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It has been observed in many numerical simulations, experiments and from various

theoretical treatments that heat transport in one-dimensional systems of interacting

particles cannot be described by the phenomenological Fourier’s law. The picture that

has emerged from studies over the last few years is that Fourier’s law gets replaced

by a spatially non-local linear equation wherein the current at a point gets contributions

from temperature gradients in other parts of the system. Correspondingly the usual heat

diffusion equation gets replaced by a non-local fractional-type diffusion equation. In this

review, we describe the various theoretical approaches which lead to this framework and

also discuss recent progress on this problem.

Keywords: fractional diffusion equation, Levy walks, anomalous heat transport, fluctuating hydrodynamics, heat

conduction

1. INTRODUCTION

Transport of heat through materials is a paradigmatic example of non-equilibrium phenomena [1–
3]. When an extended system is attached to two reservoirs of different temperatures at its two ends,
an energy current flows through the body from hot region to cold region. At the macroscopic level
this phenomena is described by the phenomenological Fourier’s law. Considering transport in one
dimensional systems, Fourier’s law states that the local heat current density j(x, t) inside a system at
point x at time t is proportional to the gradient of the local temperature T(x, t):

j = −κ ∂T(x, t)
∂x

(1)

where κ is referred to as the thermal conductivity of the material. This law implies diffusive
transfer of energy. To see this we note that the local energy density e(x, t) in a one dimensional
system satisfies the continuity equation ∂e(x, t)/∂t = −∂ j(x, t)/∂x. Inserting Equation (1) in
this continuity equation, and using the relation between the local energy density and the local
temperature cv = ∂e/∂T (where cv represents the specific heat per unit volume), one finds the
heat diffusion equation

∂T(x, t)

∂t
= κ

cv

∂2T(x, t)

∂x2
, (2)

where we assume (for simplicity) no variation of κ with temperature. In usual three dimensional
systems, the heat diffusion equation takes the form ∂tT(x, t) = (κ/cv)∇2T(x, t) and describes the
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evolution of the temperature field in bulk systems. The
phenomenological macroscopic description provided by the
equations in (1) and (2) has been used extensively to describe heat
transfer phenomena in a wide class of physical systems.

A natural question is to ask if it is possible to derive or establish
Fourier’s phenomenological law theoretically, starting from a
complete microscopic description. The issue of deriving Fourier’s
law has been a long standing question and a very active field of
research [1]. Several theoretical as well as large scale numerical
studies have been performed on different mathematical model
systems to understand the necessary and sufficient conditions
needed in the microscopic description to validate Fourier’s law
at the macroscopic level [2–4]. Surprisingly, these studies suggest
that Fourier’s law is probably not valid in many one-dimensional
systems and one finds that the thermal conductivity κ diverges
with system size N as κ ∼ Nα where 0 < α < 1 [2–12]. This
is referred to as anomalous heat transport (AHT). For α = 0,
the transport is classified as being diffusive while α = 1 is
referred to as ballistic transport [2, 3]. Recent developments in
technology hasmade it possible to verify some of these theoretical
predictions experimentally as well as numerically in real physical
systems, such as nano-structures, polymers, semiconductor films
etc. [13–20], and these have provided further motivation and new
directions of study.

Two approaches have mainly been used to look for signatures
of anomalous heat transport (AHT): (i) the open system set-up
in which a system is connected to heat reservoirs at different
temperatures TL and TR at the two ends and (ii) the closed
system set-up in which the isolated system is prepared in
thermal equilibrium at temperature T and evolves according to
Hamiltonian dynamics (or sometimes stochastic dynamics with
same conservation laws). In the open system set-up, one usually
considers the non-equilibrium steady state (NESS) and measures
directly the steady state heat current j and the temperature profile
T(x) in a finite system of N particles. For small 1T = TL − TR,
one finds the system size scaling j ∼ Nα−1 (implying κ ∼
Nα) and a non-linear temperature profile. These are in contrast
with Fourier’s law which would predict j ∼ N−1 and a linear
temperature profile. In the closed system set-up the idea is to
look at the spreading of a heat pulse in a system in equilibrium.
From linear response theory we expect that this would evolve in
the same way as dynamical correlations of energy fluctuations
in equilibrium. Studies on spreading of pulses and energy
correlations in systems with AHT show that the process is super-
diffusive, with scaling functions described by Lévy distributions
[8, 21, 22]. This contrasts systems described by Fourier’s law
where we expect diffusion and Gaussian propagators. Note that
we expect in fact that the thermal conductivity κ obtained in
non-equilibrium measurements should be related to equilibrium
energy current auto-correlation functions via the Green-Kubo
formula [3, 23, 24]. This leads to the understanding of AHT
as arising from the fact that the non-integrable long time tails
in the auto-correlation function of the total current lead to the
divergence of the thermal conductivity.

The natural question that arises for understanding systems
with AHT is to find the replacements of Fourier’s law in
Equation (1) and the heat diffusion equation in Equation (2).

The picture that has emerged from studies over the last few years
[4, 25–37] is that Fourier’s law gets replaced by a spatially non-
local but linear equation wherein the current at a point gets
contributions from temperature gradients in other parts of the
system. This has the form

j(x, t) = −
∫

dx′ K(x, x′)
∂T(x′, t)
∂x′

, (3)

where now the thermal conductivity is replaced by the non-
local kernel K(x, x′). This then leads to a corresponding non-
local fractional-type equation for the time evolution of T(x, t).
An important difference from the heat diffusion equation is
that the fractional-type equation takes different forms in the
closed system set-up (infinite domain) and the open system
set-up (finite domain). In the infinite domain the evolution of
a localized temperature pulse is described by a fractional-type
diffusion equation

∂tT(x, t) = −κ̄(−1)ν/2T(x, t), (4)

where the fractional operator should be interpreted by its action
on plane wave basis states: (−1)ν/2eikx = |k|ν eikx, with 1 <

ν < 2. However it should be noted that the corresponding Lévy-
stable distribution is valid only over the scale x . t1/ν . As we
will see, the evolution of a heat pulse is restricted to a domain
|x| < ct, determined by the sound speed c. For the open system,
the precise form of the fractional equation is dependent on the
details of boundary conditions. In this review we discuss these
developments as well as open questions.

The plan of the review is as follows. In section 2 we discuss
the various signatures of AHT in the closed and open set-ups.
In section 3 we discuss two theoretical approaches that have
been used to understand various aspects of anomalous transport.
One of these is a phenomenological approach based on the idea
that the heat carriers perform Lévy walks instead of random
walk. The second approach is a microscopic one, though still
phenomenological, and is based on fluctuating hydrodynamics
and applicable to Hamiltonian systems. For a class of stochastic
models, it has been possible to provide a complete microscopic
derivation of the fractional heat equation in the context of both
the closed and open system set-ups. These results are described
in section 4. In the last part of this section we address the
difficult issue of treating arbitrary boundary conditions and
discuss a heuristic formulation that uses linear response ideas
and fluctuating hydrodynamics to arrive at a general form of
the kernel K(x, x′) in Equation (3). Finally we conclude in
section 5 with a summary of the results presented and some of
the outstanding open questions.

