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We investigated the quantum phase transitions in a cross-cavity quantum Rabi

model which possesses the parity-time symmetric structure. Both the dissipative

quantum Rabi phase transition and the spontaneous parity-time symmetry breaking

exist simultaneously in such system. The competition between these two phase

transitions produces the plentiful phase diagram. We also propose the detection of the

dissipative cross-cavity quantum Rabi phase transition through the measurement of the

parity-time symmetric or asymmetric states, which shed light on the precise detection of

the few-body phase transition.
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1. INTRODUCTION

Quantum Rabi model (QRM) describing the coupling between one two-level atom and one
quantized cavity’s electromagnetic mode provides the simplest paradigm of the quantum light-
matter interaction [1, 2], which plays crucial role in many areas of the modern physics such as
quantum optics [3–5], quantum information processing [6–9], and condensed matter science [10–
14]. Under the rotating wave approximation to neglect the counter-rotating terms [15], quantum
Rabi model (a.k.a. Jaynes-Cummings model) can be readily solved for the near resonance or
the weak coupling parameter regions in many experiments. Thanks to the development of the
experimental techniques, the ultra-strong and deep-strong coupling regime can be accessed in
recent experiments [16–23]. In these regimes, the counter-rotating terms can not be neglected any
more which results in several intriguing phenomenon. One of them is the finite-component system
phase transition, where the ground state experiences a non-analytic change in the ultrastrong atom-
cavity-mode coupling together with large detuning [24–31]. The quantum phase transition in an
dissipative quantum Rabi model has also been studied for a realistic purpose, where the cavity
emits photons at a certain decay rate. The quantum Rabi model just provides a promising platform
to investigate the physics of the phase transition in quantum optical systems, which has already
attracted a lot of interest. If another kind of the phase transition is introduced in such system,
the competition between different phase transition mechanisms is supposed to lead to plentiful
phase diagram.

On the other hand, parity-time (PT) symmetric structure is also an intriguing topic in quantum
optical system [32–34]. A system with PT symmetry can undergo a phase transition at the
exceptional point, where the eigenvalues of the non-Hermitian Hamiltonian varies from real
values to complex values when crossing the exceptional point [35–37]. The PT symmetry breaking
actually results in various interesting phenomenon studied both theoretically and experimentally
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such as non-reciprocal photonic transmission [38], enhancement
of nonlinear interaction [39, 40], loss-induced or gain-
induced transparency [41, 42], efficient photon or phonon
lasing [43–47], ultralow-threshold optical chaos [48, 49],
quantum metrology [50], and so on. If PT symmetric structure
can be introduced in the QRM, two phase transition mechanisms
actually compete with each other and provide plentiful phase
diagram. Such system can be experimentally implemented
by the whispering-gallery modes in the ring cavities or the
superconducting transmission lines coupling to one Cooper
pair box.

In this paper, we investigate the plentiful phase transitions and
phase diagram of the cross-cavity quantum Rabi model together
with PT symmetric structure. Since the PT symmetric structure
requires a balanced loss and gain on different cavities, the two
cavities coupling to the same atom as the simplest model has
been taken into consideration. We find that the competition
between the quantumRabi phase transition and the PT symmetry
breaking results in plentiful phase transitions and phase diagram.
The normal phase and superradiant phase emerging in the
previous dissipative quantum Rabi model still exist in our
system. The effective coupling is inversely proportional to g2 in
the superradiant phase instead of being proportional to g2 in
the normal phase. In contrast, the PT asymmetric phase and
symmetric phase can also affect the dissipative quantum Rabi
model. For the PT asymmetric phase, the total system has steady
state when the time tends to infinite because the energy will
eventually dissipate into the surrounding environment. When
the PT asymmetric phase changes to a symmetric one, the
gain and loss of the system can be rebalanced and the original
dissipative quantum Rabi model behaves like a decay free Rabi
model. It means that except the normal phase and superradiant
phase existing in the previous dissipative quantum Rabi model,
an oscillating phase emerges in the current system, which exactly
is attributed from the PT symmetric structure. It also changes the
PT symmetry breaking from a second-order phase transition to a
first order one.

