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We review prediction efforts of El Niño events in the tropical Pacific with particular focus

on using modern machine learning (ML) methods based on artificial neural networks.

With current classical prediction methods using both statistical and dynamical models,

the skill decreases substantially for lead times larger than about 6 months. Initial ML

results have shown enhanced skill for lead times larger than 12 months. The search for

optimal attributes in thesemethods is described, in particular those derived from complex

network approaches, and a critical outlook on further developments is given.
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1. INTRODUCTION

Techniques of Artificial Intelligence (AI) and Machine Learning (ML) are very well developed [1],
and massively applied in many scientific fields, like in medicine [2], finance [3], and geophysics
[4]. Although the application to climate research has been around for a while [5–7], there is
much renewed interest recently [8–10]. A main issue in which breakthroughs are expected is the
representation of unresolved processes (e.g., clouds, oceanmixing) in numerical weather prediction
models and in global climate models. For example, recently a ML-inspired (random-forest)
parameterization of convection gave accurate simulations of climate and precipitation extremes in
an atmospheric circulation model [11]. ML has also been used to train statistical models which
mimic the behavior of climate models [12, 13]. Another area of potential breakthrough is the
skill enhancement of forecasts for weather and particular climate phenomena, such as the El
Niño-Southern Oscillation (ENSO) in the tropical Pacific.

During an El Niño, the positive phase of ENSO, sea surface temperatures in the eastern Pacific
increase with respect to average values and upwelling of colder, deep waters diminishes. The
oscillation phase opposite to El Niño is La Niña, with a colder eastern Pacific and increased
upwelling. A measure of the state of ENSO is the NINO3.4 index (Figure 1A), which is the area-
averaged Sea Surface Temperature (SST) anomaly (i.e., deviation with respect to the seasonal cycle)
over the region 170–120◦W × 5◦S–5◦N. Averaging over other areas defines other indices such as
NINO3. For ENSO predictions, often the Oceanic Niño Index (ONI) is used which refers to the
3-months running mean of the NINO3.4 index.

El Niño events typically peak in boreal winter, with an irregular period between two and seven
years, and strength varying irregularly on decadal time scales. The most recent strong El Niño
had its maximum in December 2015 (Figure 1A). The spatial pattern of ENSO variability is often
represented by methods from principal component analysis [14], detecting patterns of maximal
variance. The first Empirical Orthogonal Function (EOF) of SST anomalies, obtained from the
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Hadley Centre Sea Ice and Sea Surface Temperature (HadISST)
dataset [15] over the period 1950–2010, shows a pattern strongly
confined to the equatorial region with largest amplitudes in the
eastern Pacific (Figure 1B).

El Niño events typically cause droughts on the western part
of the Pacific and flooding events on the eastern part and hence
affect climate worldwide. Estimated damages for the 1997–1998
event were in the order of billions of US$ [16]. The development
of skillful forecasts of these events, preferably with a one year
lead time, is hence important. These forecasts will enable policy
makers to mitigate the negative impacts of the associated weather
anomalies. For example, farmers can be advised to use particular
types of corn in El Niño years and others during La Niña years
(see e.g., http://globalagrisk.com).

Although more detailed regional measures are sometimes
desired in a forecast, most focus is on spatially averaged indices
such as the NINO3.4 (cf. Figure 1A). Forecasting this time series
is an initial value problem requiring the specification of initial
conditions (of relevant observables) and a model, which can
be either statistical or dynamical. With this model, one can
predict future values of these observables or of other ones from
whichmeaningful diagnostics, such as the NINO3.4 index, can be
obtained. Due to many efforts in the past, detailed observations
of relevant oceanic and atmospheric variables are available (since
the mid-1980s) through the TAO-TRITON observation array
in the tropical Pacific, and satellite data of sea surface height,
surface wind stress and sea surface temperature [17]. In addition,
reanalysis data (i.e., model simulations which assimilate existing
observations) such as ERA-Interim [18] provide a rather detailed
characterization of present and past state of the Pacific, essential
for successful prediction of the future.

This paper provides an overview of efforts to use ML, mainly
Artificial Neural Network (ANN) approaches, to predict El Niño
events, and putting them in the context of classical prediction
methodologies. In section 2, we describe the state-of-the-art in
current prediction practices, the efforts to understand the results,
and in particular what determines the skill of these forecasts.
Then results of ML-based approaches are described in section 3
and challenges and outlook are described in section 4.

