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The goal of this paper was to provide a real-time left ventricular (LV) mechanics simulator

using machine learning (ML). Finite element (FE) simulations were conducted for the LV

with different material properties to obtain a training set. A hyperelastic fiber-reinforced

material model was used to describe the passive behavior of the myocardium during

diastole. The active behavior of the heart resulting from myofiber contractions was

added to the passive tissue during systole. The active and passive properties govern

the LV constitutive equation. These mechanical properties were altered using optimal

Latin hypercube design of experiments to obtain training FE models with varied active

properties (volume and pressure predictions) and varied passive properties (stress

predictions). For prediction of LV pressures, we used eXtreme Gradient Boosting

(XGboost) and Cubist, and XGBoost was used for predictions of LV pressures, volumes

as well as LV stresses. The LV pressure and volume results obtained fromML were similar

to FE computations. The ML results could capture the shape of LV pressure as well as LV

pressure-volume loops. The results predicted by Cubist were smoother than those from

XGBoost. Themean absolute errors were as follows: XGBoost volume: 1.734± 0.584ml,

XGBoost pressure: 1.544 ± 0.298mmHg, Cubist volume: 1.495 ± 0.260ml, Cubist

pressure: 1.623 ± 0.191mmHg, myofiber stress: 0.334 ± 0.228 kPa, cross myofiber

stress: 0.075 ± 0.024 kPa, and shear stress: 0.050 ± 0.032 kPa. The simulation results

show ML can predict LV mechanics much faster than the FE method. The ML model

can be used as a tool to predict LV behavior. Training of our ML model based on a large

group of subjects can improve its predictability for real world applications.

Keywords: left ventricle, machine learning, finite element method, XGBoost, Cubist

INTRODUCTION

According to the American Heart Association 2019 Update [1], the prevalence of heart failure (HF)
has increased from 5.7 million (2009 to 2012) to 6.2 million (2013 to 2016) in Americans older than
20 years of age. This prevalence is projected to increase 46% by 2030 [2]. In 2012, the total cost
for HF was ∼$31 billion and it is estimated that by 2030, the total cost will increase to $70 billion
[2]. Therefore, there is substantial need for innovative treatment strategies for HF. Computational
simulation provides a virtual platform where the behavior of the heart can be simulated and novel
interventions can be assessed. Such simulations provide key insights on how HF develops, and
how pharmaceutical and device design and implantation can be optimized. Among computational
simulation, the finite element (FE) method has been extensively used by our group [3–5]. One
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important example of using FE to characterize HF is to
understand the etiology of Heart Failure with Preserved Ejection
Fraction (HFpEF) [4, 6]. We have used four-chamber FE models
for the mechanical analysis of the heart [7, 8].

One shortcoming of the FE model is that it typically requires a
relatively long time to run. For example, the four-chamber heart
model developed in 2015 [7, 9] required 1,000 CPU hours to
converge for a 1 s cardiac cycle. Today (2019), this time has been
reduced to 100 CPU hours, but even with these improvedmodels,
the estimated time to tune a model would still be thousands of
CPU hours. This provides an incentive to study the feasibility
of a reduced order model based on machine learning (ML). In
addition, ML models can be used to estimate initial conditions to
speed up FE model convergence.

The health conditions of the left ventricle (LV) are strongly
linked to stresses [10]. Myocardial stresses determine the
metabolic requirements of the heart and are important stimuli
for growth and remodeling of the myocardium. Furthermore, the
blood flow in the coronary arteries is influenced by the stresses
in the surrounding cardiac tissue. Therefore, determination of
LV stress is informative for better understanding the diseased
conditions or the recovery status of the myocardium after
treatment. We have used FE models to calculate stresses in the
LV [4, 8], but the time required is relatively too long for real-
time applications. This shortcoming of LV FE modeling prevents
clinical implementation.

In the machine design industry, computational time for
numerical analysis cannot be too long to be used during design
iterations. To overcome this problem, ML has been used for
model-based system design, for example, in the automobile
industry [11]. Recently, ML models have been reported for
vascular applications [12–14]. Additionally, cardiac mechanics
have been studied using ML [15, 16]. Using ML models,
the behavior of the LV in response to alterations in material
properties, loads, boundary conditions etc. can be predicted in
nearly real time. This relatively fast prediction of the LV behavior
could provide a tool for real-time monitoring of the LV behavior
with applications in cardiac devices design, monitoring the health
conditions of the LV, etc.

