accurate predictions than the average error of the individual
classifiers. Ensembles are an effective technique if the base
classifiers are reasonably accurate and there is diversity between
their responses. In an ESN, the mapping of the input data to a
high-dimensional non-linear reservoir varies depending on the
randomly generated input matrix and this yields variability in
the ESN outputs. The output of the ensemble is just the majority
voting over the individual outputs of the ESNs. In Figure 5, we
show the F1 score over the training set DS1 for an ensemble of
ESNs with different input matrices as the number of members of
the ensembles increases. After combining the outputs of 30 ring
ESNs, the classifier performance does not improve when adding
new members to the ensemble. Therefore, in the evaluation
phase, we use ensembles of 30 ESNs.

In addition, we assess whether a faster alternative to the (η,
γ) parameter optimization is feasible. To that end, we carry out
an ensemble test on a classification that uses random values for
the (η, γ) reservoir parameters. In this case, each member of
the ensemble takes random values for the (η, γ) drawn from a
uniform distribution between [0, 0.8] and [0.01, 0.5] for the η and
γ parameters, respectively. Thus, the optimization of (η, γ) on
the training set would not be necessary. However, we have found
that the choice of random (η, γ) parameter values is valid for the
classification of leads II (MIT-BIH AR) and A (AHA) but it yields
a significant decrease in the PPV of leads V1’ (MIT-BIH AR) and
B (AHA). Therefore, η = 0.2 and γ = 0.1 are the optimum values
used in the Results section.

3. RESULTS

3.1. Classifier Evaluation
After optimizing the parameters of the classifier over the
training set (DS1) as described in the Methods section, we
evaluate the classifier using the optimal parameters. The final

FIGURE 5 | Performance of the F1 score obtained on the set DS1 as a

function of the number of ensembles of ESNs with different input random

matrices. The parameters of the ring ESN that form the ensemble are set at

their optimal values, η = 0.2, γ = 0.1, and N = 1, 000.

TABLE 4 | VEB+ performance over the test set DS2 using an ensemble of 30 ring

ESNs.

Database Lead Se (%) PPV (%) Sp (%) Acc (%)

MIT-BIH AR II 84.4 (82.9) 95.8 (85.5) 99.7(98.8) 98.6 (97.7)

V1’ 81.5 (78.9) 76.2 (66.0) 98.0 (96.6) 96.8 (95.3)

AHA A 90.4 (87.2) 94.9 (92.4) 99.5 (99.2) 98.6 (98.5)

B 87.9 (85.8) 89.6 (83.4) 98.9 (98.2) 97.8 (97.0)

The values into parenthesis show average of the individual performances of each ring ESN

that is part of the ensemble.

performance is evaluated in the test phase with heartbeats that
have not been used in the training set and come from different
subjects (DS2 set).

Table 4 shows the classification performance obtained by an
ensemble of 30 ring ESNs over the test set DS2. The parameters
of the individual ESN are the ones optimized in the training
phase. We highlight the fact that the optimal regime for the
ESN coincides regardless of database and lead. Since the original
heartbeat waveform is normalized between [−1, 1] and the RR
intervals are similar between both databases, the optimum ESN
parameters (η = 0.2, γ = 0.1, and N = 1000) coincide for the
MIT-BIH AR and the AHA databases. Thus, we expect that these
optimum parameters can also be valid for other databases.

The best performance is obtained for the lead A of the AHA
database. In the MIT-BIH AR, the lead II gives the best results.
Comparing the ensemble results with those obtained with the
average of ensemble base classifiers, it is clear that the ensembles
reduce the overall error given by a single ESN. The ensembles
remarkably reduce the incidence of the false negatives, leading
to higher PPV. An ensemble of classifiers has already been used
to classify heartbeats and significant improvements have been
reported [12, 15]. The improvement in the classification accuracy
thanks to the ensembles comes at the cost of higher computation
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TABLE 5 | Cross database VEB+ performance over the test set DS2 using an

ensemble of 30 ring ESNs.