2. SIGNATURES OF ANOMALOUS HEAT
TRANSPORT

In the theoretical study of anomalous energy transport in one
dimension, one usually considers simple yet non-trivial model
systems of interacting particles. Let us consider N particles of
unit masses, with positions and momenta given respectively, by
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FIGURE 1 | Schematic illustration of the (A) closed system set-up and the

(B) open system set-up, commonly used to study heat transport. In (A), a

localized heat pulse is introduced at some point in a system in thermal

equilibrium and its subsequent time-evolution is observed. In (B), the system is

attached to two heat reservoirs at different temperatures and the NESS

properties, such as current and temperature profile are studied.

qℓ and pℓ, for ℓ = 1, 2, . . . ,N. One often starts with the following
microscopic Hamiltonian:

H =
N∑

ℓ=1

p2ℓ
2

+
N∑

ℓ=0

V(qℓ+1 − qℓ), (5)

where V(r) is a nearest neighbor interaction potential, and
the extra variables q0 and qN+1 are introduced to incorporate
different boundary conditions (BC). For example, fixed BC
corresponds to q0 = 0, qN+1 = 0 while free BC corresponds
to setting q0 = q1, qN+1 = qN . The particles in the bulk of the
system satisfy Hamiltonian equations of motion

q̇ℓ = ∂pℓH, ṗℓ = −∂qℓH , ℓ = 1, 2, . . .N. (6)

One of the well-studied choices for the potential is to take
V(r) = k2r

2/2 + k3r
3/3 + k4r

4/4 which leads to the Fermi-
Pasta-Ulam-Tsingou (FPUT) model. Another popular choice is
the alternate mass hard particle gas which is not in the standard
form of Equation (5). In this model one considers a chain
of point particles with masses which alternate between two
fixed values, say m1,m2, and which collide via elastic collisions
conserving energy and momentum. For generic interaction
potentials V(r) it is expected that the system has three conserved
quantities, namely volume of the system (alternatively the
total number of particles), total momentum and total energy.
Corresponding to each conserved quantity one can write a local
continuity equation. For instance, the local energy defined on
bulk points as

e(ℓ, t) = p2ℓ
2

+ 1

2
[V(qℓ+1 − qℓ)+ V(qℓ − qℓ−1)], (7)

satisfies a continuity equation

∂te(ℓ, t) = j(ℓ, t)− j(ℓ+ 1, t),

where jℓ(t) = −1

2
(pℓ−1 + pℓ)V

′(qℓ − qℓ−1) . (8)

This equation gives a microscopic definition of the energy
current. For quadratic V(r), i.e., harmonic chains, there are
a macroscopic number of conserved quantities and transport
becomes ballistic. In this case a number of studies have
considered augmenting the Hamiltonian dynamics with a
stochastic component such that the system again has only three
conserved quantities [9, 29–31]. In this case one again recovers
the typical features of anomalous transport and several exact
results are possible. In this review we will discuss results for both
Hamiltonian and stochastic systems.

There are two possible approaches for studying transport
properties of a system [3, 4]. A schematic of the two set-ups is
shown in Figure 1:

A. Closed system set-up—in this case, an isolated system is
prepared in thermal equilibrium at some temperature T
described by the canonical distribution

P(q, p) = e−H(q,p)/T

Z
, (9)

where Z =
∫
dqdpe−H/T is the partition function. For any

initial condition chosen from this distribution the system
evolves according to the pure Hamiltonian dynamics (or
the conservative stochastic dynamics). Transport properties
are usually probed by studying the form of spatio-temporal
correlation functions of the conserved quantities (volume,
momentum, energy) or the decay with time of the energy
current auto-correlation function. Another approach that has
been used is to study the spreading of an initially localized
perturbation in the equilibrated system (see Figure 1A). In
the closed system set-up one takes the system to be infinite
or, in numerical studies, N to be sufficiently large such that
the correlations are not affected by the boundaries at the
maximum observation times.

B. Open system set-up—in this case, one considers finite systems
attached at the two boundaries to heat reservoirs at different
temperatures (see Figure 1B). The heat reservoirs aremodeled
by adding extra force terms to the usual Hamiltonian
equations of motion of the boundary particles. One of the
standard choices is to consider Langevin type baths, wherein
the additional forces consist of a dissipative term and a white
noise term, which are related via a fluctuation-dissipation
relation. The system is “open” in the sense that energy can
flow in and out of the system, though we note that locally
in the bulk we still have energy conservation. When the
temperatures of the heat reservoirs are different, the system
eventually reaches a NESS in which a heat current flows across
the system. Themain focus of this approach has been to search
for anomalous features in the NESS by looking at observables,
such as the heat current j = 〈j(x, t)〉neqopen and temperature

profile obtained from T(x) = 〈p2x〉
neq
open (the averages are

computed in the NESS). There have also been attempts to
understand the relaxation to NESS and look at correlations
and large deviation properties of the NESS.

In the following sub-sections, we describe various signatures of
AHT observed in both these set-ups.
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FIGURE 2 | Total scaled heat current auto-correlation, t0.66N−1〈J(t)J(0)〉, in the

alternate mass hard particle gas for mass ratio 2.2 and T = 2.0 (adapted from

Grassberger et al. with permission from [7] Copyright (2002) by American

Physical Society).

2.1. Signatures in the Closed System
Set-Up
• Slowdecay of energy current auto-correlations: A commonly

followed approach for determining the N dependence of j or
equivalently the thermal conductivity κ , is to use the closed

system Green-Kubo (GK) formula [23, 24]:

κ = 1

kBT2
lim
τ→∞ lim

N→∞
1

N

∫ τ

0
dt 〈J(t)J(0)〉eq

closed
, (10)

where J(t) = ∑
x j(x, t), with j(x, t) defined in Equation (8),

is the total current in the system. The average 〈. . . 〉eq
closed

is evaluated with initial conditions chosen from a thermal
distribution and time-evolution given by the closed system
dynamics. This formula relates the thermal conductivity κ to
the integral of the equilibrium heat current auto-correlation
function CJ(t) = N−1〈J(t)J(0)〉eq

closed
. Numerical simulations

as well as several theoretical treatments find that CJ(t) in a
closed system generically decays with time as a power law
CJ(t) ∼ tα−1 with 0 ≤ α ≤ 1 [2, 3, 7, 9, 12, 33, 38–51].
As an example we show in Figure 2 data from simulations
[7] of the alternate mass hard particle gas, where we see a
decay with α ≈ 0.33. Such a power-law time dependence
implies, from Equation (10), a divergent thermal conductivity.
To see the dependence on system size one heuristically puts
a cutoff tN ∼ N in the upper limit of the time integral, the
argument being that this is the time taken by sound modes to
explore the full system of size N. Performing the time integral
in Equation (10) with this cut-off, one finally gets κ ∼ Nα .
An interesting example where this procedure fails has been
pointed out in a recent work [52, 53].

• Super-diffusive spreading of initially localized energy pulse:
Here one looks at the spreading of a localized energy pulse
in a thermally equilibrated system. One takes an initial
configuration chosen from a thermal distribution with average
local energy e0 = 〈e(x)〉eq

closed
, uniform across the system.

