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Coronal mass ejections (CMEs) are intense solar explosive eruptions and have significant

impact on geomagnetic activities. It is important to understand how CMEs evolve as

they propagate in the solar-terrestrial space. In this paper, we studied the coalescence

of magnetic flux ropes embedded in five interplanetary coronal mass ejections (ICMEs)

observed by both ACE and Wind spacecraft. The analyses show that coalescence of

magnetic flux ropes could persist for hours and operate in scale of hundreds of earth radii.

The two merging flux ropes could be very different in the axial orientation and the plasma

density and temperature, which should complicate the progress of coalescence and have

impact on the merged structures. The study indicates that coalescence of magnetic flux

ropes should be an important factor in changing the magnetic topology of ICMEs.

Keywords: interplanetary coronal mass ejection, magnetic flux rope, coalescence, magnetic reconnection,

magnetic clouds

KEY POINTS

1. Coalescence of magnetic flux ropes within five interplanetary coronal mass ejections
was studied.

2. The process of coalescence could be steady and large-scaled.
3. The process of coalescence is an important factor in changing the magnetic topology of

interplanetary coronal mass ejections.

INTRODUCTION

Coronal mass ejections (CMEs) are large-scale solar explosive eruptions and their counterparts
in the interplanetary space, interplanetary coronal mass ejections (ICMEs), are known to be
an important cause of intense geomagnetic disturbances [1–3]. The geomagnetic effectiveness
of ICMEs has strongly relation with their magnetic structures. For example, Magnetic Clouds
(MCs), a subset of ICMEs, are found to be more effective than non-MC ICMEs in causing intense
geomagnetic storms [4]. CMEs are thought to originally be of magnetic flux rope structures (e.g.,
[5–7]). However, ICMEs appearing as flux rope (i.e., MCs) only account for 30−40% of ICMEs
observed at 1AU [8, 9]. Therefore, understanding how CMEs evolve as they propagate in the
solar-terrestrial space is very important for the space weather forecasting.

As an ICME propagates in the interplanetary space, its interaction with ambient
solar wind or being caught up by other ICMEs from behind can cause the change
of its magnetic topology [10–17]. Multiple rope-like substructures have been detected
within ICMEs [18–22]. Feng et al. [22] reported observations of three merging flux
ropes within an ICME and they thought that the coalescence would lead to the
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formation of a bigger rope. However, the potential of coalescence
of flux ropes in altering the magnetic topology (e.g., the scale of
coalescence in space and time) is still unclear.

Phan et al. [23] made a statistical study of extended
reconnection X-lines in the solar wind at 1AUwith the combined
observations of ACE andWind spacecraft. In the work presented
here, we surveyed the reconnection current sheet listed in Phan
et al. [23] and found five of themwere formed during coalescence
of magnetic flux ropes embedded in ICMEs. The analyses show
that the operation of coalescence can extend hundreds of earth
radii and persist for several hours. The two merging flux ropes
could be very different in some aspects.We think that coalescence
of flux ropes should play important roles in the evolution
of ICMEs.

DATA

The data used in this paper are obtained from several instruments
onboard ACE and Wind spacecraft. Wind magnetic field data
and plasma data with time resolution of 3 s are taken from the
Fluxgate Magnetometer experiment and the 3DP instrument,
respectively [24, 25]. ACE magnetic field data (1 and 16 s
resolution) are from MAG and plasma data (64 s resolution)
are from SWEPAM instrument [26, 27]. If not specified, the
GSE coordinate system (the Geocentric Solar Ecliptic coordinate
system in which the x-axis directs from the Earth to the Sun,
the z-axis points north, perpendicular to the ecliptic plane, the
y-axis completes the right-handed coordinate system) is used in
this paper.

OBSERVATIONS

In this section we first show one example to illustrate the
identification of ICMEs and the merging flux ropes, then
the procedure for estimating the X-line length formed during the
coalescence progress and the other four cases are presented.

Figure 1 shows observations made by ACE (black) and Wind
(red) from Oct. 3rd, 2000 to Oct. 5th, 2000. For clarity, the time
series of ACE are shifted 110min forward. During the whole
interval showed in Figure 1, the data curves of the magnetic
field and plasma at the two spacecraft were generally similar.
From ∼12:00 on Oct. 3rd (the first vertical line), the magnetic
field became smoother and its strength gradually increased
(Figures 1a–d). In the meantime, the proton temperature and
the plasma beta values dropped (Figures 1i,j). At ∼03:00 on
Oct. 5th (the second vertical line), the speed of the plasma,
the proton temperature and the plasma beta values suddenly
increased (Figures 1e,i,j). Based on the above observations, we
think the spacecraft encountered an ICME during the interval
bounded by the two dashed vertical lines.