Train (DS1) Test (DS2) Se (%) PPV (%) Sp (%) Acc (%)

AHA A AHA A 90.4 94.9 99.5 98.6

AHA B 87.2 92.4 99.2 98.1

MIT-BIH AR II 78.2 98.5 99.9 98.3

MIT-BIH AR V1’ 71.5 80.6 98.7 96.7

AHA B AHA A 82.2 97.1 99.7 98.1

AHA B 87.9 89.6 98.9 97.8

MIT-BIH AR II 84.9 97.2 99.8 98.7

MIT-BIH AR V1’ 79.1 43.4 91.9 91.0

MIT-BIH AR II AHA A 69.4 20.5 71.4 71.2

AHA B 58.8 23.9 80.0 78.0

MIT-BIH AR II 84.4 95.8 99.7 98.6

MIT-BIH AR V1’ 39.9 17.5 85.2 81.9

MIT-BIH AR V1’ AHA A 77.0 49.6 91.7 90.3

AHA B 74.7 49.1 91.8 90.1

MIT-BIH AR II 72.6 97.6 99.9 97.9

MIT-BIH AR V1’ 81.5 76.2 98.0 96.8

times. However, ensembles are inherently parallel, which can
make them much more efficient at training and test time if one
has access to a computer with multiple processors.

As part of our study, we assess the generalization capability of
our SVEB+ and VEB+ classifier by evaluating the performance
of the classifier on a lead and/or database different from the
one used to train it. The results are shown in Table 5. The
best generalization capability is obtained when the classifier is
trained either with the AHA lead A or lead B, performing
relatively well for all the analyzed leads in the test. The bigger
size and the richer variety of the AHA database is likely the
reason of the better generalization capability of the classifiers
trained with the AHA leads than those trained with the MIT
leads. The classification into SVEB+ and VEB+ is based mainly
on the morphological shape of the lead. In spite of this lead
dependency, the classifier can to some extent generalize to other
leads. It is worthmentioning that theMIT-BIHAR cross database
performance is relatively poor, specially for the lead II. Some
ECG recordings of MIT-BIH AR lead V1’ are V2 or V5, which
could lead to a better generalization capability of the lead V1’ but
also to a worse performance in the intra-lead classification when
compared with the other intra-lead performances (see Table 4).

3.2. Computational Times
Besides providing a detailed characterization of the arrhythmia
heartbeat classifier based on ESNs, our study also aims
at achieving computational times that allow for real-time
processing of ECG data. In particular, we have implemented the
ESN classifiers described here independently in an unparallelized
C++ version for the CPU and a C++/CUDA version for
the GPU. C++ refers to the object oriented programming
language and CUDA is a parallel computing platform developed
by the company Nvidia to interface with their GPUs. The

TABLE 6 | Technical specifications of the CPU and GPU used in this work.

CPU GPU

Processor Intel(R) Core(TM) i7-4790K NVIDIA TITAN X Pascal

(3584 CUDA cores)

Clock frequency 4,400 MHz 1,417 MHz

Memory 32 GB 12 GB

Max. Mem. Bandwidth 25.6 GB/s 480 GB/s

specific technical details for the CPU and GPU are summarized
in Table 6.

Although ensembles are inherently independent,
making them good candidates for parallel multi-processor
implementations, the presence of large matrix products and
non-linear mapping functions in the reservoir paradigm also
makes serial implementations suitable for the exploration of
computationally fast approaches. These approaches, such as
GPU implementations, are capable of reducing the latency and
increasing the throughput.

In order to explore the computational time and reservoir size
(N) dependence, a series of training and classification procedures
for the MIT-BIH AR database are analyzed. Linear regressions
are carried out by means of lower-upper decomposition.
C++ implementations benefit from the Eigen library 1, while
C++/CUDA use cuSolver, cuBLAS products and a CUDA kernel
implemented for the non-linear mapping.