FIGURE 3 | Scaled perturbation profiles at times

t = 40, 80, 160, 320, 640, 1, 280, 2, 560, and 3, 840, with γ = 3/5. The profiles

have been obtained by averaging over large number of realizations. In the

inset, the profile at t = 640 (solid line) is compared with the propagators of a

Lévy walk with an exponent ν = 5/3 with a fixed velocity v = 1 (dotted line) or

with velocity chosen from a Gaussian distribution with mean 1 and variance

0.036 (dashed line) (adapted from Cipriani et al. with permission from [8]

Copyright (2005) by American Physical Society).

Imagine putting an extra amount of energy ǫ0 to a few particles
in a region inside the bulk to create a pulse of excess energy
locally. As the system evolves according to the closed system
dynamics, this localized energy perturbation starts spreading
across the system. Let ǫ(x, t) represent the excess energy
density (above e0) at the point x and at time t (averaged over
the initial distribution). This quantity starts as a δ-function
at t = 0 and then starts spreading with time. Note that∫
dx ǫ(x, t) = ǫ0, the total injected energy is conserved

under the closed system dynamics. For a diffusive system, the
perturbation would evolve according to the diffusion equation
∂ǫ(x, t)/∂t = D∂2ǫ(x, t)/∂x2 and in macroscopic length-time
scales, the perturbation profile at time t would be given by
a Gaussian

ǫ(x, t) = ǫ0
e−x2/4Dt

√
4πDt

. (11)

For a system with AHT, one instead finds the following scaling
form [4, 8]

ǫ(x, t) = 1

tγ
G

( x

tγ

)
, for x . t, (12)

with a scaling exponent 1/2 < γ < 1. The two limits
γ = 1/2 and 1 correspond respectively to diffusive and
ballistic transport. In Figure 3we show results for energy pulse
spreading obtained in [8] for the alternate mass hard particle
gas model. The main plot shows the scaling x ∼ tγ , with
γ = 3/5 of the central part of the distribution. The central
part of the distribution was found to fit to the Lévy function
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which is the propagator of Equation (4) with µ = 1/γ . The
mean square deviation (MSD) defined as

σ 2
e (t) =

∫
dx x2 ǫ(x, t), (13)

with mean taken as zero, was seen to scale as σ 2
e (t) ∼ tβ ,

with β = 4/3, as opposed to a diffusive system with β = 1.
It was also noted that the MSD width exponent, β , is related
to the thermal conductivity exponent α as β = 1 + α (see
section 3.1.2 for details). To compute the MSD and relate the
exponents β and γ is a somewhat subtle issue and requires one
to note that the scaling function is valid in the bulk region
|x| . t, beyond which ǫ(x, t) decays rapidly (see discussion
in section (3.1.1) in the context of Lévy-walk model). From
properties of the Lévy distribution one gets, in the regime
tγ << x . t, the scaling form G(u) ∼ 1/u1+1/γ . Using these

asymptotics and computing σ 2
e (t) =

∫ t
0 dx x2 t−γ G(x/tγ )

gives us the leading behavior σ 2(t) ∼ t3−1/γ which then
leads to the relation β = 3 − 1/γ . Observations from
several other numerical simulations have confirmed the super-
diffusive behavior [8, 54–59].

• Super-diffusive evolution of density correlations: The
anomalous signature discussed in the previous point can also
be observed alternatively by looking at the spreading of the
equilibrium spatio-temporal correlation function of the energy
density e(x, t) defined as

Ce(x, t) = 〈e(x, t)e(0, 0)〉 − 〈e(x, t)〉〈e(0, 0)〉, (14)

where the average is taken over the equilibrium initial
conditions. For diffusive systems this correlation has the
Gaussian form in Equation (11), while for systems with AHT
this has the scaling form in Equation (12) and one again has
super-diffusive growth of the MSD [21], now defined as

σ 2
c (t) =

1

kBT

∫
dx x2 Ce(x, t). (15)

This MSD can be related to σ 2
e (t) defined above, using

linear response theory and both have ∼ tβ scaling. In the
case of AHT, observing the scaling form in Equation (12)
usually requires one to subtract contributions of sound modes
which travel ballistically. The theory of non-linear fluctuating
hydrodynamics (NFH) provides a framework in which one
can systematically describe the super-diffusive scaling of the
correlation [22, 47, 60–63]. This theory is based on writing
hydrodynamic equations for the conserved quantities in the
system which for the Hamiltonian in Equation (5) are the total
energy, total momentum and the total number of particles
(or volume). This framework of NFH is discussed in detail
in section 3.2. A connection can be made between the super-
diffusive scaling (σ 2

c (t) ∼ tβ ) of the energy correlations
and the power-law decay, ∼ tα−1, of the current-current
correlations [4, 58, 59], which can be seen as follows. Starting
from the continuity equation for energy, one can obtain the
relation [61, 62] on the infinite line

∂2Ce(x, t)

∂t2
= ∂2〈j(x, t)j(0, 0)〉

∂x2
. (16)

Multiplying by x2 on both sides and integrating over all the
range of x one gets

d2σ 2
c (t)

dt2
= 1

kBT
〈J(t)j(0, 0)〉 = CJ(t)

kBT
. (17)

Assuming the expected forms σ 2(t) ∼ tβ and CJ(t) ∼ tα−1 we
get the relation α = β − 1.

2.2. Signatures in the Open System Set-Up
• Diverging thermal conductivity: As discussed above in the

open system set-up, one connects the system at the two
boundaries to heat reservoirs at unequal temperatures Tℓ 6=
Tr . A common model for baths is to write Langevin dynamics
for the boundary particles involving dissipation and noise
term satisfying the fluctuation-dissipation relation. For a
chain of interacting particles described by the Hamiltonian
in Equation (5) the equations of motion for the boundary
particles would read

ṗ1 = f1 − λp1 + ξℓ(t), (18)

ṗN = fN − λpN + ξr(t), (19)

where fi = −∂H/∂qi. The noise terms ξℓ,r are Gaussian white
noise terms, with zero mean and correlations 〈ξℓ(t)ξℓ(t′) =
2λTℓδ(t − t′) and 〈ξr(t)ξr(t′) = 2λTrδ(t − t′). The remaining
particles evolve according to Equation (6). After a long time
the system reaches a non-equilibrium steady state (NESS) and
we canmeasure the steady state current j as average of the local
current j(x, t) defined through Equation (8). In the steady state
this will be independent of time as well as the bond where we
measure the current. One can then check if the system size
N scaling of this steady state current j has the expected form
j ∼ Nα−1, where α < 1 for anomalous systems. Alternatively
one can define the κ = jN/(Tℓ − Tr) and see how this scales
with N. For a large class of non-linear interaction potentials, it
has been observed that the thermal conductivity κ ∼ Nα with
0 < α < 1 for large N [6, 7, 10, 11, 63, 64]. As an example, we
show in Figure 4 data from [10] for the FPUT-β chain, where
one finds α ≈ 0.33.