Therefore, the goal of this paper was to develop an FE-
based ML platform to simulate LV mechanics. To the best of
our knowledge, the decision tree algorithm, eXtreme Gradient
Boosting (XGboost) [17–19] has not been used for cardiac
mechanics. This ML algorithm has been recognized in terms of
accuracy, flexibility and speed [19, 20]. We also used Cubist, a
similar package with smoother predictions, for LV pressure and
volume. The resultant MLmodel can provide myocardial stresses
in seconds and can be used in iterative medical device design for
the heart. Abaqus FE software was used to generate 77 LVmodels
for pressure and volume and 100 models for stress prediction
training. The features of the ML model were mechanical
properties and time for pressure and volume predictions, and
mechanical properties and elements centroid coordinates for
stress predictions. The FE models were used to create MLmodels
that reduced the LV pressure and volume prediction time from
nearly 1,000 CPU hours to 11 CPU seconds, and stress prediction
time from nearly 20 CPU minutes to 5 CPU seconds.

METHODS

Finite Element Models
In vivo data were obtained under a protocol approved
by our institutional review board [21]. The geometries,
material behavior, loads and boundary conditions (BCs) were
implemented as follows. We used two geometries. For pressure
and volume predictions, we used data from a four-chamber
model including LV, right ventricle (RV), left atrium, and right
atrium. For stress predictions we used data from a swine LV-
only model. The specifications of geometry reconstructions have
been previously reported [9, 21]. These FE models consider
LV as a passive material during diastole, and as a contractile
material during systole. The constitutive equation of the passive
and active behavior has been extensively described [4, 8, 9].
Briefly, the passive behavior described the tissue as a hyperelastic
fiber-reinforced material, as follows:
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where a and b are isotropic stiffness of the tissue, af and bf
are tissue stiffness in the fiber direction, and afs and bfs are the
stiffness due to the connection between fibers and sheet; I1, I4i
and I8fs are invariants, defined as follows:

I1 : = tr(C)

I4i : = C :(i0 ⊗ i0)

I8fs : = C : sym(f0 ⊗ s0) (2)

where C is the right Cauchy-Green tensor, and f0 and s0 are
vectors that define the fiber and sheet directions, respectively. J
is the deformation gradient invariant, and D is a multiple of the
Bulk Modulus K (i.e., D = 2

K ).
The active tissue behavior is described as follows [4, 8, 22, 23]:

T0 = Tmax
Ca20

Ca20 + ECa250
Ct (3)

where Tmax is the isometric tension at the largest sarcomere
length and highest calcium concentration, Ca0 is the peak
intracellular calcium concentration, and

Ct =
1

2
(1− cosω), (4)
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π t
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tr
when t0 ≤ t ≤ t0 + tr
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tr = ml+ b (5)

m, b are constants that specify the shape of the linear relaxation
duration and sarcomere length relaxation, and t0 is time to reach
peak tension after the initiation of active tension.
In addition,

ECa50 =
(Ca0)max

√

exp
[

B
(

l− l0
)]

− 1
, l = lR

√

2Eff + 1 (6)
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where:
Eff = Lagrangian strain in the fiber direction,
B is a constant that specifies the shape of the peak isometric

tension-sarcomere length relation,
l0 is the sarcomere length that does not produce active stress,
lR is the sarcomere length with the stress-free condition,
and (Ca0)max is the maximum peak intracellular

calcium concentration.
The passive stress is derived from passive behavior, during

diastole, and the total stress is the sum of passive and active
stresses during systole. We assumed homogeneous contraction
(Tmax) in all models.

The specifications of the models, including loads and
boundary conditions, have been described in our previous
publications in detail [4, 7, 8]. Briefly, in LV models, the LV
pressure was applied to the endocardial surface in early diastole.
The interaction between LV and the arterial system was model
using lumped parameter 1-D circulatory models. In this paper,
the four-chamber heart FE results were obtained after several
initial cycles, and FE data for LV pertain only to the diastole part
of the cardiac cycle.