2. EL NIÑO PREDICTION: STATE OF
THE ART

There have been many reviews on El Niño predictability (e.g.,
[19–22]) and a recent one [23], reviewing also most of the
Chinese-community studies on this topic. Over the last decade,
a multitude of models is used for El Niño prediction and results
are available at several websites. Multi-model ensemble results
are given at the International Research Institute for Climate and
Society (IRI)1 providing results from both dynamical models
(i.e., models based on underlying physical conservation laws) and
statistical models (those capturing behavior of past statistics).
The NCEP Climate Forecast System CFSv2 [24]2, provides a

1https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?
enso_tab=enso-sst_table
2https://www.cpc.ncep.noaa.gov/products/CFSv2/CFSv2seasonal.shtml

dynamical single-model ensemble forecast. The forecast systems
developed in China, such as the SEMAP2 and the NMEFC/SOA
are discussed in detail in Tang et al. [23] so they are further
discussed here. It is illustrative to show the results of both the
IRI and CFSv2 model systems for the last strong El Niño event,
that of 2015–2016, which was discussed in detail by L’Heureux
et al. [25]. Forecasts starting in June 2015 are shown in Figure 2

indicating that these models are able to provide a skillful forecast
of NINO3.4. Nevertheless, the dispersion in the predictions of the
different models is huge, and even between ensemble members of
the same model, highlighting the difficulty of reliable prediction.

The US National Oceanic and Atmospheric Administration
(NOAA) will release an El Niño advisory when (i) the 1-month
NINO-3.4 index value is at or in excess of 0.5◦C, (ii) the
atmospheric conditions are consistent with El Niño (i.e., weaker
low-level trade winds, enhanced convection over the central or
eastern Pacific Ocean), and (iii) at least five overlapping seasonal
(3-months average) NINO3.4 SST index values are at or in excess
of 0.5◦C, supporting the expectation that El Niño will persist. The
purpose of the forecasting efforts such as those in Figure 2 is to
predict in advance when those conditions will occur. Both the IRI
and CFSv2 predicted already in June 2014 an El Niño event for
next winter which turned out to be wrong as there was a dip in
NINO3.4 at the end of 2014 (due to easterly winds). However,
most models did very well in predicting (from June 2015) the
winter 2015-2016 strong event (see Figure 2).

The skill of El Niño forecasts is usually measured by the
anomaly correlation coefficient (AC) given by:

AC =
m′o′

σmσo
, (1)

where m′ indicates NINO3.4 index of the model, o′ that of
observations and σx indicates the standard deviations of the
time series x. The overbar indicates averaging of all time series
elements. The AC is the Pearson correlation coefficient between
prediction and observation. In Barnston et al. [21], the skill
of the models over the period 2002–2011 was summarized
with help of Figure 3A which indicates that skill beyond a 6-
months lead time becomes overall lower than 0.5. Some general
conclusions from these and many other prediction exercises are
that (i) dynamical models do better than statistical models and
(ii) models initialized before the Northern-hemispheric spring
perform much worse than models initialized after spring. The
latter notion is known as the “spring predictability barrier”
problem. The concept of persistence is another way to look
at the predictability barrier. It can be defined in terms of
autocorrelation coefficients and in particular their decay with
increasing lead times. SST anomalies originating from the
spring seasons have the least persistence while those originating
from summer seasons (Figure 3B) tend to have the greatest
persistence [27].

El Niño events are difficult to predict as they have an irregular
occurrence, and each time have a different development [17, 22].
The ENSO phenomenon is thought to be an internal mode of
the coupled equatorial ocean-atmosphere system which can be
self-sustained or excited by random noise [28]. The interactions
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FIGURE 1 | (A) NINO3.4 index (◦C) over the period 1950–2019. (B) Pattern of the first EOF (arbitrary units) of Sea Surface Temperature determined from the HadISST

data set over the period 1950–2010. Data source: Climate Explorer (http://climexp.knmi.nl).

FIGURE 2 | (A) Predictions of NINO3.4 from the IRI multi-model ensemble initialized with data up to mid-June 2015. Full and empty symbols are predictions from

dynamical and statistical models, respectively. Continuous lines without symbols display the average of the predictions of all the dynamical models, of all the statistical

ones, and of the four models run at the NOAA Climate Prediction Center (CPC). The black line with black symbols is the observed seasonal NINO3.4 index (from

ERSST.v5 [26]). (B) Predictions from the CFSv2 single-model ensemble (each member of the ensemble is initialized slightly differently at mid-July). The continuous

black line is the (later added) observed monthly NINO3.4 index (from ERSST.v5) and the dashed line is the forecast ensemble mean. Both panels are slightly modified

(by adding the later observed values) from the ones on the websites listed in the footnotes.

of the internal mode and the external seasonal forcing can
lead to chaotic behavior through nonlinear resonances [29, 30].
On the other hand, the dynamical behavior can be strongly
influenced by noise, in particular westerly wind bursts [31] which
can either be viewed as additive [32] or multiplicative noise
[33]. Coupled processes between the atmosphere and ocean are
seasonally dependent. During boreal spring the system is most
susceptible to perturbations [34] leading to a spring predictability
barrier [35]. The growth of perturbations from a certain initial
state has been investigated in detail from one of the available
intermediate-complexity models, the Zebiak-Cane model (ZC,

[36]), using the methodology of optimal modes [37–39]. It
was indeed shown that spring is the most sensitive season as
perturbations are amplified over a 6-months lead time.

