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We investigate, both numerically and experimentally, the usefulness of a distributed

non-linearity in a passive coherent photonic reservoir computer. This computing system

is based on a passive coherent optical fiber-ring cavity in which part of the non-linearities

are realized by the Kerr non-linearity. Linear coherent reservoirs can solve difficult tasks

but are aided by non-linear components in their input and/or output layer. Here, we

compare the impact of non-linear transformations of information in the reservoirs input

layer, its bulk—the fiber-ring cavity—and its readout layer. For the injection of data into

the reservoir, we compare a linear input mapping to the non-linear transfer function of a

Mach Zehnder modulator. For the reservoir bulk, we quantify the impact of the optical

Kerr effect. For the readout layer we compare a linear output to a quadratic output

implemented by a photodiode. We find that optical non-linearities in the reservoir itself,

such as the optical Kerr non-linearity studied in the present work, enhance the task

solving capability of the reservoir. This suggests that such non-linearities will play a key

role in future coherent all-optical reservoir computers.

Keywords: photonic, reservoir computing, passive, coherent, distributed non-linearity, Kerr, fiber-ring

1. INTRODUCTION

In this work, we discuss an efficient, i.e., high speed and low power, analog photonic computing
system based on the concept of reservoir computing (RC) [1, 2]. This framework allows to exploit
the transient dynamics of a non-linear dynamical system for performing useful computations. In
this neuromorphic computing scheme, a network of interconnected computational nodes (called
neurons) is excited with input data. The ensemble of neurons is called the reservoir, and the
interneural connections are fixed and can be chosen at random. For the coupling of the input
data to the reservoir an input mask is used: a set of input weights which determines how strongly
each of the inputs couples to each of the neurons. The randomness in both the input mask and
internal reservoir connections ensures diversity in the neural responses. The reservoir output is
constructed through a linear combination of neural responses (possibly first processed by a readout
function) with a set of readout weights. The strength of the reservoir computing scheme lies in the
simplicity of its training method, where only the readout weights are tuned to force the reservoir
output to match a desired target. In general, a reservoir exhibits internal feedback through loops
in the neural interconnections. As a result any reservoir has memory, which means it can retain
input data for a finite amount of time, and it can compute linear and non-linear functions of the
retained information.
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Within the field of reservoir computing two main approaches
exist: in the network-based approach networks of neurons are
implemented by connecting multiple discrete nodes [3], and in
the delay-based approach networks of virtual neurons are created
by subjecting a single node (often a non-linear dynamical device)
to delayed feedback [4]. In the latter, the neurons are called
virtual because they correspond with the traveling signals found
in consequent timeslots in the continuous delay-line system.
On account of this time-multiplexing of neurons, the input
weights are translated into a temporal input mask, which is
mixed with the input data before it is injected into the reservoir.
Besides ensuring diversity in the neural responses, this input
mask also keeps the virtual neurons in a transient dynamic
regime, which is a necessary condition for good reservoir
computing performance.

Multiple opto-electronic reservoirs have been implemented,
both delay-based [5–8] and network-based [9]. Several all-optical
reservoirs have been realized, both network-based systems [9–
13] and delay-based systems [14–16]. An overview of recent
advances is given in reference [17]. We observe that in the field of
optical reservoir computing, some implementations operated in
an incoherent regime, while others operated in a coherent regime.
Coherent reservoirs have the advantage that they can exploit the
complex character of the optical field, exploit interferences, and
can use the natural quadratic non-linearity of photodiodes. As a
drawback, coherent bulk optical reservoirs typically need to be
stabilized, but this is not a problem for on chip implementations.
Here we investigate the potential advantage of having a coherent
reservoir with non-linearity inside the reservoir. We show that
it can increase the performance of the reservoir on certain tasks
and we expect that future coherent optical reservoir computers
will make use of such non-linearities.

State of the art photonic implementations target simple
reservoir architectures [13], which can easily be upscaled to
increase the number of computational nodes or neurons, thereby
enhancing the reservoirs computational capacity. Even a linear
photonic cavity can be a potent reservoir [16], provided that
some non-linearity is present either in the mapping of input
data to the reservoir, or in the readout of the reservoirs
response. Despite advances toward all-optical RC [18], many
state of the art photonic reservoir computers inherently contain
some non-linearity as they are usually set up to process
and produce electronic signals. This means that even if the
reservoir is all-optical, the reservoir computer in its entirety
is of an opto-electronic nature. Commonly used components
like a Mach-Zehnder modulators (MZM) and photodetectors
(PD) provide means for transitioning back and forth between
the electronic and optical domains, and they also—almost
inevitably—introduce non-linearities which boost the opto-
electronic reservoir computers performance beyond the merits
of the optical reservoir itself. When transitioning toward all-
optical reservoir computers, such non-linearities can no longer
be relied on, and thus the required non-linear transformation
of information must originate elsewhere. One option is then to
use multiple strategically placed non-linear components in the
reservoir, but this can be a costly strategy when upscaling the
reservoir [10].