The paper is organized as follows. In section The Dissipative
QRM Together With PT Symmetric Structure, we introduce
the cross-cavity QRM together with PT symmetric structure.
We perform a semiclassical analysis of the model to show the
steady state and the oscillating state. In section Dissipative Phase
Transition, we present a full quantummechanical solution for the
PT symmetry breaking. The competition between the two phase
transitionmechanisms results in a plentiful phase diagram, which
is shown and discussed in section Dissipative Phase Transition.
We also propose a self-consistent equation. Finally, we conclude
our paper in section Conclusion.

2. THE DISSIPATIVE QRM TOGETHER
WITH PT SYMMETRIC STRUCTURE

In this article, we consider the dissipative cross-cavity quantum
Rabi model (QRM) together with parity-time (PT) symmetric
structure (shown in Figure 1), which is described by a master
equation as

.
ρ = −i [H0, ρ]+ L [ρ] , (1)

FIGURE 1 | The schematics of the dissipative QRM together with PT

symmetric structure when ωa = ωb = ω0, λa = λb = λ, and κa = κb = κ.

where Hamiltonian(h̄ = 1)

H0 = ωaa
†a+ωbb

†b+
�

2
σz−λa

(

a+ a†
)

σx−λb

(

b+ b†
)

σx,

(2)
governs the coherent dynamics of the cross-cavity QRM with
the annihilation (creation) operator of the two cavity modes
a(a†) and b(b†), σx and σz are Pauli matrices for a two-level
system. Here, � is the qubit transition frequency and λa(b)
is the coupling strength between the first (second) cavity and
the atom. The dissipative nature of the cross-cavity including
the loss of the first cavity and the gain of the second cavity
is described by Lindblad operators as L [ρ] = La [ρ] +
Lb [ρ] with La [ρ] = κa

(

2aρa† − ρaa† − aa†ρ
)

and Lb [ρ] =
κb
(

2b†ρb− ρb†b− b†bρ
)

. The oscillator frequencies of the
cavity modes and the coupling strengths are tuned to the same
one as ωa = ωb = ω0 and λa = λb = λ, and the loss of
the first cavity and the gain of the second cavity are symmetric
as κa = κb = κ in order to introduce the PT symmetry into
the dissipative cross-cavity QRM. Although the PT symmetric
and asymmetric phases can also exist when the frequencies, the
coupling strengths and the loss (gain) of cavities are not identical,
in the sake of the simplicity we consider the identical parameters
of the cavities in the following discussion.

By applying the same semi-classical analysis in Hwang
et al. [30], in the limit of extremely large detuning �/ω0 ≫ 1
and ultra-strong coupling λ/ω0 ≫ 1, the quantum fluctuations
are neglected and the mean-field properties are captured. From
the standard Heisenberg-Langevin equation of motion acquired
from the master equation in Equation (1) where the quantum
fluctuations and the correlations between the operators are
neglected, a set of semiclassical equation of motion of the
dissipative cross-cavity QRM together with the PT symmetry as

〈 ·
a
〉

= −i(ω0 − iκ) 〈a〉 + iλ(〈σ+〉 + 〈σ−〉), (3a)
〈 ·
b

〉

= −i(ω0 + iκ)
〈

b
〉

+ iλ(〈σ+〉 + 〈σ−〉), (3b)

〈 ·
σ+
〉

= i� 〈σ+〉 + iλ(〈a〉

+ 〈a〉∗ +
〈

b
〉

+
〈

b
〉∗
) 〈σz〉 , (3c)

〈 ·
σz

〉

= i2λ(〈a〉 + 〈a〉∗

+
〈

b
〉

+
〈

b
〉∗
)(〈σ+〉 − 〈σ−〉). (3d)

If there is only pure dissipation in the system, the solution of
the above semiclassical equation eventually tends to a steady
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one when the evolution time is much larger than the dissipative
time κ−1. However, this is not always true in a system with PT
symmetric structure because both loss and gain simultaneously
exist. It depends on whether the spontaneous symmetry breaking
of the PT symmetry occurs or not. If the system stays at the
PT asymmetric state, the total energy still dissipate into the
surrounding environment of the first cavity even the second
cavity gains energy from its surrounding environment and the
above semiclassical equation has steady solution. While at the
PT symmetric state, the energy loss in the first cavity and the
energy gain in the second cavity achieve delicate balance and
an oscillating solution possibly exist in our cross-cavity QRM.
In this sense, the phase transitions could be more plentiful in
our model.