In summary, the low skill after 6 months as seen in Figure 3A

is believed to be due to both effects of smaller scale processes
(noise) and nonlinear effects. Moreover, it is supposed that the
period 2002-2011 was particularly difficult to predict because of
the frequent occurrence of central Pacific (CP) El Niño types [40]
for which the zonal advection feedback plays a key role for the
development. In contrast, for an eastern Pacific (EP) El Niño, the
thermocline feedback ismost important [41]. As can be seen from
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FIGURE 3 | (A) Correlation skill (AC as in 1) of NINO3.4 prediction for different models from the IRI ensemble over the period 2002–2011 [figure from Barnston et al.

[21], with permission from the AMS]. Continuous lines are for dynamical models, whereas dashed lines are for statistical ones. The yellow “PERSIST” line assumes

simply the persistence of the initial conditions. (B) Pearson correlation between the ONI index (source https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt,

which is computed as the 3-months running mean NINO3.4 value) at the target season (x-axis) and itself at the specified lag time previous to the target season (y-axis)

for the period between 1980 and 2018. The contour lines indicate the 90% (dotted), 95% (dashed), and 99% (solid) two-sided significance levels for a positive

autocorrelation.

the NINO3.4 time series (Figure 1A) strong events appear about
every 15 years (1982, 1996, 2015). There are likely other factors
involved in the prediction skill of these strong events [42, 43],
which we do not further discuss here.

3. MACHINE LEARNING APPROACHES

ML is being used in a variety of tasks that include regression
and classification. ML algorithms can be divided into three main
categories [44]: supervised, unsupervised, and reinforcement
learning. In supervised learning, a model is build from labeled
instances. In a unsupervisedmodel, there are no labeled instances
and the goal is to find hidden patterns (e.g., clustering) in the
available data. In reinforcement learning, a particular target is
pursued and feedbacks from the environment drive the learning
process [1]. The usual procedure in supervised learning is as
follows: the predictor model [e.g., an artificial neural network
(ANN) or genetic programming (GP)] is trained with data
from a training set in order to determine a set of optimal
parameter values. Then the generalization capabilities of the
model are tested on a validation data set. Once the predictor
model is validated, a third so-called test data set that was hold
out during training and validation can be used to evaluate the
prediction skill.

Many types of ML methodologies have been developed. In
ANNs, the basic element is the neuron, or perceptron (i.e., logistic
or other function units which locally discriminate different
inputs). An ANN has a multilayer structure—an input layer,
an output layer and a few (or zero) hidden layers, in which
each neuron is connected to all neurons in the previous and
following layers. The system thus maps some input applied to
the input layer to some output or prediction. The weights of the
neuron connections are tuned to provide the optimal predictor
model. Another ML technique, GP, is a symbolic regression

method used to find, by optimization procedures inspired by
biological evolutionary processes, the functional form that fits
the available data [45]. Reservoir computing [46] is another type
of ML methodology in which input is injected into a high-
dimensional dynamical system called “reservoir.” The response
of the reservoir is recorded at particular output nodes with
associated “output weights,” and linear regression is used to
optimize these weights so that the recorded response performs
the desired prediction.

Although there are a few ML attempts to forecast El Niño
events by evolutionary or genetic algorithms [47, 48], and by
other methods [49], we will focus here onML prediction schemes
based on the most popular approach, which is the use of feed-
forward ANNs. Such ANNs with at least one hidden layer, also
called multilayer perceptrons, have the powerful capability to
approximate any nonlinear function to an arbitrary accuracy
given enough input data and hidden-layer neurons (e.g., [1, 50]).

3.1. Early ML Approaches
There is a large freedom on the implementation of ANNmethods
and choices have to be made regarding which variables to
use as inputs (called in this context the attributes, features, or
predictors), the architecture of the ANN and training method.
ANNs, as any other supervised learning technique, require to
split the available data in at least two parts: a training set, on
which parameters of the ANN are optimized, and a test set, on
which the skill of the optimized ANN is evaluated. Furthermore,
it is good practice to use a third data set, often called validation
data set, to tune hyperparameters and to check for overfitting.
For ENSO prediction, it is of particular importance to split the
data into connected time series. If instead the data set would be
split by random sampling, training and test data points would be
temporally close to each other. Due to the strong autocorrelations
within the ENSO system, the test data set would be strongly
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correlated with the training data set and hence could not serve as
an independent data set. Because of the shortness of the available
time series, the fact that El Niño repeats only about every four
years on average, and that only a subset of them are strong,
training and validation sets do not contain many significant
events and statistical estimation of ANN skills is not very precise.