During the two intervals covered by the orange color, the
magnetic field rotated. For the first orange region, Bz gradually
increased from−2 nT to 7 nT (Figure 1d). For the second orange
region, By gradually increased from −6 to 15 nT (Figure 1c)
and Bz first increased to 15 nT, then decreased to −8 nT
(Figure 1d). Along with the rotation, the strength of themagnetic

FIGURE 1 | Measurements of ACE (black) and Wind (red) from 02:00 UT on

Oct 03 to 11:00 UT on Oct 05, 2000. The observations of ACE have been

shifted 110min for forward. (a–d) Magnitude and three components of the

magnetic field. (e–g) Three components of plasma velocity. (h–j) Proton

density, temperature and proton plasma beta values. The two vertical dashed

lines indicates the boundary of the ICME. the two orange regions denote the

two merging flux ropes. The shadow region denotes the reconnection current

sheet intermediating the calescence.

field enhanced. The rotation of the magnetic field and the
concurrent enhancement in its strength indicated that the two
orange regions corresponded to crossing of two flux ropes. With
the assumption of two dimension and quasi-steady state, the
axis of a flux rope can be determined by Grad-Shafranov (G-S)
reconstruction method [28]. According to the G-S equation, the
thermal pressure and the magnetic pressure are constant along
one magnetic field line in the plane perpendicular to the axial
direction [28]. Applying the G-S reconstruction method to the
data of the two orange regions, the obtained axis of the two flux
ropes was (ϕ = 116.08, θ = 19.45) for the earlier, and (ϕ = 1.82,
θ = 29.88) for the latter, where ϕ and θ are the longitude and
latitude with respect to the ecliptic plane.

In the intermediate region (the shadow region) between
the two magnetic flux ropes, the spacecraft detected steep
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FIGURE 2 | The enlarged vision of current sheet (the shadow region in

Figure 1) in the LMN coordinate system. (a) Magnitude (blue) and three

components of the magnetic field, L (black), M (green), and N (red). (b) Three

components of plasma velocity. The dashed blue line represent the velocity

predicted by walen relation. Note that the origin data curves have been shifted

up or down for clarity. (c–d) The proton density and temperature.

changes in Bx and By with Bx jumping from −9 to 11
nT and By dropping from 12 to −10 nT (Figures 1b,c).
Meanwhile, the plasma velocity in the Vx and Vy component
locally peaked (Figures 1e,f). The proton temperature and the
plasma beta values also showed a local peak (Figures 1i,j). The
above observations indicated that the spacecraft might cross
exhaust of magnetic reconnection, which can be more clearly
in Figure 2.

In Figure 2, all vectors are presented in a local LMN
coordinate system, where L was assumed to be along the
reconnection outflow direction, M along the X-line direction
and N along the normal direction of the reconnection current
sheet. N was determined by minimum variance analysis of
the magnetic field across the current sheet [29] and that
M was chose so that the M components of the in-plane
asymptotical magnetic field in both sides of the current sheet
are same [30]. L = M × N forms the right-hand coordinate
system. The most remarkable feature of the magnetic field is

the two-step decrease in BL (Figure 2a), which corresponded
to a bifurcated current sheet. Within the current sheet, the
proton temperature increased (Figure 2d). The changes in VL

(Figure 2b) during the crossing of the current sheet were
consistent with these predicted (the dashed lines) by walén
relation, which were calculated from the following equation
[31, 32]:

Vpredicted = Vreference ± (1− αreference)
1/2

(1− µ0ρreference)
−1/2(Bρreference/ρ − Breference)

Note that the pressure anisotropy factor, α, was assumed to be
zero. Therefore, we thought that the spacecraft crossed exhaust
of magnetic reconnection [33]. Detection of the reconnection
current sheet between two flux ropes indicated that the two flux
ropes were merging [22].

Adopting a similar procedure as that in Phan et al. [32],
the extent of the X-line associated with the coalescence was
estimated. The reconnection current sheet intermediating the
coalescence was assumed to be planar and its normal direction
obtained by minimum variance analysis was (ϕ = 41.19, θ =

−17.41). The separation of the two ships was [193, 223,−3.8] RE

in GSE. Using this normal direction and the planar assumption,
the predicted temporal delay from ACE to Wind was 103min
which was close to the observed temporal delay, 110min. This
agreement indicated that the obtained normal direction and the
planar assumption were valid. The direction of the X-line, M
was (ϕ = 52.55, θ = 72.26) [30]. With the knowledge of N,
M and the separation of the two ships, the distance along the
X-line between the locations where the two ships intersected
the current sheet was calculated to be 14 RE, which meant
that the extend of the coalescence in space was at least 14
RE. The temporal delay between the two ships was ∼110min
and the interval covered by the reconnection current sheet was
∼12min. Therefore, the progress of coalescence at least operated
for 122 min.