Firstly, the steady-state solution should satisfy

0 =
(

1− i
κ

ω0

)

α −
g

2

(

S+ + S∗+
)

, (4a)

0 =
(

1+ i
κ

ω0

)

β −
g

2

(

S+ + S∗+
)

, (4b)

0 = S+ +
g

2

(

α + α∗ + β + β∗) Sz , (4c)

0 = g
(

α + α∗ + β + β∗) (S+ − S∗+
)

. (4d)

where α ≡ 〈a〉s /
√

η and β ≡
〈

b
〉

s
/
√

η are renormalized
steady-state mean amplitude of the cavity modes, and S+ ≡
〈σ+〉s and Sz ≡ 〈σz〉s are the steady-state qubit expectation
values. Here, we introduce a dimensionless coupling constant
g = 2λ/

√
ω0� and a frequency ratio η ≡ �/ω0 for

computational convenience.
The following constrain 4 |S+|2 + S2z = 1 is

introduced due to the conservation of the classical
pseudo-spin. Interestingly, the steady solution of the
dissipative cross-cavity QRM still exhibits a bifurcation at
g = gc with

gc =

√

1

2
(1+

κ2

ω2
0

). (5)

Below the critical point
(

g < gc
)

, we get the
trivial solution

α = 0,β = 0, S± = 0, Sz = −1, (6)

as the normal phase solution with zero mean field amplitude of
cavity modes and the ground state of the pseudo-spin. Above the
critical point

(

g > gc
)

, we get the superradiant phase solution as

Sz = −
g2c
g2

, S± = ±
1

2

√

1− (
gc

g
)4,α = β∗ =

g

1− i k
ω0

S+, (7)

where cavity modes have nonzero mean field amplitude and the
pseudo-spin stays at an excited state as well. Such phase transition
of the dissipative cross-cavity QRM exactly inherit from the
dissipative QRM. Additionally, α = β∗ still implies the PT
symmetric structure here.

Now the oscillating solution is taken into consideration.
Where the cavity modes oscillate at frequency ω, the x and y
component of the qubit should eventually oscillate at the same
frequency ω along the z-axis because the coupling in Equation
(2) effectively provide an oscillating driven magnetic field in
the x−direction. Therefore the oscillating solution should satisfy
〈 ·
a
〉

= iω 〈a〉 ,
〈 ·
b

〉

= iω
〈

b
〉

,
〈 ·
σ±
〉

= ∓iω 〈σ±〉 . For a conserved

classical pseudo-spin rotating along z-axis, the z−component

of the pseudo-spin can be steady as
〈 ·
σz

〉

= 0. However,

the oscillating frequency can not be simply determined. The
oscillating solution exists due to the unbroken PT symmetry,
while the PT symmetry breaking is not clear under the current
semi-classical treatment. In the next section, we will try to find a
self-consistent equation to obtain the oscillating frequency. The
Heisenberg-Langevin equation can be rewritten as

iω 〈a〉 = −i(ω0 − iκ) 〈a〉 + iλ (〈σ+〉 + 〈σ−〉) , (8a)

iω
〈

b
〉

= −i(ω0 + iκ)
〈

b
〉

+ iλ (〈σ+〉 + 〈σ−〉) , (8b)

∓iω 〈σ±〉 = i� 〈σ+〉 + iλ(〈a〉
+ 〈a〉∗ +

〈

b
〉

+
〈

b
〉∗
) 〈σz〉 , (8c)

0 = i2λ(〈a〉 + 〈a〉∗

+
〈

b
〉

+
〈

b
〉∗
) (〈σ+〉 − 〈σ−〉) . (8d)

If the oscillator frequencies of the cavity modes and the qubit
transition frequency are shifted by ω as ω′

0 = ω0 + ω and
�′ = � + ω, the above set of equations have the same form of
the Equations (3a–3d). It means even for the oscillating solution
there exhibits a bifurcation at g′ = g′c with

g′ =
2λ

√
(ω0 + ω) (� + ω)

, g′c =

√

1

2

(

1+
κ2

(ω0 + ω)2

)

. (9)

Below the new critical point
(

g′ < g′c
)