Figure 6 shows the computational times of a training and
a testing realization for the DS1 and DS2 sets of the MIT-
BIH AR databases, respectively, vs. the number of neurons. The
GPU and CPU comparison highlights the advantage of using
a GPU implementation, with significantly lower training times.
The depicted computational times include, on the one hand,
the random non-linear mapping of the input onto the reservoir
and, on the other hand, the calculation of the output weights
Wout over the entire train dataset. The insets in Figure 6 show
the computational time for the final classification product steps
that calculate the output in the test dataset. As expected, the
processing time increases with the number of neurons, especially
in the training procedure. The influence of small sized products
on cuBLAS scaling, intrinsic to the library, can be seen in
the piece-wise linear trend present in the GPU Classification
product. The reported computational times account for 11 h of
ECG recordings, allowing the exploration of different parameter
regimes and providing fast classifications clearly suitable for
real-time scenarios that may include statistical ensembles.

3.3. Comparison With Other Heartbeat
Arrhythmia Classifiers
The MIT-BIH AR database is by far the most used to evaluate
methods on the ventricular arrhythmia classification. However,
making a fair comparison between heartbeat classifiers is a
difficult task. For instance, classifiers sharing heartbeats for the

1Eigen v3.3—Gaël Guennebaud, Benoît Jacob et al.
http://eigen.tuxfamily.org/
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FIGURE 6 | Dependence of the computational times as a function of the number of neurons for (Left) GPU and (Right) CPU implementations. NM stands for

Non-linear Mapping and consists in the input-random matrix multiplication and the application of the non-linear function in accordance with the ESN. The single test

and training times shown are over the whole DS1 and DS2 sets of one lead of the MIT-BIH AR database, respectively.

TABLE 7 | VEB performance of the heartbeat classifiers on the MIT-BIH AR database.

VEB

Work Feature set Classifier Leads Se PPV

de Chazal et al. [3] Morphological, RR-intervals Weighted LD II + V1’ 77.7 81.9

Ye et al. [18] Morphological, RR-intervals, wavelet, ICA, PCA SVM II + V1’ 81.5 63.1

Zhang et al. [14] Morphological, RR-intervals Feature selection + SVM II + V1’ 85.5 92.8

Mar et al. [4] Morphological, HOS, temporal features Feature selection + MLP II + V1’ 86.8 75.9

Garcia et al. [16] Morphological, wavelets, TVCG PSO + SVM II + V1’ 87.3 59.4

Llamedo and Martinez [31] Morphological, RR-interval, VCG, wavelet LD+ EMC II + V1’ 83.0 88.0

Llamedo and Martinez [33] RR-interval, wavelet LD+ EMC II + V1’ 89.0 87.0

Ye et al. [26] Morphological, RR-intervals, wavelet, ICA General + specific classification model II + V1’ 91.8 98.0

Tejeiro et al. [43] Morphological, rhythm features, RR-intervals Abductive interpretation II + V1’ 94.6 96.8

Ghorbani et al. [7] Morphological, RR-intervals, statistical features, GMM + EM Decision trees II + V1’ 96 77.6

Krasteva et al. [5]* Morphological, RR-intervals, correlations Decision trees II + V1’ 96.7 99.2

Wu et al. [20] DBN, RR-intervals Softmax regression II 80.5 81.4

Lannoy et al. [19] Morphological, RR-intervals, HOS, HBF coeff Weighted conditional random fields II 85.1 –

Rahhal et al. [22] * Raw ECG data Deep neural networks II 91.0 79.5

Raj et al. [17] DOST PSO + SVM II 87.5 65.4

Sultan Qurraie and

Ghorbani Afkhami [6]

RR-interval, HOS, time–frequency Decision trees II 95.4 94.1

Herry et al. [44] RR-interval, SST SVM II

V1’

77.5

79.6

79.1

62.7

Huang et al. [15] Random projections SVM ensembles II

V1’

93.9

78.1

90.9

43.8

This work Raw ECG data, RR-intervals ESN ensembles II

V1’