In using ANN’s one can basically focus on two different
supervised learning tasks: classification (will there be an El Niño
event or not) and regression (predicting an index, e.g., the
NINO3.4, with a certain lead time). Early ANN-based El Niño
predictions [51] for the regression task used as predictors wind-
stress fields and the NINO3.4 time series itself. More explicitly,
the time series of the seven leading principal components of the
wind-stress field (i.e., the amplitudes of their seven leading EOFs)
in a large region of the tropical Pacific were averaged seasonally
in each of the four seasons previous to the start of prediction.
These numbers, together with the last value of the NINO3.4 time-
series make a total of 4 × 7 + 1 = 29 inputs to be fed into the
ANN. Tangang et al. [52] noticed that using sea level pressure
(SLP) fields gave better results at long lead times than using
wind-stress fields. Also, averaging forecasts from an ensemble of
ANNs with different random weights assigned to the neurons
at the start of the learning phase improved results with respect
to using the results of a single ANN. Maas et al. [53] further
analyzed this fact and suggested using it to estimate prediction
reliability. Tangang et al. [54] simplified the ANN architecture by
using extended EOFs (EEOFs), which project the observed fields
(wind stress or SLP) onto spatio-temporal patterns, instead of
on spatial ones (using EOFs). In this way, input from the year
previous to the forecast start was compressed to 7 + 1 = 8
variables, instead of the previous 29. In these earlier studies, all of
which used a single hidden layer in the ANN, high forecast skills
(values of the correlation AC above 0.6 even at lead times above
one year) were reported. However, there were large differences in
performance depending, for example, on the season of the year
or the particular year or decade being predicted.

Later implementations of these early ANNmethods indicated
that the skill was relatively low. For example, the curve labeled
UBC-NNET in Figure 3A (coming from the ANN model by
the University of British Columbia group, based in Tangang
et al. [54]) has the second lowest skill at 6 months lead time,
improving only the forecast made by the simple “persistence”
assumption. This can partially be attributed to the fact that the
model architecture of the UBC-NNET changed in May 2004
from predicting the ONI to predicting the amplitudes of the
leading EOFs. There are also differences in the climatology used
by UBC-NNET and the one used for the tests in Barnston
et al. [21]. Moreover, only during December 2004 and November
2005 the UBC-NNET included subsurface temperature data,
while the thermal state of the subsurface can contain important
information about the future state of the ENSO [55]. For the
remaining period, the model lacked this subsurface information.
Ideas to improve ANN performance included optimization
regularization [56] and linear corrections that help to quantify
prediction errors [57]. Another one to focus on forecasting
individual principal components of the SST field and combining
them to obtain climatic indices such as NINO3.4 [58], instead

of trying to predict directly the climatic index. In general, for
a one year lead time, no AC values higher than 0.5–0.6 were
obtained with these methods, although larger AC values have
been reported for specific seasons or years.

An exception is the work of Baawain et al. [59] in which
very high correlations (above 0.8 for lead times between 1
and 12 months) were reported for prediction of the NINO3
index using as inputs the two surface-wind components and
the SAT at four selected locations in the Pacific (thus, 12
inputs). The high forecast skill may arise from the careful
and systematic determination of the ANN architecture (again
a single hidden layer but with up to 16 neurons, and different
activation functions), or perhaps from the choices of training
and validation data sets. Some of the practices in Baawain et al.
[59], however, are rather questionable and can lead to substantial
overfitting for the ENSO prediction. First, they perform the
hyperparameter optimization on their test data set. A better
practice is to tune hyperparameters on an additional validation
data set and hold out the test data set completely during the
training and hyperparameter optimization. Second, they do not
precisely report how the data is split into the training and test data
set. If they split the data by random splitting, the model is likely
overfitted due to the problem mentioned earlier. The very small
difference between the prediction skill on the training (r = 0.91)
and the test (r = 0.90) data set indicates that they might split
their data set by random splitting. A better practice would be to
split the data into two connected time series. In addition to pure
ANN prediction, also hybrid approaches that use a dynamical
ocean model driven by wind stresses provided by an ANN fed
by the ocean state have been applied [60, 61]. Skill in predicting
El Niño is similar to purely dynamical models, but at a smaller
computational cost.

The key for a successful application of ANNs to ENSO
prediction is to determine the correct attributes to include in
the training of the model. The attributes used in Tangang et al.
[54], based on EEOFs of SLP and SST, may be not optimal
considering where the memory of the coupled ocean-atmosphere
system originates from, i.e., from the subsurface ocean.

3.2. Attributes: Role of Network Science
Although network science had been applied to many other
branches of science, it was not applied to climate science until
one realized that easy mappings between continuous observables
(e.g., temperature) and graphs could be made [62–64]. One can
consider these observables to be on a grid (observation locations
or of model grid points), which then are the “nodes” of the
graph. A measure of correlation between the time series of an
observable at two locations, such as the Pearson correlation or
mutual information, can then be used to define a “connection”
or “link,” and eventually to assign a “strength” or “weight” to that
connection [65].

Ludescher et al. [66] used the link strength concept for El
Niño prediction. They determined the average link strength S of
the climate network constructed from a Surface Air Temperature
(SAT) data set. They suggested that when S crosses a threshold
2 while monotonically increasing, an El Niño will develop about
one year later. The rationale behind this is that, during El Niño,
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correlations of climatic variables at many locations with variables
in the tropical Pacific are very high, so that an increase of
these correlations, conveniently revealed by the connectivity (or
“cooperativity”) of the climate network, is an indicator of an
approach to an El Niño state. A training set over the period 1950–
1980 was used to determine the threshold 2. The result for the
test period 1980–2011 showed a remarkable skill of this predictor
[66]. By using this method, also a successful prediction of the
onset of the weak 2014 El Niño was made [67].