In this paper, we study a delay-based reservoir computer,
based on a passive coherent optical fiber ring cavity following
reference [16] and exploit the inherent non-linear response of
the waveguiding material to build a state-of-the-art photonic
reservoir. This means that the non-linearity of our photonic
reservoir is not found in localized parts, but rather it is distributed
over the reservoirs entire extent. To correctly characterize
the effects of such distributed non-linearity, we also consider
in this study all other non-linearities that may surround
the reservoir. In terms of the reservoirs input mapping, we
examined the system responses when receiving optical inputs
(linear mapping), and when receiving electronic inputs coupled
to the optical reservoir through a Mach-Zehnder modulator
with a non-linear mapping. For the reservoirs readout layer,
we examined both linear readouts (coherent detection) and
non-linear readouts through the quadratic non-linearity of a
photodiodemeasuring the power of the optical field. Taking these
different options into account, we then constructed different
scenarios in terms of the presence of non-linearities in the input
and/or output layer of these reservoir computers. In all these
scenarios we numerically benchmarked the RC performance,
thus quantifying the difference in performance between systems
which do or do not have such distributed non-linearity inside
the reservoir. In the next sections, we show our numerical
results, which show a broad range of optical input power levels
at which these RCs benefit from the self-phase modulation
experienced by the signals due to the non-linear Kerr effect
induced by the waveguide material. We also show the results
of our experimental measurements that indicate how much
this distributed non-linearity boosts the reservoir’s capacity to
perform non-linear computation. In the discussion section, we
analyze the impact of these findings on the future of photonic
reservoir computing.

2. MATERIALS AND METHODS

2.1. Setup
Our reservoir computing simulations and experiments are based
on the set of dynamical systems which are discussed in this
section. The reservoir itself is implemented in the all-optical
fiber-ring cavity shown in Figure 1, using standard single-mode
fiber. A polarization controller is used to ensure that the input
field Ein (originating from the green arrow) excites a polarization
eigenmode of the fiber-ring cavity. A fiber coupler, characterized
by its power transmission coefficient T = 50%, couples light
in and out of the cavity. The fiber-ring is characterized by
the roundtrip length L = 10m (or roundtrip time tR), the
propagation loss α (taken here 0.18 dB km−1), the fiber non-
linear coefficient γ (which is set to 0 to simulate a linear reservoir,
and set to γKerr = 2.6mradm−1 W−1 to simulate a non-
linear reservoir), and the cavity detuning δ0, i.e., the difference
between the roundtrip phase and the nearest resonance (multiple
of 2π). This low-finesse cavity is operated off-resonance, with
a maximal input power of 50mW (17 dBm). A network of
time-multiplexed virtual neurons is encoded in the cavity
field envelope. The output field Eout is sent to the readout
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FIGURE 1 | Schematic of the fiber-ring cavity of length L used to implement

an optical reservoir. The green (orange) arrow indicates a connection with an

input (output) layer. A polarization controller maps the input polarization onto a

polarization eigenmode of the cavity. A coupler with power transmission

coefficient T couples the input field E
(n)
in

(τ ) to the cavity field E (n)(z, τ ) and

couples to the output field E
(n)
out (τ ), where n is the roundtrip index, τ is time

(with 0 < τ < tR) and z is the longitudinal position in the ring cavity.

layer (through the orange arrow) where the neural responses
are demultiplexed.

The input field Ein can originate from one of two different
optoelectronic input schemes. Firstly we consider a scenario
where the input signal u(n) (with discrete time n) is amplitude-
encoded in an optical signal E ∼ u(n), as shown in Figure 2A.
The reservoir’s input maskm(τ ) is mixed with the input signal by
periodic modulation of the optical input signal using an MZM.
This scheme was implemented in reference [7], but the non-
linearity of the MZM was avoided through pre-compensation
of the electronic input signal. Note that the discrete time
n corresponds with the roundtrip index. And as delay-based
reservoirs are typically set up to process 1 sample each roundtrip,
n also corresponds with the sample index. However, we have
chosen to hold each input sample over multiple roundtrips, for
reasons which are explained in the Results section [that is, u(n)
is constant over multiple values of n]. Secondly we consider
a scenario where we use the MZM to modulate a CW optical
pump following reference [14], as shown in Figure 2B. Here the
input signal is first mixed with the input mask and then used to
drive the MZM. It is known that the MZM’s non-linear transfer
function can affect the RC system’s performance [16], but the
implications for a coherent non-linear reservoir have not yet
been investigated.

Similarly, the output field Eout can be processed by two
different optoelectronic readout schemes. Firstly we consider
a coherent detection scheme as shown in Figure 2C. Mixing
the reservoir’s output field with a reference field ELO allows to
record the complex neural responses, time-multiplexed in the
output field Eout . Secondly, we consider a readout scheme where
a photodetector (PD) measures the optical power of the neural
responses |Eout|2, as shown in Figure 2D.

With high optical power levels and small neuron spacing
(meaning fast modulation of the input signal), dynamical and
non-linear effects other than the Kerr non-linearity may appear,
such as photon-phonon interactions causing Brillouin and

FIGURE 2 | Schematics of input and output layers connecting to the reservoir

shown in Figure 1. In the linear input scheme (A) the Mach-Zehnder

modulator (MZM) superimposes the reservoir’s input mask m(τ ) on the optical

signal E ∼ u(n) carrying the input data. In the (possibly) non-linear input

scheme (B) the input data is mixed with the input mask and then drives the

MZM to modulate a CW optical pump. In the linear output scheme (C) a

reference field ELO is used to implement coherent detection, allowing a

quadrature of the complex optical field to be measured. Note that coherent

detection requires two such readout arms with phase-shifted reference fields

in order to measure the complex output field Eout. In the non-linear output

scheme (D) only a photodetector (PD) is used, thus only allowing the optical

output power |Eout|2 to be recorded.