• Non-linear temperature profile: The local temperature at
a site on the lattice can be defined through the relation
Ti = 〈p2i /m〉, where the average is taken in the NESS. For
diffusive systems, the temperature profile obtained would be
linear for small 1T = Tℓ − Tr , as expected from solving
Fourier’s law with a constant κ . It is important to note
that non-linear temperature profiles can also be obtained in
case of diffusive transport if the thermal conductivity κ is
temperature-dependent and 1T is large. On the other hand,
for many systems with AHT, one finds a strongly non-linear
temperature profile even when 1T is made arbitrary small [5,
10, 11, 26, 34, 36, 65]. Quite often the profiles are characterized
by divergent slopes at the boundaries. In Figure 5 we show
the temperature profile in the FPUT-β model and one can see
the characteristic non-linear nature. Note that the definition
of local temperature makes sense (and is useful) only if this
temperature predicts correctly other local observables, for
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FIGURE 4 | FPUT-β model: Results for conductivity κ vs. N for Tℓ = 2.0 and

Tr = 0.5. The last five points fit to a slope of 0.333± 0.004 (adapted from Mai

et al. with permission from [10] Copyright (2007) by American Physical

Society).

example higher moments of the velocity. This was also verified
in [10] and also shown in Figure 5. Typically one finds that
the temperature difference δT(x) = |Tℓ − T(x)| scales as
(δx)µ, with distance δx from the boundary, where 0 < µ ≤
1. The exponent µ has been referred to as the meniscus
exponent [66]. This exponent is non-universal in the sense
that it depends on details of boundary conditions, unlike the
conductivity exponent α.

• Green-Kubo-type relation for open systems: Analogous to
the Green-Kubo formula in the closed system set-up given
by Equation (10), an exact formula exists in the open system
set-up that relates the current response to a small temperature
difference1T = Tℓ − Tr . This is given by [67]

lim
1T→0

j

1T
= 1

KBT2N2

∫ ∞

0
dt 〈J(t)J(0)〉eqopen . (20)

The time auto-correlation 〈J(t)J(0)〉eqopen is computed by
averaging over equilibrium initial conditions as well as the
open system dynamics which includes the stochastic baths
(at equal temperatures). This formula is valid for a finite
size system. We note that for systems with AHT, unlike with
Equation (10), in the open set-up we do not require the use of
an upper cut-off tN ∼ N for estimating the size dependence
of conductivity. In this case the linear response current can be
evaluated directly from Equation (20) for any finite system of
sizeN and thereby one can verify the form j/1T ∼ Nα−1. This
approach has been discussed for example in [63, 64]. It was
observed in [64] that, for the so-called random collision model
studied by them, both 〈J(t)J(0)〉eq

closed
and 〈J(t)J(0)〉eqopen showed

a t−2/3 decay at times t . N. However, the exponential decay
for the open case begins at tN ∼ N while for the closed system
(with periodic boundary conditions) this begins at tN ∼ N3/2.
This was understood as arising from the time scale associated
to the spreading of sound modes. Note that if we put the
cut-off tN ∼ N3/2 as the upper limit in the time-integral
of Equation (10) then we would get the wrong conductivity
exponent. In order to get the correct exponent in the closed
system set-up, one has to by hand set the cut-off at tN ∼ N
based on consideration of the practical transport set-up which
has baths at the boundaries.

Recently, in a model system of AHT the relation in
Equation (3) has been established using the above formula

FIGURE 5 | FPUT-β model: Kinetic temperature profile for a system with

N = 16384, Tℓ = 2.0, Tr = 0.5. Assuming a Gaussian local velocity

distribution, the temperatures as defined from the first three even moments are

shown; their agreement vindicates the assumed Gaussian velocity distribution.

(Inset) Normalized temperature profiles for different N (adapted from Mai et al.

with permission from [10] Copyright (2007) by American Physical Society).

and a heuristic approach based on fluctuating hydrodynamics
[36]. An explicit expression of the kernel was obtained for a
specificmodel, using which one can understand the divergence
of κ as well as the singular features in the temperature
profile. A detailed discussion of this method is given later in
section 4.2.3.

3. PHENOMENOLOGICAL APPROACHES
FOR ANOMALOUS HEAT TRANSPORT

In this section we will discuss two different approaches that
have tried to understand the various aspects of AHT mentioned
above. The first is a completely heuristic approach where one
assumes that the heat carriers perform Lévy walks instead of
random walk which is expected for diffusive heat transfer.
This method has been used to explain spreading of localized
energy pulses, steady state properties and current fluctuations
[8, 39, 57, 66, 68–71]. The second approach is a microscopic
one where one starts by writing hydrodynamic equations for the
conserved quantities of the Hamiltonian dynamics. One then
phenomenologically adds noise and dissipation terms satisfying
fluctuation dissipation relations and this allows one to study
equilibrium fluctuations in the system. In particular, using
the formalism of fluctuating hydrodynamics, one can compute
dynamical correlation functions which contain information
on AHT.

3.1. Lévy Walk Description of Anomalous
Heat Transport
3.1.1. Lévy Walk Description in the Closed Set-Up
In this description one thinks of energy as being carried by Lévy
walkers, each of which carry a fixed amount of energy. It follows
that the local energy density and energy current at any point can
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be taken to be directly proportional to, respectively, the particle
density and current. Let us also assume that the local temperature
is proportional to the local energy density and hence to the
density of particles.

Definition of the Lévy walk [72–74]: At each step of the walk,
a particle chooses a time of flight τ from a specified distribution,
φ(τ ), and then moves a distance x = cτ at a fixed speed c,
with equal probability in either direction. More generally one
can consider the velocity c to be drawn from a distribution. Let
P(x, t)dx denote the probability that the particle is in the interval
(x, x + dx) at time t. Note that P(x, t) also includes events where
the particle is crossing the interval (x, x + dx), in addition to
the events in which the particle lands in the interval at time t.
If a particle starts at the origin at time t = 0, the probability
P(x, t) satisfies

P(x, t) = 1

2
ψ(t)δ(|x| − ct)+ 1

2

∫ t

0
dτφ(τ ) [P(x− cτ , t − τ )

+ P(x+ cτ , t − τ )], (21)

where ψ(τ ) =
∫∞
τ

dτ ′ φ(τ ′) is the probability of choosing
a time of flight ≥ τ . Here we consider Lévy walkers with a
time-of-flight distribution

φ(t) = ν

to

1

(1+ t/to)ν+1
, 1 < ν < 2, (22)

which decays, at large times, like a power law φ(t) ≃ A t−ν−1

with A = νtν0 . For this range of ν the mean flight time 〈t〉 =∫∞
0 dt t φ(t) = t0/(ν − 1) is finite but 〈t2〉 = ∞.
Some properties of the Lévy walk: Taking the Fourier Laplace

transform P̃(k, s) =
∫∞
−∞ dx

∫∞
0 dt P(x, t) eikx−st we get

P̃(k, s) = ψ̃(s− ick)+ ψ̃(s+ ick)

2− φ̃(s− ick)− φ̃(s+ ick)
, (23)

where φ̃(s) =
∫∞
0 dte−stφ(t) and ψ̃(s) =

∫∞
0 dte−stψ(t) =

[1− φ̃(s)]/s.
For asymptotic properties it is useful to find the form of P̃(k, s)

for small k, s. The Laplace transform φ̃ is given by:

φ̃(s) =
∫ ∞

0
dt e−st φ(t) = 1− 〈t〉 s+ b ν(sto)

ν + · · · ,
(24)

where b = 1

ν(ν − 1)

∫ ∞

0
dz e−zz1−ν = 1

ν(ν − 1)
Ŵ(2− ν),

and Ŵ(u) is the Gamma-function. Hence we get:

P̃(k, s) = 1− d[(s− ick)ν−1 + (s+ ick)ν−1]

s− d[(s− ick)ν + (s+ ick)ν]
, (25)

where d = bA/(2〈t〉). Taking the inverse Fourier-Laplace
transform of this gives us the propagator of the Lévy walk on
the infinite line. This corresponds to a pulse whose central region
is a Lévy-stable distribution with a scaling x ∼ t1/ν . This can
be seen by expanding Equation (25) for ck/s << 1 to get

FIGURE 6 | Plot of the scaled distribution t2/3P(x, t) vs. x/t2/3 of the Lévy walk

on the open line for ν = 3/2 at three different times. Also shown is a plot of the

Lévy-stable distribution. The inset shows a plot of the mean square

displacement and the fourth moment and a comparison with the exact

asymptotic forms (dashed lines) given by Equations (27, 28). In all plots the

time to and c are set to one.