, the oscillating solution will
degenerate to a normal phase as

〈a〉 = 0,
〈

b
〉

= 0, 〈σ+〉 = 0, 〈σ−〉 = −1. (10)

Above the new critical point
(

g′ > g′c
)

, the oscillating solution also
bifurcates into two stable solutions as

〈σz〉 = −
(

g′c
g′

)2

, 〈σ+〉 = ±
1

2

√

1−
(

g′c
g′

)4

, (11)

〈a〉 =
〈

b†
〉

=
g′

1− i κ
ω0+ω

〈σ+〉 , (12)

which actually corresponds to a new phase where both the cavity
modes and the pseudo-spin eventually oscillates all the timewhen
the energy loss and the gain are delicate balanced. We will call it
oscillating phase and determine the oscillating frequency in the
next section.

3. DISSIPATIVE PHASE TRANSITION

In this section, we derive an effective master equation for the
cross-cavity modes when tracing out the qubit degree of freedom
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in the limit of extremely large detuning �/ω0 ≫ 1. Based on
the Heisenberger–Langevin approach, the quantum dynamics
of the system can be investigated in details together with the
quantum fluctuations. Both the QRMphase transition and the PT
symmetry breaking are demonstrated in united method. The part
of QRM phase transition agrees with the semiclassical solution
derived in the previous section. The oscillating frequency of the
oscillating phase is also illustrated by a self-consistent equation.

3.1. Normal Phases and Oscillating in the
Regime g < gc
After applying a unitary transformation

Unp = exp

[

1

2
gη−

1
2 (a+ a† + b+ b†)(σ+ − σ−)

]

, (13)

to the Hamiltonian in Equation (2), the coherent part of the
Hamiltonian can be transformed to

U†
npHUnp

= ω0

(

a†a+ b†b
)

+
�

2
σx

+
1

4
ω0g

2
(

a+ a† + b+ b†
)

2σz + O
(

η−
1
2

)

. (14)

Because of the extremely large detuning limit η≫ 1, the last term
in the transformedHamiltonian can be omitted. Additionally, the
unitary transformation actually is a infinitesimal one due to η≫1,
which would not affect the form of the loss and gain shown as
Lindblad operator L [ρ] in Equation (1). It has been proven in
Hwang et al. [30].

In order to demonstrate the property of the normal phase
where the qubit eventually stays at the ground state |↓〉, the qubit
degree of freedom can be traced out by averaging the transformed
master equation on the ground state of the qubit as

.
ρnp = −i

[

Hnp, ρnp
]

+ L
[

ρnp
]

, (15)

with

Hnp = 〈↓|U†
npHUnp |↓〉

= ω0

(

a†a+ b†b
)

−
1

4
ω0g

2
(

a+ a† + b+ b†
)

2. (16)

and ρnp = 〈↓|U†
npρUnp |↓〉 . Obviously, two cross-cavity couples

to each other with the coupling constant up to the second order of
g and the PT symmetric structure is still preserved. For the mean

amplitude u =
(

〈a〉 ,
〈

a†
〉

,
〈

b
〉

,
〈

b†
〉)T

, a set of linear equations can
be derived from the Equation (15) as u̇ = Lnpu with

Lnp =









−iδω − κ iγn iγn iγn
−iγn iδω − κ −iγn −iγn
iγn iγn −iδω + κ iγn
−iγn −iγn −iγn iδω + κ









, (17)

δω = ω0 − γn and γn = 1
2ω0g

2. The eigenvalues of the Lnp are

l±np,± = ±i
√

Anp ±
√

Bnp with

Anp = ω2
0 − 2γnω0 − κ2, (18)

Bnp = ω0

(

ω0γ
2
n + 2γnκ

2 − κ2ω0

)

. (19)

Both the PT symmetry breaking and the dissipative cross-cavity
QRM phase transition can be illustrated by the eigenvalues l±np,±.