Raman scattering, and bandwidth limitations caused by the
driving and readout equipment. We want to focus in the present
work on the effects of the Kerr non-linearity. Combined with the
memory limitations of the oscilloscope, we therefore limit our
reservoir to 20 neurons, with a maximal input power of 100mW.

The current setup is not actively stabilized.We have found that
the cavity detuning δ0 does not vary more than a few mrad over
the course of any single reservoir computing experiment, where
a few thousand input samples are processed. A short header,
added to the injected signal, allows us to recover the detuning
δ0 post-experiment. We effectively measure the interference
between a pulse which reflects off the cavity and a pulse which
completes one roundtrip through the cavity. However, we find
that the precise value of δ0 has no significant influence on the
experimental reservoir computing results.

2.2. Physical Model
Here we discuss the mean-field model used to describe the
temporal evolution of the electric field envelope E(n)(z, τ ) inside
the cavity, where n is the roundtrip index, 0 < τ < tR is time
(bound by the cavity roundtrip time tR and 0 < z < L is
the longitudinal coordinate of the fiber ring cavity with length
L. The position z = 0 corresponds to the position of the fiber
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coupler. The position z = L corresponds to the same position,
but after propagation through the entire fiber-ring. We will
describe the evolution on a per-roundtrip basis (i.e., with varying
roundtrip index n). With this notation E(n)(z, τ ) represents the
cavity field envelope measured at position z at time τ during
the n-th roundtrip. For each roundtrip we model propagation
through the non-linear cavity to obtain E(n)(z = L, τ ) from
E(n)(z = 0, τ ).We then express the cavity boundary conditions to

obtain E(n+1)(0, τ ) from E(n)(L, τ ) and to obtain the field E
(n)
out(τ )

at the output of the fiber-ring reservoir. For now we will omit τ .
Firstly, to model propagation in the fiber-ring cavity we take

into account propagation loss and the non-linear Kerr-effect.
Since the non-linear propagation model is independent from
the roundtrip index n, this subscript is omitted in the following
description. The non-linear propagation equation is given by

∂zE = iγ |E|2E− αE. (1)

Here, α is the propagation loss and γ is the non-linear coefficient
which is set to γ = 0 to simulate a linear reservoir, and set to
γ = γKerr to include the non-linear Kerr effect caused by the fiber
waveguide. We do not include dispersion effects at the current
operating point of the system, since the neuron separation is
much larger than the diffusion length, hence also τ can be
omitted in the non-linear propagation model. The evolution of
the power |E(z)|2 is readily obtained by solving the corresponding
propagation equation

∂z|E|2 = E∗∂zE+ E∂zE
∗ = −2α|E|2, (2)

|E(z)|2 = |E(0)|2e−2αz . (3)

With φz the non-linear phase acquired during propagation over
a distance z, we know that the solution of E(z) will be of the form

E(z) = E(0)eiφz−αz . (4)

Since this non-linear phase depends on the power evolution given
by Equation (2), an expression for φz is found to be

φz = γ

∫ z

0
|E(v)|2δv = γ |E(0)|2

∫ z

0
e−2αvδv = γ |E(0)|2 1− e−2αz

2α
.

(5)
At this point, we can introduce the effective propagation distance
zeff as

zeff = 1− e−2αz

2α
. (6)

In general (since α ≥ 0) we have zeff ≤ z. Substituting these result
in Equation (4) yields the complete solution for propagation of
the cavity field envelope

E(z) = E(0) exp
(

iγ |E(0)|2zeff − αz
)

. (7)

Finally, we reinstitute the roundtrip index n and the time
parameter τ which allows us to combine this non-linear
propagation model with the cavity boundary conditions.











E(n)(L, τ ) = E(n)(0, τ ) exp
(

iγ |E(n)(0, τ )|2Leff − αL
)

E(n+1)(0, τ ) =
√
TE

(n+1)
in (τ )+

√
1− Teiδ0E(n)(L, τ )

E
(n+1)
out (τ ) =

√
1− TE

(n+1)
in (τ )+

√
Teiδ0E(n)(L, τ )

(8)

In these equations, T represents the power transmission
coefficient of the cavity coupler, and δ0 represents the cavity
detuning (i.e., difference between the roundtrip phase and the

closest cavity resonance). Further, the input field Ein = E
(n)
in (τ )

changes with the roundtrip index n as new data samples can
be injected into the system, and is modulated in time using the
input mask to create a network of virtual neurons. The output

field Eout = E
(n)
out(τ ) containing the neural responses is sent to a

measurement stage.

2.3. Reservoir Computing
The framework of reservoir computing allows to exploit
the transient non-linear dynamics of a dynamical system to
perform useful computation [1, 2]. For the purpose of reservoir
computing, virtual neurons (dynamical variables, computational
nodes) are time-multiplexed in τ -space of the physical system
described by Equation (8), following the delay-based reservoir
computing scheme originally outlined in reference [4]. As such,

the input field E
(n)
in (τ ) varies with n as new input samples arrive,

and varies with τ to implement the input mask, which excites
the neurons into a transient dynamic regime. Subsequently,

the neural responses are encoded in the output field E
(n)
out(τ )

and need to be demultiplexed from τ -space. As in references
[5, 16] the length tM of the input mask m(τ ) is deliberately
mismatched from the cavity roundtrip time tR. Instead, we set
tM = tRN/(N + 1) which provides interconnectivity between
the N virtual neurons in a ring topology. The input mask m(τ )
is a piecewise constant function, with intervals of duration θ =
tM/N. The signal I(n)(τ ) injected into the RC is constructed
by multiplying the input series u(n) with the input mask,
I(n)(τ ) = u(n)m(τ ). When the input is coupled linearly to