The time-varying characteristics of climate networks (where
correlations defining link strength between nodes are calculated
on successive time windows) has also been used in a different
way. The increase of connectivity of the climate network,
occurring when approaching an El Niño event, may lead to a
percolation transition [68] in which initially disconnected parts
of the network become connected into a single component.

The study by Rodríguez-Méndez et al. [69] introduced
percolation-based early warnings in climate networks for an
upcoming El Niño/La Niña event. Here, the climate networks
are generated with a relatively high threshold for the cross-
correlation between two nodes to be considered as connected.
Hence, one finds a lot of isolated nodes in these networks.

However, even long before an El Niño event is approached
these isolated nodes become connected to other ones building
clusters of size two since correlations between nodes increase.
If the correlation building continues, more small clusters of size
two emerge and the proportion of nodes in clusters of size two,
indicated by c2, increases. Approaching further the transition,
small clusters can connect to more nodes and form even bigger
clusters counter-balancing the increased probabilities for smaller
clusters. Hence, in a typical percolation transition, the first sign of
the transition is indicated by a peak of c2. This peak is followed by
peaks in the proportion of nodes in clusters of increasing size, the
closer the system is to the percolation point. At the percolation
point spatial correlations in the system become so strong that
a giant component in the network emerges and incorporates
nearly all nodes of the system [69, 70]. If the system moves again
away from the transition point, peaks in the proportion of nodes
in clusters of different sizes appear in reversed order, starting
with peaks coming from larger clusters followed by peaks from
smaller clusters.

3.3. Recent ML-Based Predictions
Networks are often associated with machine learning techniques,
either to generate attributes or to create the learningmethod itself
[71]. The advantage of using the network approach in climate
research is that, during network construction, the temporal
information is often included to determine the properties of
climate networks. In this way, the machine learning techniques
will, by default, take the temporal information into account in
making predictions of the future states of the system.

A first effort to combine complex network metrics with ANN’s
for the prediction of the NINO3.4 index was made in Feng et al.
[72]. They considered the classification problem (determining if
El Niño will occur) with an ANN (two hidden layers with three
neurons each) in which attributes were only the climate-network-
based quantities from Gozolchiani et al. [64]. The period May

1949 to June 2001 was used as a training set, and the period June
2001 to March 2014 as the test set. The prediction lead time was
set to 12months. Classification results on the test set are shown in
Figure 4A. Here a 1 indicates the occurrence of an El Niño event
(in a 10-days window) and 0 indicates no event. When a filter
is applied which eliminates the isolated and transient events and
joins the adjacent events, the result is shown in Figure 4B. This
forecasting scheme can hence give skillful predictions 12 months
ahead for El Niño events.

The regression problem, i.e., forecasting the values of time
series such as NINO3.4, was addressed by Nooteboom et al.
[73] who combined the use of network quantities with a
thorough search for attributes based on the physical mechanism
behind ENSO. A two-step methodology was used which resulted
in a hybrid model for ENSO prediction. In a first step, a
classical Autoregressive Integrated Moving Average (ARIMA)
linear statistical method [74] is optimized to perform a linear
forecast using past NINO3.4 values. Specifically, ARIMA(12,1,0)
and ARIMA(12,1,1) were implemented, which means that the
NINO3.4 values in the 12 months previous to the start of the
prediction were used. The linear prediction was far from perfect,
and then an ANN was trained from single-time attributes to
forecast the residuals between the linear prediction and the true
NINO3.4 values. The sum of the linear forecast and the nonlinear
ANN prediction completes the final hybrid model forecast. In
Hibon and Evgeniou [75], it is shown that, compared to a single
prediction method, this hybrid methodology is more stable and
reduces the risk of a bad prediction. This is probably due to the
fact that long memory is taken into account, but not in the ANN
part, which remains then relatively simple with respect to inputs
and can then be more efficiently trained.

To motivate the choice of the attributes in the ANN,
Nooteboom et al. [73] used the ZC model [36]. In this model,
the physical mechanisms of ENSO are clearly represented and
it can be used for extensive testing of different attributes,
specially network-based ones which contain correlations and
spatial information. Several interesting network variables, such as
the cross clustering and an eigenvalue quantifying the coupling
between wind and SST networks, were determined from an
analysis of the ZC model. More importantly, it revealed the
importance of the dynamics of the thermocline, which can be
quantified in properties of the thermocline-depth network or
the related sea surface height (SSH) network. Also the zonal
skewness in the degree field of the thermocline network and two
variables related to a percolation-like transition [69, 70], namely
the temporal increment in the size of the largest connected cluster
and the fraction of nodes in clusters of size two c2 (see previous
subsection) in the SSH network, had good prediction properties.
These variables taken from the SSH network are related to the
warm water volume (WWV, the integrated volume above the
20◦C isotherm between 5◦N–5◦S and 120-280◦E), which was also
tested as input in the ANN forecast, and contain information on
the physics of the recharge/discharge mechanism of ENSO [76].
It turns out that c2 performs better than WWV when used in
long-lead-time predictions.