92.7

86.1

95.7

75.1

Only the best fully automatic work result is reported. All the classifiers have been trained over the set DS1 and tested over DS2, except the ones marked with*. Rahhal et al. [22] and

Krasteva et al. [5] test against all the MIT-BIH AR database. Rahhal et al. [22] trains over the DS1 and Krasteva et al. [5] uses three databases (AHA, MIT-BIH-SV, and EDB) to train the

model. See the text for a description of the different methods and features.

same subjects in the training and test set have unrealistically
better evaluation results than classifiers that follow the inter-
patient procedure [7]. Semi-automatic heartbeat classifiers (that
require some assistance for expert cardiologist) also have a better
performance than the fully automatic approaches [33]. Thus, to
be as fair as possible, we only compared our method with other
fully automatic heartbeat classifiers that make the test over the
DS2 set of the MIT-BIH AR database and whose train set does
not share subjects with the testing set.

Focusing on the detection of ventricular arrhythmia, we
compare the VEB (V) performance instead of the VEB+ (V+F),
as the VEB+ performance is usually not reported in the literature.
The VEB performance has then been calculated in our algorithm
without taking into account the F heartbeats, which are rather
rare. Table 7 compares the VEB detection performance of
state-of-the-art algorithms with the method proposed in this
manuscript. Table 7 also provides information about the features
and classifiers used by the different approaches. In most cases,
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the computational cost of these methods, either during the
training or the test phases, is not mentioned. Table 7 presents a
wide variety of methods, such as Multilayer Perceptron (MLP),
temporal vectorcardiogram (TVCG), Expectation-maximization
clustering algorithm (EMC), Gaussian mixture modeling
(GMM), Enhanced expectation maximization (EM), Orthogonal
Stockwell Transform (DOST), Deep Belief Networks (DBN), and
synchrosqueezing transform (SST).

Our method outperforms or shows state-of-the-art results
with methods that used much more complicated procedures
to extract and select the heartbeat features for the VEB class.
Some of the methods with better performance than the method
proposed here are not well-suited for real-time applications, as
the feature extraction stage can not be implemented online, such
as in [43] or imply a high computational cost [6]. Moreover, our
approach outperforms the other single lead classifiers reported
for the VEB classification based on the MIT-BIH AR lead V1’,
showing a better generalization capability than the other methods
based on a single lead. Finally, the excessive false alarm rate
(low PPV) is a major problem for clinical use since it diminishes
the confidence in the algorithm. The approach discussed in this
manuscript has the best PPV for the VEB class among the single
lead classifiers.

4. DISCUSSION

The proposed method shows excellent classification results
for the VEB class on the MIT-BIH AR and the AHA
databases, outperforming existing single lead classification
algorithms in the detection of ventricular arrhythmia.
The presented ESN approach is suitable for processing
long-term recordings and large databases as the feature
extraction and the algorithm itself both have minimal
computational requirements.

Overall, the ESN presents two main advantages over other
classical methods that have been used to classify heartbeats,
such as the SVM, NN, and decision trees (see Table 7). First,
the aforementioned methods involve relatively time consuming
complex computations in the training phase that in ESN
are easily computed. We have checked that the computation
times of the classification algorithm for the evaluation of 11
h of ECG recordings amounts to <0.2 s for a lab CPU,
while the use of a GPU (see Table 6) offers at least a
speedup of an order of magnitude. Second, past heartbeats
play a role in the classification task in the case of the ESN
thanks to its intrinsic memory, having a positive impact on
the performance.

In this work, heartbeats are classified as SVEB+ and VEB+.
Future work will focus on the extension of these results to
the five heartbeat classes recommended by the AAMI. Another
important aspect not covered in our study is the fixed heartbeat
window length that can be inappropriate in the case of fast and
slowly varying heart rhythms when changing physical activity.
Thus, there is a need to study adaptive beat size segmentation.
The understanding of the exact relation between underlying
physiology and features is a potential question to address.
However, there are no conclusive guidelines about which features
should be used to diagnose arrhythmias from the ECG using
computer aided systems.
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