ML Models
The ML Model for LV Pressure and Volume Prediction
The structure of the ML-FE surrogate model is shown in
Figure 1. This was a supervised learning regression problem.
We used a tree ensemble learning approach whereby XGboost
package [17–19] in Python programming language was used to
predict LV pressures and volumes based on material properties
and time. The features of the ML model are listed in Table 3.
We also used Cubist [24], a package that makes predictions using
rules which are learned during training from decision trees. The
Latin hypercube design of experiments (DOE) method was used
to sample the features. Using the radial basis function (RBF)
and lumped parameter simulations, the DOE was optimized to
minimize the error due to sampling, and also minimize the
number of FE simulations [25, 26]. The number of selected FE
models for training and test data were 77 and 3, respectively.
The test data were not included in the training data. It should be
noted that each single training or test data for LV volume and
pressure ML models, refers to a single time point in a cardiac
cycle. Because each cardiac cycle was composed of 401 time
points, each FE model included 401 data examples. The data for
each FE model at different time points were not independent,
but they were different features within one single cardiac cycle
dataset [27]. The limits of the features were set as follows: 0.0015
< l0 < 0.0028, 0.075 < t0 <0.25, 0.65 < Tmax <1.9. Only active
properties were altered in the datasets used to predict LV pressure
and volume. A hyperparameter grid search was conducted to
find optimized parameters as indicated in section “ML Parameter
Tuning and Error Estimation”.

The ML Model for LV Stress
The passive material properties (a, af , as, afs) were altered using
Latin hypercube DOE to produce 120 LV models. The range of
these variables was as follows: 0.229e-3 < a < 9.881e-3, 0.005e-1
< af < 49.901e-3, 9.1e-05 < as < 6.986e-3, 7.568e-5 < afs <

3.952e-3 MPa. The ratios between passive properties b, bf , bs, bfs
and corresponding a, af , as and afs were based on data in
the literature [23]; consequently, values of b, bf , bs, bfs were
obtained from corresponding a, af , as, afs. For these simulations,

D (Equation 1) was 0.2 MPa−1 and the end diastolic pressure
was 16.38 mmHg. There were 576 elements in the endocardium
where element centroid stresses in fiber direction (S11), cross-
fiber direction (S22), and shear stress (S12) were calculated using
FE method. XGboost was used to predict stresses: 100 out of 120
FE models for training and 20 out of 120 FE models for testing
(we did not use Cubist for stress predictions). It should be noted
that for LV stress predictions, each single training or test example
refers to a single finite element. Because there were 576 elements
in each FE model, there were 576 training or test examples in
each FE model. The data for each FE model at different elements
were not independent, but they were different features within one
single LV dataset [27]. Stresses at end diastole (ED) were used
to implement ML predictions. The features of the ML model are
summarized in Table 3.

ML Parameter Tuning and Error Estimation
To select the optimized hyperparameters for ML estimators, a
grid search analysis was conducted in XGBoost for the blood
pressure and volume as well as stress predictions (Table 1). We
used a decision tree algorithm for the base learner (booster =
“gbtree”), and the learning task and the related objective were
set by a linear regression analysis (objective = “reg:linear”). The
score used to select the optimized parameters was the coefficient
of determination, R2, calculated as follows:

R2(y, ŷ) = 1−

∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − ȳ)2

(7)

where y and ŷ are actual and predicted values, n is the number of
data points, and

ȳ =
1

n

n
∑

i=1

yi

The higher the R2 is, the better the predictability of the model
is (Scikit-learnv.0.21.2 documentation). After the best model was
found by the grid search, that model was used for predictions.

In addition to R2 we computed mean absolute error (MAE)
for the results (Scikit-learnv.0.21.2 documentation):

MAE =

∑n
i=1

∣

∣yi − ŷi
∣

∣

n
(8)

Feature Importance
For the ML models, the relative importance of the features was
calculated using the XGBoost package in Python (we used “Gain”
for this purpose). The relative importance values are based on
how often each feature was used for splitting weighted by the
squared improvements in the model due to those splits, averaged
over all trees [17, 28].
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FIGURE 1 | The structure of the ML model used to predict LV pressure, volume and stress. The loads, boundary conditions (BC), the mesh and material properties

were parts of the FE model. The material properties (6 active properties for pressure and volume, 8 passive properties for stress predictions) were sampled by design

of experiments (DOE) and used as the inputs of the ML model. For LV pressure and volume predictions, time (t) was another input of the ML model. For LV stress

predictions, position of each element was also an input (stresses at end diastole were used).