the reservoir then E
(n)
in (τ ) ∼ I(n)(τ ). This would be the case

when u(n) is an optical signal periodically modulated with the
input mask signal m(τ ). When a MZM modulator with transfer
function f is used to convert the electronic signal I(n)(τ ) to

the optical domain then E
(n)
in (τ ) ∼ f (I(n)(τ )), where f can

be non-linear.
Note that in reference [16] the sample duration tS is matched

to the length of the input mask tM , allowing the reservoir to
process 1 input sample approximately every roundtrip, as tS =
tM . tR. However, for reasons explained in the Results section,
we will study different sample durations by holding input samples
over multiple durations of the input mask, tS = k tM with integer
k as illustrated in Figure 3. This inevitably slows the reservoir

down, as it only processes 1 input sample approximately every k

roundtrips. But it also provides practically straightforwardmeans

to accumulate more non-linear processing of the data inside the

reservoir, which can then be measured and quantified.

Since the virtual neurons are time-multiplexed in this delay-

based reservoir computer, they need to be de-multiplexed from

E
(n)
out(τ ) in the readout layer by sampling this output field at a

set of times {τi} (with i the neuron index and 1 < i < N
when N neurons are used) as shown in Figure 3. The dynamical

neural responses xi(n) = E
(n)
out(τi) are recorded and used to train

the reservoir to perform a specific task. That is, we optimize a
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FIGURE 3 | Schematic of input and output timing, with tS the sample duration, tM the input mask duration and tR the roundtrip time. Input samples are injected

during (integer) k roundtrips (bars in alternating colors) and the neural responses are recorded at times {τi} (blue tick marks) during the last of those k roundtrips.

set of readout weights wi which are used to combine the neural
readouts into a single scalar reservoir output y(n). In general the
reservoir output is constructed as

y(n) =
N
∑

i=1

wig(xi(n)) (9)

where the neural responses xi(n) are first parsed by an output
function g(x) taking into account the operation of the readout
layer and readout noise ν. In all simulations the fixed level of
readout noise is matched to the experimental conditions. When
the complex-valued reservoir states are directly recorded, then
g(x) = x + ν and the readout weights wi are complex too, such
that y is real. If however, a PD measures the power of the neural
responses, then g(x) = |x|2 + ν which is real-valued, and the
readout weights will be real-valued too. Tasks are defined by the
real-valued target output ŷ. Optimization of the readout weights
occurs over a training set of Ttrain input and target samples,
and is achieved through least squares regression. This procedure
minimizes the mean squared error between the reservoir output
y and target output ŷ, averaged over all samples.

{wi} = argmin
{wi}

〈
(

ŷ−
N
∑

i=1

wig(xi)

)2

〉Ttrain . (10)

These optimized readout weights are then validated on a test set
of Ttest new input and target samples. A common figure of merit
to quantify the reservoir’s performance is the normalized mean
square error (NMSE) defined as

NMSE(y, ŷ) =
〈
(

y− ŷ
)2〉Ttest

〈ŷ2〉Ttest
. (11)

2.4. Balanced Mach-Zehnder Modulator
Operation
Here we briefly investigate the relevant non-linearities which
occur when mapping an electronic signal to an optical signal
using an MZM. The operation of our balanced MZM can be
described as

Ein

E0
= cos

(

V

Vπ

π

2

)

(12)

where E0 represents the incident CW pump field, Ein is the
transmitted field which will be the input field to the optical

reservoir,Vπ determines at which voltage the zero intensity point
occurs (point of no transmission), and V is the voltage of the
applied electronical signal consisting of a bias contribution Vb

and a zero-mean signal Vs, i.e., V = Vb + Vs. For our numerical
investigation, we will set the amplitude of the signal voltage to
|Vs| = Vπ/2. First, we investigate the zero intensity bias point,
Vb = Vπ . In this case, we can approximate Equation (12) with
the following Taylor expansion

Ein

E0
= f (Vs)+ O

(

V5
s

)

(13)

f (Vs) = − π

2Vπ

Vs +
1

6

(

π

2Vπ

)3

V3
s (14)

With (Ein/E0)max representing the maximal value of Ein
E0

with the
given bias voltage Vb and signal amplitude |Vs|, the relative error
r.e. of the Taylor expansion (14)

r.e. =
|EinE0 − f (Vs)|
(

Ein
E0

)

max

(15)

is smaller than 1%. When the cubic term (∼ V3
s ) of the

approximation f (Vs) is omitted, this error increases to 11%.
This means that at this operating point of the MZM, there
is a significant non-linearity which scales with the input
signal cubed.

Next, we investigate the linear intensity operating point, Vb =
Vπ/2. Although the MZM’s transfer function at this operating
point is the most linear in terms of the transmitted optical power,
it is highly non-linear in terms of the transmitted optical field. In
this case, we replace Equation (14) with

f (Vs) =
1√
2

(

1− π

2Vπ

Vs +
1

2

(

π

2Vπ

)2

V2
s (16)

+1

6

(

π

2Vπ

)3

V3
s +

1

24

(

π

2Vπ

)4

V4
s

)

,

as we need all polynomial terms up to order 4 to keep the relative
error defined by Equation (15) below 1%. In this case, omitting
terms of orders above 1 in the approximation f (Vs) increases the
relative error of the Taylor expansion to 26%. This means that at
this operating point of the MZM there are multiple polynomial
non-linearities and that the total non-linear signal distortion is
stronger compared with the zero intensity bias point.
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Furthermore, during our experiments we have decided to
operate the MZM in a linear regime. This allows for the non-
linear effects inside the reservoir to be more readily measured. To
this end, we tuned the MZM close to the zero intensity operating
point, Vb = Vπ − δV with δV ≪ Vπ and reduced the signal
amplitude |Vs|. The small deviation δV is used to generate a bias
in the optical field injected into the reservoir.