P̃(k, s) = [s− c cos(νπ/2)(ck)ν]−1. The difference with the Lévy-
stable distribution is that the Lévy-walk propagator has ballistic
peaks of magnitude t1−ν at x = ±ct and vanishes outside this.
The overall behavior of the propagator is as follows [72]:

P(x, t) ∼ t−1/ν exp

(−ax2

t2/ν

)
|x| . t1/ν

∼ t x−ν−1 t1/ν . |x| < ct

∼ t1−ν |x| = ct

= 0 |x| > ct. (26)

The time evolution of the Lévy-walk propagator, obtained from
direct simulations of the Lévy walk, is shown in Figure 6. We also
plot the Lévy-stable distribution obtained by taking the Fourier
transform of P(k, t) = e−c cos(νπ/2)|k|ν t .

Various moments of the distribution can be found using

the relation 〈xn〉(t) = (dn/d(ik)n)
∫∞
−∞ dkeikxP(x, t)

∣∣∣
k=0

, or its

Laplace transform given by 〈xn〉(s) = (dn/d(ik)n) P̃(k, s)
∣∣∣
k=0

.

Using Equation (25) we get in particular the following
leading behavior

〈x2〉c ≃
2 A c2

(3− ν)(2− ν)ν 〈τ 〉 t
β , β = 3− ν , (27)

〈x4〉c ≃
4 A c4

(5− ν)(4− ν)ν 〈τ 〉 t
β+2 . (28)

We see that for 1 < ν < 2 the motion is super-diffusive [73, 74].
The most interesting characteristics to note about the Lévy walk
are the fact that the probability distribution has finite support
(|x| ≤ ct), in the bulk it coincides with the Lévy distribution
with scaling x ∼ t1/ν and finally the mean square displacement
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FIGURE 7 | (A) Temperature profile of the oscillator chain with conservative noise with free boundary condition and λ = γ = 1 (solid line) and solution of the master

equation with reflection coefficient R = −0.1 (dashed line) (reprinted from Lepri and Politi [66]). (B) Dependence of the meniscus exponent µ on the reflection

probability r for ν = 3/2. Note that r in this figure is denoted by R in this review. Full circles and stars are measures from fitting of P(x) and Q(x), respectively (see text).

The dashed line is given by formula (29) (adapted from Lepri and Politi with permission from [66] Copyright (2011) by American Physical Society).

(MSD) 〈x2〉 ∼ tβ with β = 3− ν. Note that the usual Lévy stable
distribution has a diverging second moment, however the Lévy
walk has a finite MSD and this follows from the finite support
|x| ≤ ct of the corresponding distribution. Indeed, on using this
cutoff and the power-law form of the Lévy near the cut-off (see
Equation 26) gives us the expected scaling exponent β = 3− ν.

Lévy walks and AHT: The first proposal suggesting the Lévy
walk model to describe anomalous heat transport was made in
[68]. This idea was tested for a microscopic model in [8] where
it was shown that the spreading of a heat pulse in a thermally
prepared alternate mass hard particle gas was super-diffusive and
is well-described by the Lévy walk model. In Figure 3 we show
the evolution of a localized perturbation. Themain plot shows the
x ∼ t3/5 scaling of the central part of the distribution while the
inset shows a fit to the expected Lévy distribution (for a LW with
ν = 5/3) with a single fitting parameter. It was also shown that
the MSD of the energy has the scaling ∼ t4/3 as expected from
the relation β = 3 − ν for LW. Finally it was proposed using
linear response ideas that the exponent β and the conductivity
exponent α should be related as α = β − 1 which gives α = 1/3
for the present system. This agrees with known results for the
alternate mass hard particle gas. The validity of the Lévy walk
description of pulse propagation was further verified in [39] for
a hard particle gas interacting via a square well-potential and in
[57] for the FPUT chain. All these cases were described by the
same Lévy-walk exponent ν = 5/3.

3.1.2. Lévy Walk Description of the Open Set-Up
We now discuss the case of the open system consisting of a
finite segment (0, L) that is connected to two reservoirs at the
ends. The use of the Lévy walk model to study NESS properties
in AHT was first proposed in Lepri and Politi [66] where
the authors considered a finite lattice of N sites containing a
collection of Lévy walkers. The system was connected at it’s two
ends to infinite reservoirs that contained sources emitting Lévy
walkers at fixed constant rates. A Lévy walker crosses from the
reservoir into system with probability one, but while exiting
from system into reservoir, it can get reflected with probability
R. A particle exiting the reservoir is eliminated. The authors in
Lepri and Politi [66] considered a discrete version and studied
this problem numerically. The strategy was to write appropriate
master equations for the probability evolution and obtain the

steady state solution numerically. One of the main observations
in the paper was that the NESS profile for P(x) was non-linear and
was singular at the boundaries. In Figure 7Awe show a plot of the
profile for the case R = −0.1, compared with simulation results
for the temperature profile in the momentum exchange model
(HCME), with free BC and a specific choice of exchange rate. One
sees very good agreement. As noted in section 2.2 in the context
of temperature profiles in systems with AHT, one can define
a “meniscus” exponent, µ, through the observed scaling form
P(x) ∼ (δx)µ for small distances δx from any boundary. Based
on their numerical observations (see Figure 7B) the authors in
[66] conjecture the relation

µ = ν

2
+ R

(ν
2
− 1

)
. (29)

It was noted in [66] that the value R = −0.1 was unphysical but
made mathematical sense in the master equation (see [66] for
further discussions on this point) and gave the best agreement
with the momentum exchange simulation profile.