TABLE 1 | ML hyperparameters that were altered during grid search analysis.

Parameter Description* Values Best parameters

Pressure Volume Myofiber stress Trans-myofiber stress Shear stress

learning_rate The learning rate of the boosting 0.01, 0.05, 0.1 0.05 0.05 0.05 0.01 0.1

n_estimators Number of trees in the model 500, 1,000, 1,500 500 1,500 1,500 1,000 1,500

Max_depth Maximum depth of trees 7,15,20 15 7 7 7 7

The number of folds in cross validation (cv) = 3.
*XGBoost python package guide.

RESULTS

The XGBoost and cubist algorithms produced LV pressures
in agreement with the FE computations in a much shorter
time (Figures 2, 3, Tables 2, 5). The R2 scores (Equation
7) were relatively close to 1 for both Cubist and XGBoost
(Table 5). When predicted pressures and volumes were used,
the resultant pressure volume loop predicted by ML was in
agreement with FE calculations (Figure 5). The results for
volume predictions were also noticeably close to FE results
(Figures 4, 5, Tables 4, 5). It should be noted that all results
pertain to test data.

The minimum and maximum and time of maximum pressure
and volume were similar for FE and ML results, but the
differences between maximum dP/dt and dV/dt for FE and ML
models were noticeable (Table 4). Other aspects of LV pressure
were also captured in the ML predictions, in particular, the
bump before the contraction (Figure 2). The stresses predicted

by ML were in agreement with FE calculations (Figures 6, 7).
The regional variation of stresses can be predicted by ML with
noticeable accuracy (Figure 7).

Results showed that for the features considered in LV pressure
predictions, l0 in the RV plays the most important role, followed
by time, l0 in the LV, and t0 in the LV. The other parameters that
noticeably influence LV pressure in systole are Tmax in the LV,
Tmax in the RV, and t0 in the RV and (Table 3). For LV volume
predictions, l0 in the LV was the most important feature followed
by time, l0 in the RV, Tmax in the LV, t0 in the LV, t0 in the RV,
Tmax in the RV (Table 3).

For the myocardial stresses, the most important factor is
the location where stress is computed. The passive parameters
have different influences on myofiber (S11), cross-myofiber (S22),
and shear stresses (S12). For S11, passive properties in the sheet
direction are more important than passive properties in the fiber
direction, whereas for S22, passive properties in the fiber direction
are more important than those in the sheet directions. For shear
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FIGURE 2 | The FE-computed and ML-predicted LV pressure curve for three

cycles (3 × 401 = 1,203 test data) based on random selection of mechanical

properties (FE: blue, brown, purple, ML: red, orange, green, respectively). For

these results, XGboost was used. The variability in three test cardiac cycles

(1,203 test data each) can be seen in this figure.

FIGURE 3 | The FE-computed and ML-predicted LV pressure curve for three

cycles (3 × 401 = 1,203 test data) based on random selection of mechanical

properties (FE: blue, ML: red). For these results, Cubist was used.

stress, the passive properties in the sheet direction are more
important than those in the fiber direction (Table 3).

DISCUSSION

We used ML to predict LV pressures and volumes on the
order of seconds. It took ∼1000 CPU hours to compute LV
pressures, but <12 CPU seconds to obtain the same data using
the ML approach (Table 2). The results of the ML model agreed
closely with those of the FE models (Tables 4, 5). Although
ML has been used to analyse the mechanics of cardiac tissue
[15, 16], to the best of our knowledge, ours is the first study

TABLE 2 | Approximate run time for FE and ML models.

Model

Output Pressure Volume Myofiber

stress

cross-

myofiber

stress

Shear

stress

ML training

(including grid search)

3 CPU

hours

12 CPU

hours

8 CPU

hours

8 CPU

hours

7 CPU

hours

ML training

(using one set of

optimized

hyper-parameters)

7 CPU

minutes

34 CPU

minutes

22 CPU

minutes

14 CPU

minutes

23 CPU

minutes

ML test 2 CPU

seconds

11 CPU

seconds

5 CPU seconds

FE

(a single simulation)

1,000

CPU* hours

1,000

CPU* hours

20 CPU minutes

*This CPU hour time refers to computations for a four-chamber model in 2015.