With similar procedure, another four events of coalescence of
flux ropes within an ICME were analyzed. The four events and
the reconnection current sheet intermediating the coalescence
are, respectively, presented in Figures 3, 4. Some of the five
ICMEs have been studied by other researches [21, 22]. The
details of the five cases are listed in Table 1. These cases were
different in some aspects. The interval of the two merging
flux ropes only occupied a small portion (∼23%) of the whole
duration of the ICME in Apr. 2000 (Figure 3B). However, for
the other four cases, the two merging flux ropes occupied most
of the ICME that they were embedded in Figures 1, 3A,C,D.
The angle formed by the axes of the two merging flux ropes
varied from case to case with a range from ∼70◦ to ∼160◦

(Table 1, in column Fr2-to-fr1). The plasma carried by the
merging flux ropes could also be different in temperature and
density (Figures 3Ah,Ci,Dh). For example, the plasma density
was much higher in the latter flux ropes than that in the
former one for the case in Mar. 1998 (Figure 3Ah). There
were also significant differences in the estimated mini duration
of the magnetic reconnection and length of X-line associated
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FIGURE 3 | The other four ICMEs in Mar. 1998 (A), Apr. 2000 (B), Feb. 2002 (C), and Jul. 2004 (D). The observations of ACE have been shifted 5min for case A

(28min for case B, 147min for case C, −13min for case D) forward. For each case, the figure format is similar to Figure 1.
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FIGURE 4 | The reconnection current sheet intermediating the coalescence of flux ropes in ICME (A–D). For each case, the figure format is similar to Figure 2.
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with the coalescence (Table 1, in columns len and dur). For
example, the duration and the length were 34min and 8 RE,
respectively, for the case in Apr. 2004, while for the case in Feb.
2002, the values were 150min and 393 RE, respectively. Finally,
the density and temperature of plasma were not symmetric
on both side of the reconnection current sheet in some cases
(e.g., Figures 4Ac,Cd,Dc).

DISCUSSION AND CONCLUSION

ICMEs consisting of multiple flux ropes have been reported
[20, 21]. Recently, Feng et al. [22] reported observations of an
ICME within which a series of merging flux ropes was detected.
They thought the coalescence would lead to the formation of
bigger ropes in the ICME. However, if the magnetic reconnection
intermediating the coalescence is patchy and transient, the
change made by coalescence in the magnetic topology of
ICMEs will be localized in space. The cases presented here
shows that coalescence of magnetic flux ropes can operate in
scale of hundreds of Earth radii and persist for hundreds of
minutes. Note that the presented values in scale and duration of
coalescence were likely to be much underestimated. Therefore,
the progress of coalescence should be an important factor in
the evolution of CMEs, If CMEs originally are of magnetic flux
rope structures.

Simulations show that coalescence of magnetic flux ropes
with same axis direction will end up with one bigger rope
[14, 34]. The case in the real interplanetary space shall be more
complex. In Feng et al. [22], the axis of the first two merging
flux ropes had nearly opposite directions, which they thought
the coalescence may lead to the formation of a bigger rope
with weak axial field. For the five case reported here, the axes
of the two merging flux ropes were not parallel but formed
an angle ranging from ∼70◦ to ∼160◦. The direction of the
X-line also formed big angles with the ropes’ axis (the last
column in Table 1). The relative attitude of the two merging
flux ropes should have significant impact on the structures
formed by the process of coalescence. Awasthi et al. [35] reported
a non-MC ICME whose pre-eruptive structure consisted of
multiple-braided flux ropes with different degrees and they
thought reconnection occurring between these flux ropes was
responsible for the complex structure of the ICME. The presented
results are consistent with the observations in Awasthi et al.
[35]. The difference in the plasma (e.g., in the temperature
and density) carried by the merging flux ropes could cause
asymmetric conditions at both side of the reconnection current
sheet (Figures 4Ac,Cd,Dc), which may further complicate the
progress of coalescence.

In summary, we reported five ICMEs observed by both ACE
and Wind spacecraft, within which merging flux ropes were
detected. The coalescence of magnetic flux ropes could be steady
and large scale. The two merging ropes could be different in the
axial orientation and the plasma density and temperature. The
results showed here indicates that coalescence of magnetic flux
ropes is an important factor for understanding of the evolution
of CMEs. T
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