2.5. Memory Capacities
To benchmark the performance of an RC, one can train it to
perform one or several benchmark tasks. Alternatively, there
exists a framework to quantify the system’s total information
processing capacity. This capacity is typically split into two main
parts: the capacity of the system to retain past input samples is
captured by the linear memory capacity [19], and the capacity
of the system to perform non-linear computation is captured
by the non-linear memory capacity [20]. It is known that the
total memory capacity has an upper bound given by the number
of dynamical variables in the system, which in our system is
the number of neurons in the reservoir. It is also known that
readout noise reduces this total memory capacity, and that there
is a trade-off between linear and non-linear memory capacity,
depending on the operating regime of the dynamical system. In
order to measure these capacities for our reservoir computer a
series of independent and identically distributed input samples
u(n) drawn uniformly from the interval [−1, 1] is injected into
the reservoir, with discrete time n. The RC is subsequently trained
to reconstruct a series of linear and non-linear polynomial
functions depending on past inputs u(n− i), looking back i steps
in the past. Following reference [20] these functions are chosen
to be Legendre polynomials Pd(u) (of degree d), because they
are orthogonal over the distribution of the input samples. As an
example, we can train the reservoir to reproduce the target signal
ŷ(n), given by

ŷ(n) = P2(u(n− 1))P1(u(n− 3)). (17)

The ability of the RC to reconstruct each of these functions is
evaluated by comparing the reservoir’s trained output y with
the target ŷ for previously unseen input samples. This yields a
memory capacity C which lies between 0 and 1 [20],

C = 1−
〈
(

ŷ− y
)2〉

〈ŷ2〉 , (18)

where 〈.〉 denotes the average over all samples used for the
evaluation of C. Due to the orthogonality of the polynomial
functions over the distribution of the input samples, the
capacities corresponding to different functions yield independent
information and can thus be summed to quantify the total
memory capacity, i.e., the total information processing capacity
of the RC. The memory functions are typically grouped by their
total degree, which is the sum of degrees over all constituent
polynomial functions, e.g., Equation (17) has total degree 3.
Summing all memory capacities corresponding with functions of
identical total degree yields the total memory capacity per degree.
This allows to quantify the contributions of individual degrees to

the total memory capacity of the RC, which is the sum over all
degrees. As the memory capacities will become small for large
degrees, the total memory capacity is still bound.

Since the reservoirs are trained and their performance is
evaluated on finite data sets, we run the risk of overestimating the
memory capacities C, whose estimator Equation (18) is plagued
by a positive bias [20]. Therefore, a cutoff capacity Cco is used
(Cco ≈ 0.1 for 1,000 test samples) and capacities below this cutoff
are neglected (i.e., they are assumed to be 0).

Note that the trade-off between linear and non-linear memory
capacity is typically evaluated by comparing the total memory
capacity of degree 1 (linear) with the total memory capacity of
all higher degrees (non-linear). However, special attention is due
when a PD is present in the readout layer of our RC. If a reservoir
can (only) linearly retain past inputs u(n− i) (i steps in the past)
then any neural response x(n) consists of a linear combination
(with a bias term b and fading coefficients ai) of those past inputs

x(n) = b+
∑

i

aiu(n− i) (19)

and subsequently the optical power Px measured by the PD is
given by

Px(n) = x(n)x̄(n) = |b|2 +
∑

i

2Re(bāi)u(n− i) (20)

+
∑

i,j

2Re(aiāj)u(n− i)u(n− j)

which consists of polynomial functions of past inputs of degrees
1 and 2. Thus, in this case the total linear memory capacity of
the RC is represented by the total memory capacity of degrees 1
and 2 combined. In case the bias term b is lacking, only memory
capacities of degree 2 will be present. On the other hand, if a PD
is used in the output and memory capacities of degree higher
than 2 are present, then this indicates that the reservoir itself is
not linear, i.e., cannot be represented by a function of the form
Equation (19).

3. RESULTS

3.1. Numerical RC Performance: Sante Fe
Time Series Prediction
For the injection of input samples to the optical reservoir,
we consider two strategies as discussed in section 2.1 and in
Figures 2A,B, referred to here as the linear and non-linear input
regimes, respectively. The exact shape of the non-linearity in
the non-linear regime depends, among other things, on the
operating point (or bias voltage) of the MZM, as discussed in
section 2.4. We will demonstrate this by showing results around
both the linear intensity operating point and the zero intensity
operating point of the MZM. For the readout of the reservoir
response, we also consider two cases as discussed in section 2.1
and in Figures 2C,D, referred to here as the linear and non-linear
output regimes, respectively.