FIGURE 4 | The FE-computed and ML-predicted LV volume curve for three

cycles (3 × 401 = 1,203 test data) based on random selection of mechanical

properties (FE: blue, ML: red). For this results XGBoost was used.

that used decision tree algorithms, XGBoost and Cubist to
compute LV pressure and volumes, as well as stresses. Using
decision trees, XGBoost provides the importance of features in
the predictions, which can be used to assess the role of features in
the heart behavior.

We used a grid search analysis to determine optimized
hyper-parameters for ML models (Table 1). We could use
more parameters in grid search analysis, but the training
time would increase. Because the FE and ML results are in
reasonable agreement, using more hyper-parameters in the grid
search would be inefficient computationally. Similarly, we could
generate more FE data to feed to the ML model, but it would not
be computationally efficient, because generating FE data is time-
consuming. In other words, over-training theMLmodel by using
more hyper-parameters in the grid search or generating more FE
results was not computationally efficient.

Historically, the LV pressure has been modeled using different
approaches, including lumped electrical circuit analogies [29]
and FE [4, 8, 9]. Lumped electrical circuit analogies methods
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FIGURE 5 | The FE-calculated and ML-predicted LV pressure-volume loop for

one cardiac cycle (401 test data) based on random selection of active

mechanical properties (FE: blue, ML: red). For this result, Cubist was used.

FIGURE 6 | The LV endocardium stresses (kPa) computed by FE and

predicted by ML for a sample test model (FE: blue, ML: red). The stresses

pertain to the centroid of elements. For these results, XGboost was used.

provide informative insights about the cardiovascular system,
but cannot provide important information such as stresses in
the LV. On the other hand, in FE models, the simulation time
is usually too long to provide real-time information (Table 2).
The ML approach presented here provides a fast and reliable (in
comparison to FE models) modeling approach in real-time.

Comparison between actual and predicted LV pressure and
volume parameters revealed quite reasonable agreement between
the two (Table 4). The differences between actual and predicted
dP/dt and dV/dt are due to the fact that we did not train the
model for dP/dt and dV/dt. Moreover, we did not remove noise
from ML predictions, which could lead to larger time derivatives
(noise can be removed using a filter).

In our study, values of R2 were relatively close to 1 for LV
pressure and volume predictions, indicating close agreement

between our FE and ML results. However, the R2 function
is not as informative as the FE and ML results in a time
domain (Figures 2–4). For stress predictions, the values of R2

were also relatively high, which again indicates the ML and FE
results are relatively in close agreement. A more informative
comparison between FE and ML stress predictions can be done
using Figure 7, which compares the FE and ML results with
spatial distributions considered. The MAE values show relatively
close agreement between FE and ML results (Table 5).

Although the XGBoost package provided relatively correct
predictions, it produced jagged approximations for LV pressures
(Figure 2). Since XGBoost uses a sequence of weak decision
trees, it predicts the outputs in a discrete way [20]. Results
from Cubist resolved this limitation as the volumes and
pressures approximated by Cubist were noticeably smoother
than those from XGBoost (Figure 3 vs. Figure 2). However,
it would be trivial to add a filter to the XGB results in the
time domain and make it similarly smooth. In fact XGBoost
has several advantages compared to other gradient boosting
algorithms, in terms of speed, flexibility for handling data,
sensitivity to outliers, and performance [19, 20]. In line
with their reported advantages, XGBoost and Cubist provided
predictions noticeably in agreement with FE results in our
study [20]. Algorithms used in previous ML cardiac models
could be computationally expensive, and do not provide feature
importance [16, 30].

According to ML analysis, the LV pressure and volume are
primarily affected by the initial myofiber length (with no active
tension) in the right ventricle and left ventricle, respectively
(relative to other parameters in Table 3). This result is in line
with experimental studies (Figure 8) that reported the active
sarcomere tension is related to muscle length [22]. Also, the
importance values (Table 3) showed the important role that RV
could have in the mechanics of LV. For the passive behavior
(Table 3), the coordinates which represent the location of each
finite element, have the highest importance in stress predictions.
If any of these coordinates alters, the stresses change accordingly
(coordinates change with element number).

We used stress data from LV endocardium because
endocardium plays an important role in etiology of cardiac
diseases. For example, endocardial mechanics is hypothesized
to alter over the course of HFpEF development [4, 31–33]. In
addition, subendocardial ischemia health conditions reportedly
affect LV torsion [34]. However, our ML methodology can be
applied to stress in any region of the myocardium.