Some exact results were obtained for the Lévy walkmodel with
particle reservoirs, for the special case of perfectly transmitting
boundary walls (i.e., R = 0) [69] which we now describe. We
note that for the Lévy walker, at any given time, a particle could
either be passing over a point x or could have landed precisely at
the point. Hence, in addition to the probability density P(x, t), it
is convenient to define the probability Q(x, t)dxdt that a particle
lands precisely between x to x+ dx in the time interval (t, t+ dt).
We now specify the boundary conditions required to set up
a non-equilibrium current carrying steady state. For this, we
consider the region x ≤ 0 as the left reservoir with Q(x, t) = Ql

for all points in this region. Similarly, we set Q(x, t) = Qr in the
region x ≥ L corresponding to the right reservoir. In the steady
state, the distributions become time-independent and Q(x, t) =
Q(x), P(x, t) = P(x) satisfy [69]

Q(x) =
∫ L

0
dy

1

2c
φ(|x− y|/c) Q(y)+ Ql

2
ψ(x/c)

+ Qr

2
ψ[(L− x)/c], (30)

P(x) =
∫ L

0
dy

1

2c
ψ(|x− y|/c) Q(y)+ Ql

2
χ(x/c)
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+Qr

2
χ[(L− x)/c], (31)

whereψ(t) =
∫∞
t dτ φ(τ ) and χ(t) =

∫∞
t dτψ(τ ) as mentioned

earlier after Equation (21). The terms on the right hand side of the
above equation for Q(x) represent different contributions. The
first term represents the contributions from walkers that start
from various points y and land at x. The second and the third
term represent contributions from walkers starting, respectively,
from left and right reservoirs and landing at x. Similarly, the
terms on the right hand side of Equation (31) for P(x) can also
be interpreted in the same way except now, events in which the
walkers are passing over x, in addition to the events in which they
land at x at a given time, also contribute.

Interestingly, it turns out that the problem of finding Q(x)
can be related to the problem of the escape probability [75] of a
Lévy walker on the interval (0, L). LetH(x) denote the probability
with which a Lévy walker, starting at position x, arrives at the left
reservoir (region x < 0) before arriving at the right reservoir
(region x > L). It can be shown that H(x) satisfies [69]

H(x) =
∫ L

0
dy

1

2c
φ(|x− y|/c) H(y)+ 1

2
ψ(x/c). (32)

The probability Q(x) can now be expressed in terms of H(x) as
Q(x) = (Ql−Qr)H(x)+Qr , which can be checked easily to satisfy
Equation (30).

If one considers a Lévy flight with distribution ρ(z) =
[φ(z/c) + φ(−z/c]/(2c) of steps z, the probability H(x) that
starting at x, the flight hits first the left bath satisfies exactly
Equation (32). Hence by following the same mathematical steps
as in [75] to study equations, such as (30) or (32), one can show
that, in the large L limit, the solution Q(x) of (30) [and H(x) of
(32)] satisfies

∫ L

0
dy ψ(|x− y|/c) Sgn(x− y)Q′(y) = 0 . (33)

with Q(0) = Ql and Q(L) = Qr [and H(0) = 1 and H(1) = 0
for (32)] with a solution of (33), for a φ(τ ) decaying as in (22),
which satisfies

Q′(x) = −B[x(L− x)]ν/2−1 . (34)

We can integrate this equation to get Q(x), with the integration
constant and B being then determined from the boundary
conditions Q(0) = Ql and Q(L) = Qr . One finally obtains

Q(x) = Ql + (Qr − Ql)G
( x
L

)
,

whereG(z) = 2Ŵ(ν)

νŴ(ν/2)2
zν/2 2F1

(
1− ν

2
,
ν

2
, 1+ ν

2
, z
)
, (35)

and 2F1
(
a, b, c, z

)
is the hypergeometric function. For large L,

the right hand side of Equation (31) is dominated by the range
|y− x| ≪ L and therefore

P(x) = χ(0)Q(x) = 〈τ 〉Q(x) . (36)

The exact results of Equations (34) have been verified in [69] from
direct numerical solution of Equations (30, 31) and it was noted
that the density profiles were similar to the temperature profiles
seen in AHT.

Next we discuss the steady state current j(x) which is given by

j(x) = 1

2

∫ ∞

−∞
dy Q(x− y) Sgn(y) ψ(|y|/c). (37)

This can be seen to be the difference between the flow from left
to right and from right to left. The contribution from 0 < y <
∞ to the integral corresponds to particles crossing the point x
from left to right which is obtained by multiplying the density
of particles at x − y with the probability ψ(y/c) that they have a
flight time larger than y/c. The contribution from −∞ < y <
0 to the integral corresponds to a similar right-to-left current.
After performing a partial integration and using the boundary
conditions Q(0) = Ql and Q(L) = Qr , one obtains

j(x) = − c

2

∫ L

0
dy χ(|x− y|/c) Q′(y) . (38)

Using Equation (33) it is easy to see that dj/dx = 0 which
implies that the current in the steady state is independent of x,
as expected. Hence, evaluating the current at x = 0 and using
Equation (34), we get for large L

j ≃ (Ql − Qr)
A cν Ŵ(ν) Ŵ(1− ν

2 )

2 ν(ν − 1) Ŵ( ν2 )
Lα−1, α = 2− ν. (39)

From Equation (27) we then get the relation α = β − 1, between
the conductivity exponent of AHT and the MSD exponent for
Lévy-walk diffusion. This relation for Lévy diffusion was pointed
out in [68] and verified in simulations in 1D heat conduction
models [8, 21]. A derivation based on linear response theory
has been given in [59]. Finite size corrections to the results in
Equations (34, 39) were recently obtained in [76].

In the large L limit by using Equation (36) in Equation (38)
we obtain

j = − c

2〈τ 〉

∫ L

0
dy χ(|x− y|/c)P′(y). (40)

Above equation is the analog of Fourier’s law Equation (1)
with the important difference that in the linear response regime
the current at a point gets contributions from the temperature
gradients at other parts of the system as well.

The above treatment can be generalized for arbitrary values of
the reflection probability R [37] and this leads to the following
general non-local form of the current

j = − c

2〈τ 〉

∫ L

0
dy χR(x, y)P

′(y) , (41)

where χR(x, y) =
∞∑

n=−∞

[
R|2n|χ

( |2nL+ y− x|
c

)

−R|2n+1|χ
( |2nL+ y+ x|

c

)]
. (42)
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Remarkably we note that for ν = 3/2 (α = 2 − ν = 1/2), the
expression above is identical to the expression for KR(v, v

′) with
v = x/L, v′ = y/L, given later in Equation (112).

3.2. Non-linear Fluctuating Hydrodynamics
Description of Anomalous Heat Transport
We now discuss a completely different approach for
understanding AHT. In this approach the starting point
is the Hamiltonian dynamics of the system. The idea is to
consider the effective dynamics of the slow conserved fields
using some coarse graining. One finds that the evolution of
small fluctuations around equilibrium can be described by
fluctuating hydrodynamics. Solving these equations using
mode coupling theory, detailed predictions can be made on the
form of equilibrium spatio-temporal correlation functions of
the conserved fields. In particular, we will see that it predicts
the super-diffusive spreading of energy perturbations with
Lévy-law scaling, and the slow decay of energy current auto-
correlation functions. We will here describe the theory for
generic anharmonic systems with three conserved quantities,
namely volume, momentum, energy [61], and present some
numerical results which verify the predictions of the theory.