We have thus identified four different scenarios based on the
absence or presence of non-linearities in the input and output
layer of the reservoir computer. As we will show, we have for
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FIGURE 4 | Numerical results of fiber-ring reservoir computer on Santa Fe time series prediction tasks. In all panels the prediction error (NMSE) is plotted vs. the

average neuron power 〈Px〉. (a,b) Correspond with a linear input layer, where (c,d) correspond with a non-linear input layer using the MZM’s non-linear transfer

function. The non-linear input regime shows results for two different operating points of the MZM with different strengths of non-linear transformation.

(a,c) Correspond with a linear output layer, where (b,d) correspond with a non-linear output layer using the PD.

each of these cases numerically investigated the effect of the
distributed non-linear Kerr effect, present in the fiber waveguide,
on RC performance. For this evaluation, we have used 100
neurons to solve the Santa Fe time series prediction task [21] and
each input sample is injected during six roundtrips (tS = ktM
with k = 6) for reasons which will become clear in section
3.2. Here, a pre-existing signal generated by a laser operating
in a chaotic regime is injected into the reservoir. The target
at each point in time is for the reservoir computer to predict
the next sample. Performance is evaluated using the NMSE,
where lower is better. Figure 4 has four panels corresponding to
these four scenario’s. Each panel shows the NMSE as function of
the average optical power per neuron inside the cavity. Dashed
blue lines correspond with simulation results of linear reservoirs
(i.e., with the non-linear coefficient γ set to 0), and full red
lines correspond with simulation results of reservoirs with Kerr
non-linear waveguides (i.e., γ set to γKerr).

In Figure 4a both the input and output layers of the reservoir
are strictly linear (i.e., optical input and coherent detection). It
is clear that the linear reservoir (γ = 0) scores poorly, with the
NMSE approaching 20%. For a wide range of optical power levels,
the presence of the Kerr non-linear effect (γ = γKerr) induced by
the fiber waveguide boosts the RC performance, with an optimal
NMSE just below 1%. This can be readily understood as it is well-
known that for this task, some non-linearity is required in order
to obtain good RC performance. Note that the average neuron
power 〈Px〉 can be used to estimate the average non-linear phase
φKerr the signals will acquire during the sample duration tS, as
φKerr = γKerr〈Px〉LtS/tM . We observe that without the presence
of phase noise in the cavity, the boost to the RC performance
due to the Kerr effect starts at very small values of the estimated
non-linear phase, and breaks down when φKerr & 1. Switching
to Figure 4bwe have now introduced the square non-linearity by
using a PD in the readout layer. Focusing on the results obtained
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with a linear reservoir, we see that the PD’s non-linearity alone
decreases the NMSE down from 20 to ∼5% (γ = 0). Although
the PD’s non-linearity clearly boosts the RC performance on
this task, its effect is rather restricted. The PD only generates
squared terms, and linear terms if a bias is present, see section
2.5, depending on the MZM’s operating point. Furthermore,
this non-linearity does not affect the neural responses nor the
operation of the reservoir itself, as it only applies to the readout
layer. It can thus be understood that the introduction of the
Kerr non-linearity inside the reservoir warrants an additional
significant drop in NMSE, to below 1% (γ = γKerr). In Figure 4c,
the output layer is linear again, but now we have introduced the
MZM in the input layer. The closed markers correspond with
simulations where the MZM operates around the zero intensity
operating point or the point of minimal transmission (Vbias =
Vπ ). In terms of the optical field modulation, this is the most
linear regime. It is thus no surprise that the performance of both
linear and non-linear reservoirs mimics that Figure 4a where no
non-linearity was present in the input layer. The only difference
is that the error of the linear reservoir drops from 20% to about
13%(γ = 0, Vbias = Vπ ) because of the small residual non-
linearity at this operating point of the MZM. The round markers
correspond with simulations where the MZM operates around
the linear intensity operating point (Vbias = Vπ/2). In terms of
the optical field modulation, the non-linearity in the mapping
of input samples to the optical field injected into the reservoir
is more non-linear at this operating point. This is why even
the linear reservoir manages to achieve errors below 4% (γ =
0, Vbias = Vπ/2). Again we see that the introduction of the
non-linear Kerr effect allows the NMSE to drop even further,
to below 1% (γ = γKerr). In fact, this scenario is similar to
the scenario with linear input mapping and non-linear output
mapping, Figure 4b. Finally, in Figure 4d, non-linearities are
present in both the input mapping and readout layer. With
the MZM operating around the zero intensity operating point,
there is only a weak non-linearity in the input mapping and
thus, as expected, both linear and non-linear reservoirs show
trends which are very similar to the scenario where the input
mapping is linear, Figure 4c. With the MZM operating around
the linear intensity operating point (Vbias = Vπ/2) however,
we observe a scenario in which the RC does not seem to benefit
from the presence of the Kerr non-linear effect. It seems that with
significant non-linearities present in both input and output layers
of the RC the distributed non-linear effect inside the reservoir
cannot further decrease the NMSE below values attained by the
linear reservoir, which is below 1% (Vbias = Vπ/2). In all other
cases, Figures 4a–c, we find that the distributed non-linearity
inside the reservoir significantly boosts RC performance, and we
find that its presence is critical when no other non-linearities
are available.

3.2. Experimental Verification: Linear and
Non-linear Memory Capacity
In this section we compare experimental results with detailed
numerical simulations. For the experimental verification of our
work, we are currently limited to operate with 20 neurons,

as explained in section 2.1. Therefore, we have chosen not to
perform the reservoir computing experiment on the Santa Fe
task. With this few neurons, tasks like the Santa Fe task become
hard for the reservoir. Instead we turn to a more academic
task which allows us to quantify the reservoir’s memory and
non-linear computational capacity in a more complete and task-
independent way. We experimentally measure the linear and
non-linear memory capacities considered in section 2.5. Even
with this few neurons the evaluation of the memory capacities
can yield meaningful results while taking up comparatively little
processing time.