In our study, we used a set of mechanical properties that
were relevant to calibration of active and passive behavior
of the myocardium, and all the parameter sets produced
converged FE models. Also, the resultant combinations led to
physiologically relevant models. For example, after alterations in
passive properties, 98.5% of the myofiber stresses were between
0 and 15 kPa, which is in line with published data for LV stress
[4, 8, 23]. However, selection of the mechanical properties is
not relevant in terms of the applications of ML in prediction
of LV mechanics. We could select other parameters in the
constitutive equations, but the conclusions of our study would
not change.
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FIGURE 7 | Polar plots of average: FE results, standard deviation of the FE results and MAE (kPa) between ML and FE results. The averages were calculated over all

20 test models.

TABLE 3 | The ML features and their importance for predicting LV pressure, volume and stresses.

Feature Feature Description Importance

Pressure Volume S11 S22 S12

l0(RV) l0 in Equation (6) for RV 0.459 0.188

t Time after excitation 0.317 0.225

l0(LV) l0 in Equation (6) for LV 0.113 0.507

t0(LV) t0 in Equation (5) for LV 0.073 0.033

Tmax(LV) Tmax(LV) in Equation (3) for LV 0.018 0.037

Tmax(RV) Tmax in Equation (3) for RV 0.010 0.004

t0(RV) t0 in Equation (5) for RV 0.010 0.005

theta Element centroid coordinate in circumferential direction 0.278 0.250 0.434

z Element centroid coordinate in z (longitudinal) direction 0.236 0.222 0.224

r Element centroid coordinate in radial direction 0.187 0.226 0.180

a Passive property 1 in Equation (1) 0.087 0.096 0.077

as Passive property 2 in Equation (1) 0.137 0.049 0.035

af Passive property 3 in Equation (1) 0.052 0.107 0.029

afs Passive property 4 in Equation (1) 0.023 0.050 0.021

Study Limitations and Future Directions
In this ML study, we used data from a single human subject (for
pressure and volume) and a single swine model (for stresses), and
we did not consider heterogenous properties. The training data
used in this study may not capture important aspects of the heart
behavior over a broad range of subject-specific or pathological

conditions, but our ML model can be trained using data from
more subjects and/or pathological conditions. Subject-specific
parameters such as anatomy, health conditions, sex, and age
change FE models in many respects such as geometry, loads,
boundary conditions, and heterogenicity of material parameters.
The ML algorithm would have wider applicability if we consider
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TABLE 4 | The parameters of LV pressure and volume computed by FE (actual) and ML (predicted).

Pressure

Average ± SD

Volume

Average ± SD

FE ML %Error FE ML %Error

Minimum 20.4 ± 4.5 mmHg 19.1 ± 4.0 mmHg 5.6 ± 5.1 106.5 ± 13.4ml 107.1 ± 13.1ml 0.6 ± 1.9

Maximum 61.3 ± 20.8 mmHg 63.2 ± 20.5 mmHg 3.6 ± 1.6 139.9 ± 5.8ml 139.7 ± 5.3ml 0.1 ± 0.46

Time to maximum 0.3 ± 0.04 s 0.3 ± 0.03 s 0.9 ± 1.3s 0.2 ± 0.0 s 0.2 ± 0.01 s 4.6 ± 7.6

Maximum time derivative 792.7 ± 518.8 mmHg/s 1848.6 ± 664.6 mmHg/s 184.8 ± 84.3 221.1 ± 80.1 ml/s 664.9 ± 423.2 ml/s 211.7 ± 155.1

These numbers show the average and standard deviation (SD) for three cycles in Figure 2 (pressure) and Figure 4 (volume).

TABLE 5 | R2 and MAE Score for the ML predictions.

Model R2 score

(average ± SD)

MAE (average ± SD)

Pressure (Cubist) 0.958 ± 0.029 1.623 ± 0.191 mmHg

Pressure (XGBoost) 0.939 ± 0.067 1.544 ± 0.298 mmHg

Volume (Cubist) 0.942 ± 0.055 1.495 ± 0.260 ml

Volume (XGBoost) 0.923 ± 0.050 1.734 ± 0.584 ml

Myofiber stress (XGBoost) 0.971 ± 0.040 0.334 ± 0.228 kPa

Trans-myofiber stress (XGBoost) 0.936 ± 0.042 0.075 ± 0.024 kPa

Shear stress (XGBoost) 0.994 ± 0.006 0.050 ± 0.032 kPa

For each single cardiac cycle (pressure and volume) or LV (stress) test sample the error

was calculated and then, the average and standard deviation was calculated for all

test samples.