Furthermore, apart from these “recharge/discharge” related
quantities, a sinusoidal seasonal cycle (SC), introducing
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FIGURE 4 | Prediction results for occurrence (from June 2001 to March 2014) of El Niño in time windows of 10 days. Dashed line gives actual observations and the

solid one is the prediction. (A) Raw prediction. (B) With filtering of isolated and transient events. Reproduced from Feng et al. [72] under open access license.

information needed for the phase locking of ENSO, and
the second principal component (PC2) of a modified zonal
component of the wind stress, which carries information on
westerly wind bursts, were included as predictors. A single
sinusoid is not a complete representation of the annual solar
forcing, but it gives to the algorithm the phase information
necessary to lock El Niño events to the annual cycle. The hybrid
model improves on the CFSv2 ensemble at short lead times (up
to 6 months) and it had also a better prediction result than all
members of the CFSv2 ensemble in the case study of January
2010 [73]. From now on, the Normalized Root Mean Squared
Error (NRMSE) is used to indicate the skill of prediction within
the test set:

NRMSE(yA, yB) (2)

=
1

max
(

yA, yB
)

−min
(

yA, yB
)

√

∑

ttest1 ≤tk≤ttestn

(

yA
k
− yB

k

)2

n
.

Here yA
k
, yB

k
are respectively theNINO3.4 index and its prediction

at time tk in the test set. n is the number of points in the test set.
A low NRMSE indicates the prediction skill is better.

For short lead times, the hybrid model was used with the
WWV, PC2, SC and NINO3.4 itself as attributes. A temporal shift
can be seen in the CFSv2 ensemble NINO3.4 results, both for
the 3- and 6-months lead-time prediction (Figure 5). The hybrid
model predictions used ARIMA(12,1,0) for the linear part, and
the eighty-four possible ANN structures with three hidden layers
with up to four neurons each were tested. Figure 5 shows the
results from the structures giving the lowest NRMSE.

The prediction skill of the hybrid model decreased at a 6-
months lead, while the shift and amplification of the CFSv2
prediction increased. Although the hybrid model did not suffer
as much from the shift, at this lead time it underestimated (or
missed) the El Niño event of 2010. In terms of NRMSE the
hybrid model still obtained a better prediction skill than the
CFSv2 (Figures 5A,B). The attributes from the shorter lead time

predictions were found to be insufficient for the 12-months-lead
prediction. However, c2 of the SSH network was predictive at
this lead time and hence the WWV was replaced by c2. The 12-
months lead time prediction of the hybrid model even improved
the 6-months lead time prediction. On average the prediction did
not contain a shift for this lead time (Figure 5C).

A prediction was made in Nooteboom et al. [73] for the year
2018, starting in May 2017 (Figure 6A). Different hybrid models
were used at different lead times, always with ARIMA(12,1,0).
The training set was from 1980 until May 2017 and the ANN
structures used are the optimal ones at different lead times. For
the predictions up to 5 months, the attributes WWV, PC2, and
SC were used whereas for the 12 months lead time prediction,
the WWV was replaced by c2. Here c2 was computed from the
SSALTO/DUACS altimetry dataset3, which starts from 1993, and
thus leads to a reduced training set. The hybrid model typically
predicted much lower Pacific temperatures than the CFSv2
ensemble and was much closer to the eventual observations
(black curve in Figure 6A). The uncertainty of the CFSv2
ensemble was large, since the spread of predictions is between
a strong El Niño (NINO3.4 index between 1.5 and 2) and a
moderate La Niña (NINO3.4 index between –1 and –1.5◦C) for
the following 9 months, being the ensemble average prediction
close to a neutral state. The hybrid model of Nooteboom et al.
[73] predicted development of a strong La Niña (NINO3.4 index
lower than –1.5◦C) the coming year. There was indeed a La Niña
event in 2017/2018, although the NINO3.4 index remained above
–1◦C. A new prediction starting from December 2018 with the
hybrid model is presented in Figure 6B, indicating the weak El
Niño 2018–2019 to end by June 2019.

3.4. Prediction Uncertainty
In contrast to ensemble predictions of dynamical models, the
proposed simple ANN-models lack the ability to estimate the
predictive uncertainty. For instance, the ensemble spread of 84

3http://marine.copernicus.eu
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FIGURE 5 | NINO3.4 predictions of the CFSv2 ensemble mean (red) and the hybrid model of Nooteboom et al. [73] (blue), compared to the observed index (black).