For these experiments, the input layer to our fiber-ring
reservoir contains a balanced MZM tuned to operate in a linear
regime as outlined in section 2.4. The output layer employs a
PD to measure the neural responses. That is, we use the setups
of Figures 2B,D but with the MZM operated as in Equation
(2.4). Following reference [20], we have driven the reservoir
with a series of independent and identically distributed random
samples and trained the RC to reproduce different linear and
non-linear polynomial functions of past input samples. The
capacity of the reservoir to reconstruct these functions was then
evaluated and results were grouped according to the function’s
polynomial degree. To retain oversight on the results, we will
only show the total capacity per degree, by summing all capacities
corresponding with functions of the same total polynomial
degree. In Figure 5 we show the total memory capacity per
degree, encoded in the height of vertically stacked and color-
coded bars. The stacking allows to visualize the contributions
of individual degrees to the total overall memory capacity
(summed over all degrees). Capacities of degree higher than
4 are not considered, as they were found not to contribute
significantly to the total memory capacity of the system. For
results labeled bias off the MZM operates at the zero-intensity
point (Vbias = Vπ ), and moving toward the bias on label,
we tuned the MZM’s bias voltage (Vbias = Vπ − δV , with
δV ≪ Vπ ). This introduces a small bias component to the optical
field injected into the reservoir, without compromising the linear
operation of the MZM. The experiment was also repeated for
different values of the sample duration tS with respect to the
input mask periodicity tM (approximately equal to the cavity
roundtrip tR). We expect the sample duration to play a very
important role, since it determines how much time a piece
of information spends inside the cavity, and thus how much
non-linear phase can be acquired. The ratio tS/tM is gradually
increased from tS = 2tM in (first row) Figures 5A–C, to
tS = 6tM in (middle row) Figures 5D–F, and finally to tS =
10tM in (bottom row) Figures 5G–I. The experimental results
in (left column) Figures 5A–G are compared with numerical
results on a linear reservoir (γ = 0) in (middle column)
Figures 5B–H, and a non-linear reservoir (γ = γKerr) in (right
column) Figures 5C–I.

Firstly, in Figure 5A we observe that without bias to the
optical input field (Vbias = Vπ ) the total memory capacity
originates almost completely from the polynomial functions
of degree 2 which means (given the presence of the PD in the
readout layer) that the optical system is almost completely
linear. Then, as an optical field bias is introduced we find
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FIGURE 5 | Comparison between experimental results (A,D,G) and numerical models with linear (γ = 0) (B,E,H) and non-linear (γ = γKerr ) reservoirs (C,F,I). The

stacked vertical bars are color-coded to represent the total memory capacities (TMC) of degree 1 (blue), 2 (red), 3 (orange), and 4 (purple). As such, the total height

represents the total overall memory capacity. A control variable to the MZM δV , is varied to include a small bias component to the injected optical field, where bias off

corresponds with δV = 0 and bias on corresponds with a small non-zero value 0 < δV ≪ Vπ . The sample duration tS is varied from 2 times (A–C), to 6 times (D–F)

and finally to 10 times (G–I) the input mask period tM (≈ cavity roundtrip time tR).

that the total linear memory capacity of the system is now
shared between degrees 1 and 2. As expected on account of
quadratic non-linearity due to the PD, Equation (20), the
contribution of (odd) degree 1 grows with the increasing
bias. Beyond these capacities of degrees 1 and 2, we also
observe a small contribution of capacities of degrees 3 and
4. We ascribe these contributions to the imperfect tuning
of the MZM and thus a small residual non-linearity in the
input mapping. Note that the simulations take into account
the quasi-linear input mapping of the MZM, but seemingly
underestimate the residual non-linearities to be insignificant.
The imperfection of the MZM tuning also leads to a small
residual bias component to the optical injected field, resulting
in a small non-zero capacity of degree 1. Numerical simulations
of linear (γ = 0) and non-linear (γ = γKerr) reservoirs

in Figures 5B,C, respectively, show the same growth in the
memory capacity of degree 1 at the expense of the memory
capacity of degree 2 when the bias is changed. Note that
both simulations seem to overestimate the minimal bias
required to obtain a significant memory capacity of degree
1. At this sample duration (tS = 2tM) neither simulations
indicate any significant contributions of capacities with
degrees beyond 2.