Let us consider N particles of unit masses with positions and
momenta denoted by {q(ℓ), p(ℓ)}, for ℓ = 1, . . . ,N. The particles
move on a ring of size L so that we have the boundary conditions
q(N + 1) = q(1) + L and p(N + 1) = p(1). The Hamiltonian is
taken to be

H =
N∑

ℓ=1

ǫ(ℓ), ǫ(ℓ) = p2(ℓ)

2
+ V[r(ℓ)], (43)

where we have defined the stretch variables r(ℓ) = q(ℓ+1)−q(ℓ).
It is easy to see from the Hamiltonian equations of motion
that stretch r(ℓ), momentum p(ℓ), and energy ǫ(ℓ) are locally
conserved and hence satisfy corresponding continuity equations.
In the continuum limit, these equations take the form

∂r(x, t)

∂t
= ∂p(x, t)

∂x
,

∂p(x, t)

∂t
= −∂P(x, t)

∂x
,

∂e(x, t)

∂t
= − ∂

∂x
[p(x, t)P(x, t)] , (44)

where the label index ℓ has been denoted by the corresponding
continuous variable x and P(x) = −V ′(x) is the local force.
Assume that the system starts in a state of thermal equilibrium at
zero total average momentum characterized by the temperature
(T = β−1) and pressure (P), which fix the the average energy and
average stretch of the chain. The distribution corresponding to
this ensemble is

P({p(x), r(x)}) =
∏

x

e−β[p
2
x/2+V(rx)+Prx]

Zx
,

Zx =
∫ ∞

−∞
dp

∫ ∞

−∞
dre−β[p

2/2+V(r)+Pr]. (45)

Since the fields r(x, t), p(x, t), and e(x, t) satisfy continuity
equations, they evolve slowly suggesting a slowly evolving local
equilibrium picture. We consider small fluctuations of the
conserved quantities about their equilibrium values, u1(x, t) =
r(x, t) − 〈r〉eq, u2(x, t) = p(x, t), and u3(x, t) = ǫ(x, t) −
〈ǫ〉eq. Inserting these into Equation (44) one obtains ∂tuα =
−∂xjα , where jα are the corresponding Euler currents which are
functions of uαs. Expanding these currents to second order in the
fields as jα = ∑

β Aαβuβ + ∑
β ,γ H

α
βγ uβuγ , and then adding

dissipation and noise terms (to ensure thermal equilibration) one
arrives at the following noisy hydrodynamic equations

∂tuα = −∂x
[
Aαβuβ +Hαβγ uβuγ − ∂xD̃αβuβ + B̃αβξβ

]
, (46)

where repeated indices are summed over. The noise and the
dissipation matrices, B̃, D̃, are related to each other by the
fluctuation-dissipation relation D̃C + CD̃ = B̃B̃T , where
the matrix C corresponds to equilibrium correlations and its
elements are Cαβ (x) = 〈uα(x, 0)uβ (0, 0)〉.

It is useful to define normal modes of the linearized equations
(dropping u2 terms in Equation 46) through the transformation
(φ−,φ0,φ+) = Eφ = REu, where the matrix R acts only
on the component index and diagonalizes A, i.e. RAR−1 =
diag(−c, 0, c). The diagonal form implies that there are two
sound modes, φ±, traveling at speed c in opposite directions
and one stationary but decaying heat mode, φ0. The quantities
of interest are the equilibrium spatio-temporal correlation
functions Css′ (x, t) = 〈φs(x, t)φs′ (0, 0)〉, where s, s′ = −, 0,+.
Because the modes separate linearly in time, one argues that at
large times the off-diagonal matrix elements of the correlator
are small compared to the diagonal ones and that the dynamics
of the diagonal terms decouples into three single component
equations. After including the non-linearity it is seen that to
leading order the equations for sound modes have self-coupling
terms of the form φ2±. These then have the structure of the
noisy Burgers equation, for which the exact scaling function,
denoted by fKPZ, are known. For the heat peak the self-coupling
coefficient vanishes for any interaction potential. Thus, one has
to study the sub-leading corrections, and calculations using
the mode-coupling approximation result in the symmetric Lévy
walk distribution, with a cut-off at x = ct. While this is an
approximation, it seems to be very accurate. For the generic case
of non-zero pressure, i.e. P 6= 0, which corresponds either to
asymmetric inter-particle potentials or to an externally applied
stress, the prediction for the left moving, resp. right moving,
sound peaks, and the heat mode are

C−−(x, t) = 1

(λst)2/3
fKPZ

[
(x+ ct)

(λst)2/3

]
,

C++(x, t) = 1

(λst)2/3
fKPZ

[
(x− ct)

(λst)2/3

]
, (47)

C00(x, t) = 1

(λet)3/5
f
5/3
LW

[
x

(λet)3/5

]
, (48)

where fKPZ(x) is the KPZ scaling function discussed in [61, 77],
and tabulated in [78]. The scaling function f νLW(x) is given by
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the Fourier transform of the Lévy characteristic function e−|k|ν ,
with a cut-off at x = ct. The scaling parameters λs and λe are
known explicitly. On the other hand for an even potential at zero
pressure, i.e., P = 0, all self-coupling coefficients vanish. As a
result the scaling solutions within mode-coupling approximation
change and one obtains

C−−(x, t) = 1

(λ0s t)
1/2

fG

[
(x+ ct)

(λ0s t)
1/2

]
,

C++(x, t) = 1

(λ0s t)
1/2

fG

[
(x− ct)

(λ0s t)
1/2

]
, (49)

C00(x, t) = 1

(λ0e t)
2/3

f
3/2
LW

[
x

(λ0e t)
2/3

]
, (50)

where fG(x) is the unit Gaussian with zero mean. The scaling
parameters λ0s is not known frommicroscopics while λ0e is known
explicitly in terms of λ0s .

Here we present molecular dynamics simulation results for
the FPUT chain that were obtained in [63] which verify the
predictions of NFH. In Figure 8, top panel, the two-point
correlation functions C00(x, t), C++(x, t) and C−−(x, t) are
plotted as a function of x for three values of time t = 800, 2, 400
and 3, 200. The parameters used in this plot are k2 = 1.0, k3 =
2.0, k4 = 1.0,T = 5.0, P = 1.0 for which one gets c = 1.80293
and we also see there is a good separation of the heat and
sound modes. In Figure 8, bottom panel we also find an excellent
collapse of the heat mode and the sound mode data with the
expected scalings. The scaled data for the heat mode fits very
well to the Lévy-scaling function whereas the same for the sound-
mode still shows some asymmetry but is quite close to the KPZ
function. The numerically estimated values of the constants λs,e
are λs = 0.46 and λe = 5.86. These are in close agreement to the
theoretically obtained values λs = 0.396 and λe = 5.89.

4. STOCHASTIC MODELS: EXACT
RESULTS ON FRACTIONAL EQUATION
DESCRIPTION

It is now well-understood that conservation laws play an
important role in observation of super-diffusive transport in one-
dimensional systems. As we saw in the previous section, NFH
provides some understanding of the emergence of Lévy-walk
behavior, which seems to capture several aspects of anomalous
transport. However, providing a completely rigorousmicroscopic
derivation of the Lévy-walk picture in a Hamiltonian model has
been difficult, though there have been some attempts [79]. While
generic non-linear Hamiltonian models are difficult to analyze,
analytical results have been obtained for harmonic chains whose
Hamiltonian dynamics is perturbed by stochastic noise that
breaks integrability of the system [9, 30, 52]. These stochastic
models attempt to mimic non-linear chains and for these models,
several exact results both in the closed system set-up and the
open system set-up have been obtained. In particular one can
rigorously establish non-local response relation Equation (3) and
the fractional diffusion equation Equation (4). There are two
widely studied stochastic models which we discuss below.