If the real part of l±np,± is smaller than 0, the total system

eventually decay to the trivial solution u = (0, 0, 0, 0)T which
is the exact normal phase of the QRM. This critical point is
determined by Anp ±

√

Bnp = 0, which can be rewritten as

2g2 = 1 + κ2/ω2
0 agreeing with the semiclassical solution in the

Equation (5). However, the Bnp could varies from a positive value
to a negative one when crossing another critical point at Bnp = 0
which corresponds to

g2 = 2

(
√

κ4

ω4
0

+
κ2

ω2
0

−
κ2

ω2
0

)

. (20)

As shown in the Figure 2, the regime g < gc can be divided into
three regions as: Bnp < 0 for normal phase I; Bnp > 0 and Anp ±
√

Bnp < 0 for normal phase II; Bnp > 0 and Anp ±
√

Bnp > 0 for
oscillating phase. Here the oscillating phase emerges due to the
competition between the PT symmetry breaking and the QRM
phase transition. It is supposed to emerge when g > gc due to the
same mechanism which will be discussed in the next subsection.

3.2. Superradiant Phase and Oscillating
Phase in the Regime g > gc
To take into the consideration of the oscillating phase when g >

gc, a displacement unitary transformation D [α] = Da [α]Db [β]
with Da [α] = exp(αa† − α∗a) and Db [β] = exp(βb† − β∗b)

FIGURE 2 | The phase diagram of the dissipative QRM together with PT

symmetric structure. The normal phase, the superradiant phase and the

oscillating phase are denoted by the letters “NP,” “SP,” and “OP,” respectively.

To illustrate more details of the phase diagram, the phases NP I, NP II, SP I,

SP II, OP I, and OP II are plotted with yellow, blue, orange, purple, green, and

red blocks, respectively.
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is applied to the Hamiltonian in Equation (2) to displace the
cavity modes. The natural choice of the displacements are α =
± g

1−i k
ω0

S+ and β = ± g

1+i k
ω0

S− in Equation (7) in order to

consistent with the semiclassical solution. Here, the fact that the
displacement for the first and the second cavity are complex
conjugate as α = β∗ reflects the PT symmetric structure.

With the help of the following relations derived from the
Equations (4a–4d)

λ(αs+α∗
s +βs+β∗

s ) = −
�

2

〈σx〉
〈σz〉

, 〈σ+〉 = 〈σ−〉 =
1

2
〈σx〉 , (21)

the Hamiltonian can be transformed as

D† [α]H0D [α]

= ω0

(

a†a+ b†b+ 2 |α|2
)

±λ 〈σx〉 (a+ a†)± λ 〈σx〉 (b+ b†)

−λ

(

a+ a† + b+ b†
)

σx +
�

2

(

σz ±
〈σx〉
〈σz〉

σx

)

. (22)

Clearly, the ± sign corresponds to the bifurcation of the
steady solutions. We only consider the + case in the following
discussion. The displacement unitary transformation not only
displace the mean field amplitude of the cavity modes out of zero,
but also change the magnetic field on the qubit from the z−axis

to a new direction determined by σz ± 〈σx〉
〈σz〉σx. When the mean-

field amplitude of 〈σx〉 is a nonzero value at superradiant phase,
the unitary transformation applied previously should along the
new direction as

Usp = exp

[

1

2
gη−

1
2 cos2 θ(a+ a† + b+ b†)(τ+ − τ−)

]

, (23)

with τz = cos θσz − sin θσx, τx = sin θσz + cos θσx, and tan θ =
〈σx〉
〈σz〉 . After neglecting the constant term, the effective transformed

master equation is obtained as

.
ρsp = −i

[

Hsp, ρsp
]

+ L
[

ρsp
]

, (24)

with

Hsp = ω0

(

a†a+ b†b
)

−
1

4
ω0

g4c
g2

(

a+ a† + b+ b†
)

2. (25)

In the same method with the one applied for normal phase for

the mean amplitude u =
(

〈a〉 ,
〈

a†
〉

,
〈

b
〉

,
〈

b†
〉)T

, a set of linear
equations can be derived from the Equation (15) as u̇ = Lspu.

If we replace the γn with γs = 1
2ω0

g4c
g2

in Equation (17), the

eigenvalues of the Lsp can be obtained immediately as l±sp,± =

±i
√

Asp ±
√

Bsp with

Asp = ω2
0 − 2γsω0 − κ2, (26)

Bsp = ω0

(

ω0γ
2
s + 2γsκ

2 − κ2ω0

)

. (27)

As we can see in the regime g > gc, the effective coupling is
inversely proportional to g2 instead of being proportional to g2

when g < gc, which results in quite different phase transitions in
comparison with the ones in the regime g < gc. As shown in the
Figure 2, the regime g > gc can be also divided into three regions
as: Bsp < 0 for superradiant phase I; Bsp > 0 and Asp ±

√

Bsp < 0

for superradiant phase II; Bsp > 0 and Asp ±
√

Bsp > 0 for
oscillating phase.