FIGURE 8 | Active tension changes with sarcomere length, reproduced from

Guccione and McCulloch [22]. For more information see Guccione and

McCulloch [22] and Figure 8 in their paper.

a wider range of subjects, geometries, heterogenous material
parameters, and diseased conditions. When the training is
performed based on data from different subjects, the mechanical
properties obtained from Latin hypercube DOE can also
be optimized such that the selected properties better reflect
physiological data [16]. These aspects can be included in future
developments of our ML methodology.

We showed the applicability of our ML methodology for
predicting LV mechanics with examples from LV pressure,

volume and stress data. However, the number of test data could
be increased to improve the MLmodel. It is recommended to use
20% of data for testing the ML model [35, 36]. In our study, for
stress predictions, the test data were more than 16% of data, and
for LV volume and pressure predictions the number of test data
was<4% data.When the number of data is limited, an alternative
approach is to use cross-validation [35, 36]. Therefore, in our ML
models, we implemented cross-validation (Table 1). As a future
direction, the number of the data could be increased to include
more test examples.

We used the old FE results (Figures 2, 5), despite their
limitations: the first “bump” in Figure 2 is too high, and the right
lower region in Figure 5 does not correspond to physiological
data. These non-physiological FE results were caused by data
uncertainty and FE numerical analysis at the time of FE
simulations (2015). Material properties, boundary conditions
and other aspects of the FE models have likely caused these
non-physiological characteristics. We have previously shown
the validity of our FE models [4, 7, 8]. In particular, we have
developed four-chamber whole heart models that simulate the
heart mechanics more realistically than the results shown in
Figures 2, 5 [8]. In this paper, we used data shown in Figures 2, 5
because generating new FE results would be time-consuming,
and the goal of this paper was better achieved using these old FE
results. Specifically, in this paper our focus was on applicability of
our ML approach to predict the mechanics of the LV.

There are many aspects of the heart mechanics and behavior
that could be fed into our ML algorithm. For example, in patients
with HF induced by infraction, the infarcted tissue properties
change in different stages of disease/recovery. To estimate the LV
wall stress, an ML algorithm can be used wherein LV properties,
geometry and pressure are the inputs and wall stresses are
the outputs. This strategy can serve as a monitoring tool for
optimizing treatment of HF.

Another important aspect of our ML model is its application
in LV assistive device design and drug development. Our ML
model can give key information such as stresses, strains, pressure
and volume in real time. This information (and similar data) are
important in the design process of left ventricle assist devices,
stents, heart valves, and effects of drugs on LV tissue. Our ML
methodology can be used to track the alterations in LV behavior
in real time, when the device design iterations or drug safety and
efficacy testing are conducted. This approach has been reported
in other industries [11].
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In this study, we focused on pressure, volume and stresses
in the LV. Future studies could include other aspects of the
LV or mechanical characteristics of other parts of the heart.
For example, the ML model can be trained to predict dP/dt.
Also, volume, pressure, stress and strains of the right ventricle
can be fed into the ML model. The relevant FE data can be
calculated for different healthy, diseased and treated conditions
with or without implants and assistive devices. Specifically, we
recently developed FE models to calibrate mechanical properties
in beating hearts [37]. The LV pressure and volumes can be used
as the features of the data sets, and the mechanical properties can
be predicted. However, to use our ML methodology for material
calibration, more features need to be included, such as sex, age
and geometrical or strain data, which were not available in this
study. Once the ML is trained for material calibration, the health
conditions of normal and diseased hearts can be estimated by
implementing our ML approach in portable devices. This line of
research is the subject of our future studies.

CONCLUSIONS

Data such as pressure, volume, and stresses are crucial to
understand the health conditions of the heart. Although FE
is a powerful tool that can provide this information, it often
takes too long for real- time applications. Using ML, these
data can be produced in a matter of seconds, and hence ML
linked with FE enables using more crucial data in real time.

This possibility is important in many areas, including planning
surgeries, designing medical devices, and monitoring health
conditions of the heart.
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