For the hybrid model predictions, ARIMA(12,1,0) was used and the eighty-four possible ANN structures with three hidden layers with up to four neurons each were

tested. Results from the structures giving the lowest NRMSE are presented. (A) The 3-months lead time prediction of CFSv2 and 4-months lead time prediction of the

hybrid model, (B) the 6-months lead time predictions and (C) 12-months lead prediction. The CFSv2 ensemble does not predict 12 months ahead. (D) Table
containing information about all predictions: ANN optimal hidden-layers structures of the hybrid model, NRMSEs of the CFSv2 ensemble mean/NRMSE of the hybrid

model, and attributes used in the hybrid model predictions. Reproduced from Nooteboom et al. [73] under open access license.

FIGURE 6 | (A) Result of the NINO3.4 prediction from May 2017 as in Nooteboom et al. [73]. The dashed blue line is the running 12-months lead-time prediction and

in black the (later added) observed index. Red is the CFSv2 ensemble prediction mean and the shaded area is the spread of the ensemble. The hybrid model

prediction in blue is given by predictions from hybrid models found to be most optimal at the different lead times, always with ARIMA(12,1,0) and starting on May

2017. (B) The most recent prediction of the hybrid model starting from December 2018. The black line is the observed index, blue line the prediction starting from

December 2018, and dashed red line is the running 12-months lead-time prediction. (A) is slightly adapted from Nooteboom et al. [73] under open access license.
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ANNs in Figure 8 of Nooteboom et al. [73] does not encompass
most of the observed NINO3.4 index values. Hence, although
the 84 ANN models had different architectures and initial
weights (but were trained on the same training data set), the
trained models predicted nearly the same NINO3.4 index values.
Bootstrap-aggregating (bagging) methods [77] can be used to
obtain a larger and more realistic ensemble spread. Another
approach to better estimate the predictive uncertainty for neural
networkmodels is the so-called Bayesian neural networks (BNN).
Here, all weights of the network have a distribution that can
be learned by Bayesian inference. A first application to ENSO
prediction in combination with a recurrent neural network
(RNN) architecture is shown in McDermott and Wikle [78].
Unfortunately, the authors just present results for a short time
period between 2015 and 2016. A comprehensive analysis of the
application of BNNs for ENSO prediction is still lacking.

The endeavor of training a BNN is a far from trivial task. A
simpler approach to estimate uncertainties in the prediction of
ENSO is the application of the so-called Deep Ensembles (DEs)
as presented in Lakshminarayanan et al. [79]. These DEs consist
of multiple feed-forward neural network models that have two
output neurons to predict the mean and the standard deviation
of a Gaussian distribution. Instead of choosing the weights that
minimize the mean-squared error, the models are trained by
minimizing the negative log-likelihood of a Gaussian distribution
with the predicted mean µ̂ and variance σ̂ 2, given the
observation y, i.e.,

− log P(y|µ̂, σ̂ 2) =
1

2
log σ̂ 2 +

(y− µ̂)2

2σ̂ 2
+ constant , (3)

The final prediction for the variable and its uncertainty is
obtained by combining the Gaussian distributions from all
members of the ensemble. In plain words, if the model does
not find strong relations between predictor variables and the
predicted variable in the training data, it is still able to optimize
the negative log-likelihood to some extent by increasing σ̂ .
Therefore, it is less prone to be overconfident about any weak
relationship in the data.

Here, we give an example [80] of the application of this
method for the prediction of the NINO3.4 index. For this, a
DE was trained to predict the future values of the 3-month
running mean NINO3.4 index. To keep the example simple, the
NINO3.4 index, WWV and SC were used as input variables,
where for each variable the past 12 months were included in
the feature set. Hence, each ANN had 36 inputs. Each ensemble
member had one hidden layer with 16 neurons with a Rectified
Linear Unit as activation function. The output neuron for
the mean was equipped with a linear activation function and
the output neuron for the standard deviation with a softplus
function (f (x) = log(1 + ex)). To avoid overfitting, various
regularization techniques were applied (early stopping, Gaussian
noise to the inputs, dropout and L1 as well as L2 penalty terms).
The training/validation period was set to be 1981-2002 and the
test period 2002–2018. The training/validation data was further
divided into 5 segments. One ensemble member was trained on
4 segments and validated on the remaining one to check for

overfitting. This was repeated until each segment was one time
the validation data set. Therefore, the DE had in total 5 ensemble
members. Here, lead time was defined as in Barnston et al. [21]
being the time that passed between the last date of the initial
period and the first date of the target period.

Exemplary results for a 3-month lead-time prediction are
shown in Figure 7A. In contrast to Nooteboom et al. [73], the
confidence intervals of the prediction using the test data (blue
line and shadings) could incorporate actual observation (black
line) to a good extend. In fact, 55% were incorporated in the 1-
standard deviation and 91% were inside the 2-standard deviation
interval for the predictions on the test data. This indicated that
such a predictionmodel could estimate the predictive uncertainty
to a good extend. Interestingly, the predicted uncertainty had a
seasonal cycle with lower uncertainties during boreal summer
and higher uncertainties during boreal winter. This fitted the
observations of the NINO3.4 values that follow the (same)
seasonal cycle. The correlation skill on the test data set between
the predicted mean and the observed NINO3.4 index is shown
in Figure 7B. The relatively low skill values during the seasons
AMJ to JAS indicates the spring predictability barrier. The overall
correlation skill of the predicted mean on the test data set was
0.65 and the overall root-mean-square error 0.68.