3.3. Determine the Oscillating Frequency at
the Oscillating Phase
In the last two subsections, the existence of the oscillating
phase are verified by the effective master equation. However,
the oscillating frequency is not yet determined. Actually the
oscillating solution only introduce an additional frequency shift
ω into the Hamiltonian H0 as H0 + ω

(

a†a+ b†b+ σz
)

. Such
shift would not change the form of effective master equation
as Equation (15) in the regimes g < gc and Equation (24) in
the regimes g > gc. In those oscillating phases, the imaginary
parts of the pure imaginary eigenvalues of the Lnp or Lsp actually
are the oscillating frequency, which indicates that the oscillating
frequency is actually determined by a self-consistent equation. In

this sense, the self-consistent equation is ω = ±
√

A′
np ±

√

B′np

in the regimes g < gc and ω = ±
√

A′
sp ±

√

B′sp in the regimes

g > gc with

Anp
′ =

(

ω′
0

)2 − 2γ ′
nω

′
0 − κ2, (28)

Bnp
′ = ω′

0

(

ω′
0

(

γ ′
n

)2 + 2γ ′
nκ

2 − κ2ω′
0

)

. (29)

FIGURE 3 | The oscillating frequencies in the oscillating phases I and II.

Obviously, the oscillating frequencies is zero in the normal phase I and

superradiant phase I. When the decay rate κ is fixed and the coupling strength

g increases, it increases in the OP I while decreases in the OP II. It is

discontinuous at the transition edge from the oscillating phases to the normal

phase I or superradiant phase I.
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and

Asp
′ =

(

ω′
0

)2 − 2γ ′
sω

′
0 − κ2, (30)

Bsp
′ = ω′

0

(

ω′
0

(

γ ′
s

)2 + 2γ ′
s κ

2 − κ2ω′
0

)

. (31)

The oscillating frequency solved by the above self-consistent
equations are shown in Figure 3. As we can see, the behaviors
of the oscillating frequencies in the oscillating phase I (OP I)
and oscillating phase II (OP II) are quite different. When the
decay rate κ is fixed and the coupling strength g increases, it
increases in the OP I while decreases in the OP II. The oscillating
frequencies is almost independent of the decay rate. Another
important feature of the oscillating frequencies is discontinuity
at the transition edge from the oscillating phases to the normal
phase I (NP I) or superradiant phase I (SP I) shown in the phase
diagram. It results in the discontinuity of the order parameters in
Equations (11–12) which corresponds to the first order quantum
phase transition.

4. CONCLUSION

In this paper, we investigate the plentiful phase transitions
and phase diagram of the cross-cavity quantum Rabi model
together with PT symmetric structure. We find that the
competition between the quantum Rabi phase transition and
the PT symmetry breaking results in plentiful phase transitions
and phase diagram. The normal phase and superradiant phase
emerging in the previous dissipative quantum Rabi model
still exist in our system. The effective coupling is inversely
proportional to g2 in the superradiant phase instead of being
proportional to g2 in the normal phase. In contrast, the PT
asymmetric phase and symmetric phase can also affect the
dissipative quantum Rabi model. For the PT asymmetric phase,
the total system has steady state when the time tends to
infinite because the energy will eventually dissipate into the
surrounding environment. When the PT asymmetric phase

changes to a symmetric one, the gain and loss of the system

can be rebalanced and the original dissipative quantum Rabi
model behaves like a decay free Rabi model. It means that
except the normal phase and superradiant phase existing in the
previous dissipative quantum Rabi model, an oscillating phase
emerges in the current system, which exactly attributed from
the PT symmetric structure. Since the oscillating frequencies is
no longer continuous at the transition edge from the oscillating
phases to the normal phases or the superradiant phases, a first
order phase transition emerges due to the discontinuity of the
order parameters inherited from the oscillating frequencies. It
may shed light on the research of the first order quantum
phase transition.
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