When increasing the sample duration (tS = 6tM and tS =
10tM), the experimental results in Figures 5D,G show a steady
increase in the contributions of capacities with degrees 3 and
4. This increase is attributed to the non-linear Kerr effect, due
to the larger accumulation of non-linear phase during the time
each sample is presented to the reservoir. At the same time
we see a decrease in the capacities of degrees 1 and 2. As
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explained before, due to the PD these capacities capture the
reservoir’s capacity to linearly retain past samples. This trade-
off between linear memory capacity (here degrees 1 and 2) and
non-linear computational capacity (here degrees 3 and 4) is well-
documented [20]. Because we use the sample duration (tS =
ktM ≈ ktR) to control the cumulative non-linear effect inside
the reservoir, we inevitably increase the mismatch between the
inherent timescale of the input data (i.e., the sample duration
tS) and the inherent timescale of the reservoir (i.e., the cavity
roundtrip tR). and alter the reservoirs internal topology. When
each sample is presented longer, past samples have spent more
time inside the lossy cavity by the time they are accessed through
the reservoirs noisy readout. Thus, on the longer timescales
(tS) at which information is now processed, it is harder for the
reservoir (operating at timescale tR) to retain past information.
These aspects explain why the overall total memory capacity
(summed over all degrees) decreases with increased sample
duration tS. The numerical results on both the linear reservoir
(γ = 0) in Figures 5E,H and the non-linear reservoir (γ =
γKerr) in Figures 5F,I correctly predict a drop in the total linear
memory capacities (degrees 1 and 2). Due to the memory
capacity cutoff explained in section 2.5, small capacities are
harder to quantify accurately and systematic underestimation
can occur. This explains why the small total memory capacities
obtained experimentally are larger than the small total memory
capacity obtained numerically. The correspondence for large
total memory capacities is better as they are largely unaffected
by the cutoff. But besides the drop in linear memory capacities,
only the non-linear reservoir model can explain the steady
increase in non-linear memory capacities (degrees 3 and 4) with
longer sample durations. With increasing sample duration tS
the simulated non-linear reservoir shows the contribution of the
total non-linear memory capacity (degrees 3 and 4) to the total
memory capacity (all degrees) growing from 0 to 25.4%, and
in the experiment this contribution starts at 6.4% and grows
up to 23.6%. This sizable increase in non-linear computation
capacity can be of considerable significance to the reservoir’s
performance on other tasks, as shown earlier. When comparing
the experimental results with the non-linear reservoir model for
all given sample durations tS, the main difference is that the
capacities of degree 3 seem to appear sooner (i.e., for smaller
sample duration) in the experiment. This can be explained by
the residual bias component to the optical injected field. Such
a bias makes it easier to produce polynomial functions of odd
degrees, thus explaining their earlier onset. This can be explained
by the quadratic nature of the Kerr non-linearity, as the reasoning
previously applied to the quadratic non-linearity of the PD
in Equation (20) can be generalized to memory capacities of
higher degree.

4. DISCUSSION

We have identified and investigated the role of non-linear
transformation of information inside a photonic computing
system based on a passive coherent fiber-ring reservoir. Non-
linearities can occur at different places inside a reservoir
computer: the input layer, the bulk and the readout layer.

State-of-the-art opto-electronic RC systems often include one or
several components which inevitably introduce non-linearities
to the computing system. On the reservoir’s input side, we have
compared a linear input regime with the usage of a MZM, which
has a non-linear transfer function, to convert electronic data to an
optical signal. On the reservoir’s output side, we have compared
a linear output regime with the usage of a PD which measures
optical power levels, that scale quadratically with the optical
field strength of the neural responses. We numerically evaluated
such systems using a benchmark test and found that non-linear
input and/or output components are needed to obtain good RC
performance when the optical reservoir itself (i.e., the core of the
RC system) is a strictly linear system.

Internal to the reservoir, we investigated the effect of
the optical Kerr non-linear effect on RC performance. Our
numerical benchmark test showed a large band of optical
powers where the presence of this distributed non-linear effect,
caused by the waveguiding material of the reservoir, significantly
decreased the RC’s error figure. Our numerical and experimental
measurements of the linear and non-linear memory capacity
of this RC system showed that the accumulation of non-linear
phase due to the distributed non-linear Kerr effect strongly
improves the system’s non-linear computational capacity. We
can thus conclude that for photonic reservoir computers with
non-linear input and/or output components, the presence of a
distributed non-linear effect inside the optical reservoir improves
the RC performance. Furthermore, the distributed non-linearity
is essential for good performance in the regime where non-
linearities are absent from both the input and output layer. This
may be the case in an all-optical reservoir computer (i.e., with
optical input and output layers). We have shown that the effect of
the distributed non-linearity is strong enough to compensate for
the lack of non-linear transformation of information elsewhere
in the system, and that it allows to build a computationally strong
photonic computing system.

Finally, we expect a design approach including distributed
non-linear effects to improve the scalability of these types
of computational devices. In general, when harder tasks are
considered, larger reservoirs are required. One way to increase
the size of a delay-based reservoir is to implement a longer
delay-line. This increase in length of the signal propagation
path naturally increases the effect of distributed non-linearities
as considered in this work. Similarly, increasing the size
of a network-based reservoir will also lead to more and/or
longer signal paths, resulting in the increased accumulation of
non-linear effects, although waveguides with stronger non-linear
effects may have to be considered to compensate for the shorter
connection lengths in on-chip implementations. We believe
that the natural increase in the strength of non-linear effects,
following the increase in size of the reservoir, may diminish
the need to place discrete non-linear components inside large
networks used for strongly non-linear tasks. As such, both
the complexity and cost of such systems would be reduced.
Since the waveguiding material itself is used to induce non-
linear effects, the waveguide properties (such as material and
geometry) determines the optical field confinement and thus
regulate the strength of non-linear interactions. Consequently it
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may be possible to create reservoirs where deliberate variations
in the waveguide properties are used to tune the strength of the
distributed non-linear effect in different regions of the system.
This would allow for a trade off between the system’s linear
memory capacity and its non-linear computational capacity,
such that a large number of past input samples can be retained
(in some parts of the system) and then non-linearly processed
to solve difficult tasks (in other parts of the system). These
considerations indicate why distributed non-linear effects may
play a major role in future implementations of powerful photonic
reservoir computers.
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