4. DISCUSSION AND OUTLOOK

Machine Learning techniques are potentially useful to improve
the skill of El Niño predictions. The choice of attributes is
crucial for the degree of improvement. We have highlighted
here the use of network science based attributes and the benefits
of using physical knowledge to select them. Network variables
provide global information on the building of correlations which
occur when approaching an El Niño event, and knowledge of
the physical mechanisms behind ENSO helps in determining
which variables store relevant memory of the dynamics, and help
to overcome the spring predictability barrier. Several network
variables resulted in a clear success when applied to the ZC
model [73], but not necessarily when predicting the real climatic
phenomena. Work on the systematic identification of good
attributes needs to be continued.

Most of the ANN studies to predict El Niño used simple
architectures with a single hidden layer. Recently deeper
architectures have been successfully tested [72, 73]. Nevertheless,
a very complex ANN architecture will face the problem of
overfitting, since the available time series are not very long
and the number of parameters to optimize grows rapidly with
ANN complexity. Probably, what makes El Niño prediction so
challenging is that every event looks somehow different [17],
and we still lack enough data to systematize these differences.
Most of the methods aimed for a prediction model being most
optimal in terms of least squares minimization. However, it
could be interesting to put larger weight at predicting the
extreme events in the optimization scheme. For example, the
6-months lead predictions of Nooteboom et al. [73] hybrid
model missed the 2010 El Niño event (cf. Figure 5). Apart from
this, it is important to investigate the exact reason why the
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FIGURE 7 | (A) Results from the DE prediction approach [80]. Predictions for the 3-month lead time for the training data set (green) and the test data set (blue). The

solid line indicates the mean of the predictions. The dark shading shows the 1-standard deviation confidence interval and the brighter shading the 2-standard

deviation confidence interval. (B) Correlation skill of the predicted mean on the test data set of the DE for various seasons for the 3-month lead time.

hybrid model [73] provides such a good skill for a one-year
lead time.

Despite the positive findings in applying ANNs for the ENSO
prediction in work of the British Columbia group [58] or
of Nooteboom et al. [73], the application of neural networks
to ENSO prediction is still surrounded by inconsistent, non-
transparent and unfavorable practices. Whereas, Tangang et al.
[54] defined lead time as in Barnston et al. [21], i.e., as the time
between the latest observed date and the first date of the target
period, Wu et al. [58] defined lead time as the time from the
center of the period of the latest predictors to the center of the
target period. We suggest to use the definition of lead time as
given in Barnston et al. [21], as also applied in Feng et al. [72]
or Nooteboom et al. [73], in future research.

Furthermore, the problem of ENSO prediction is limited
by a very low amount of data. Since 1980 there have been
just 3–4 major El Niño (and a similar number of major La
Niña) events. This little amount of data makes neural networks
extremely susceptible to overfitting. To avoid this, it is necessary

to regularize neural networks using methods such as Gaussian
Noise layers, Dropout, Early Stopping, L1 or L2 penalty terms.
Another problem that can arise due to the low amount of data
is, that accidentally a signal in a variable exists in the training
and the test data set, making the researcher confident that the
model is a good generalization of the system. However, as the
failure of the UBC-NNET model in the [21] study indicates,
one has to be careful and not to put too much trust into
the neural network predictions on ENSO considering the low
amount of data. We advice not to use any variables as input to
the neural network that do not have a justified reason to be a
predictor for ENSO (e.g., the 9th leading EOF of the SSTA used in
Wu et al. [58]).

The low amount of data, e.g., just three major El Niño
events occurred since 1980, can make an educated choice
of predictors very beneficial for the forecast model. This is
because the ML-model cannot distinguish between relevant
(deterministic concurrence) and non-relevant (random
concurrence) information in a relatively large predictor
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data set when the amount of training data is low. In general,
if rather vague variables are used, there should be a method such
as the L1-penalty term, also called Lasso (least absolute shrinkage
and selection operator), that is able to perform a feature selection
and regularization [81].

Finally, past studies often did not provide the codes that they
used for their results. This makes it increasingly difficult for the
reader to build upon previous work and check the work for
mistakes. Nowadays online platforms exist that make it easily
possible to share code in a public repository and we advice
that this should be the standard for any future research in the
ML-ENSO prediction. To develop the idea of public available
codes mentioned above one step further, we want to motivate
that it would be very beneficial for this community to work
together on a public repository that provides a framework for
new investigations. All definitions, i.e., the lead time, as well as
the used data sources with the applied preprocessing should be
incorporated in this framework. Such a framework would lead
to more transparency, prevent inconsistency between different
research efforts as well as foster collaboration. A starting point
for this endeavor could be the repository ClimateLearn published
for the study of Feng et al. [72] on GitHub (https://github.com/
Ambrosys/climatelearn).
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