4.1. Harmonic Chain With Volume
Exchange
Thismodel is defined on a one dimensional lattice where each site
carries a “stretch” variable ηi, i ∈ Z and the energy of the system
is E = ∑

i η
2
i . The dynamics has two parts: (a) a deterministic

part given by dηi
dt

= ηi+1 − ηi−1 and (b) a stochastic exchange
part where ηs from any two randomly chosen neighboring sites,
are exchanged at a constant rate γ . We refer to this model as
Harmonic chain with volume exchange (HCVE). This model was
introduced in [30] where it was shown that the energy current
auto-correlation decays as ∼ 1/

√
t, implying super-diffusive

transport. It is easy to see that this system has only two conserved
quantities namely, the total “volume”

∑
i ηi and the total energy∑

i η
2
i . The evolution of the density fields corresponding to these

conserved quantities at the macroscopic length and time scales
was studied in [62] using NFH, where it has been shown that this
model has two normal modes - one diffusive sound mode and
a 3

2 -asymmetric Lévy heat mode. Subsequently, it was rigorously
shown that the local energy density e(x, t) satisfies a (3/4)-skew-
fractional Equation [31]

∂te(x, t) = − 1√
2γ

L
v
∞e(x, t), for x ∈ (−∞,∞),

where L
v
∞ = [(−1)3/4 − ∇(−1)1/4], (51)

with 1 as the usual Laplacian operator. In the Fourier domain,
defined by e(k, t) =

∫∞
−∞ e(x, t)eixkdx, the above equation reads as

∂te(k, t) = − 1√
2γ

|k|3/2[1− i sgn(k)] e(k, t). (52)

Note that for the diffusive case the analog of the above equation
would be ∂te(k, t) = −Dk2 e(k, t). The above results suggest
that, in the open set-up where the system is connected to two
reservoirs at different temperatures, this model would exhibit
anomalous scaling of the steady state current j with system
size N. In [30], it has been numerically shown that indeed
j ∼ 1/

√
N. Recently, an understanding of the open system

was achieved using the fractional equation description, which
we now discuss [34]. An aspect that we will point out here
is that the fractional-equation-type description in the open-set
up is strongly dependent on boundary conditions (fixed or free
or mixed).

For the open system case, we consider a finite lattice of size
N, connected to two thermal reservoirs at temperatures Tℓ and
Tr on the left and right boundaries. The dynamics of the ηi, i =
1, 2, . . . ,N now gets modified to

dηi

dt
= ηi+1 − ηi−1 + δi,1

(
− λη1

+
√
2λTℓξℓ(t)

)
+ δi,N

(
− ληN

+
√
2λTrξr(t)

)

+ stochastic exchange at rate γ . (53)

The Langevin terms at the boundaries i = 1 and i = N
appear due to the baths and ξℓ,r(t) are independent Gaussian
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FIGURE 8 | (Top) Plots of the heat mode correlation C00(x, t) (central peaks) and the sound mode correlations C++(x, t) and C−−(x, t) (right and left moving peaks) in

the FPUT chain, at three different times, for the parameter set with k2 = 1.0, k3 = 2.0, k4 = 1.0, T = 5.0,P = 1.0, and system size 16, 384. The speed of sound was

c = 1.80293. We see that the heat and sound modes are well-separated. The numerical data in this plot were obtained by averaging over around 106 − 107 initial

conditions. (Bottom) The heat mode (A) and the left moving sound mode (B) correlations, respectively, C00(x, t) by C−−(x, t) are plotted at different times, using a

Lévy-type-scaling for the heat mode and KPZ-type scaling for the sound mode. Here we observe a very good collapse of the data at different times. Moreover, we

observe a good fit to the Lévy-stable distribution with λe = 5.86 and a reasonable fit to the KPZ scaling function, with λs = 0.46. The parameters used in this plot are

k2 = 1.0, k3 = 2.0, k4 = 1.0, T = 5.0,P = 1.0 (adapted from Das et al. with permission from [63] Copyright (2014) by American Physical Society).

white noises with mean zero and unit variance.We consider fixed
boundary conditions η0 = ηN+1 = 0.

Our main interest is to obtain an equation in this finite
system, analogous to Equation (51), to describe the evolution
equation of the temperature profile. To do this we first define
the local temperature Ti(t) = 〈η2i (t)〉 and the off-diagonal
correlations Ci,j(t) = 〈ηi(t)ηj(t)〉, i 6= j, which characterize
the non-equilibrium state of the system. Interestingly, it turns
out that the equations for two point correlations do not
depend on higher order correlations and this property leads
to the model’s solvability. The evolution of these quantities
in the bulk (2 < i, j < N − 1) can be obtained from
Equation (53) as:

Ċij = Ci+1,j − Ci−1,j + Ci,j+1 − Ci,j−1

+γ [Ci−1,j + Ci+1,j + Ci,j−1 + Ci,j+1 − 4Ci,j],

Ċi,i+1 = Ti+1 − Ci−1,i+1 + Ci,i+2 − Ti

+γ [Ci−1,i+1 + Ci,i+2 − 2Ci,i+1],

Ṫi = 2[Ci,i+1 − Ci−1,i]+ γ [Ti+1 + Ti−1 − 2Ti]. (54)

The equations involving the boundary terms are given in
Priyanka et al. [34]. Note that in an infinite system, we get
the same set of equations with i, j ∈ Z. For the finite

open system, solving the above equations exactly seems to
be difficult. However, it was observed numerically [34] that
for large N the temperature field Ti(t) scales as Ti(t) =
T

(
i
N ,

t
N3/2

)
and the correlation field Ci,j(t) scales as Ci,j(t) =

1√
N
C

( |i−j|√
N
,
i+j
2N , t

N3/2

)
, i 6= j. Inserting these into (54), and

expanding in powers of 1/
√
N, we find at leading order the

following equations

∂vC(u, v, τ ) = −γ ∂2uC(u, v, τ ), (55)

∂vT (v, τ ) = −2γ
[
∂uC(u, v, τ )

]
u=0

, (56)

∂τT (v, τ ) = 2∂vC(0, v, τ ), (57)

where the scaling variables u = |i− j|/
√
N, v = (i+ j)/2N, τ =

t/N3/2 are defined over {0 ≤ u ≤ ∞; 0 ≤ v ≤ 1;
0 ≤ τ ≤ ∞}.

Note that for the isolated infinite system, one can follow the
same procedure as above, but now replacing the scale parameter
1/N → a where a is the lattice spacing, to obtain the same
set of Equations (55–57) with a different domain {−∞ ≤ u ≤
∞;−∞ ≤ v ≤ ∞}. These equations can be solved by
Fourier transforms to get a skew fractional evolution equation
for T (v, τ ) of the same form as Equation (52). Defining Fourier
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FIGURE 9 | (A) Steady state temperature of HCVE model (Tss) as given by Equation (66) (blue dashed line) is compared with numerical simulations for parameters

ω = γ = 1, Tℓ = 1.1,Tr = 0.9, and N = 1, 024, and for two different choice of λ. (B) Numerical verification of the evolution of the temperature profiles T (v, τ ) given by

Equation (71) (solid lines), starting from a non-stationary profile (dashed line). The points indicate simulation results for parameters are λ = γ = 1,Tℓ = 1.1, Tr = 0.9

and N = 2,048 (adapted from Kundu et al. with permission from [34] Copyright (2018) by American Physical Society).

transforms T (v, τ ) =
∫∞
−∞ dkT̂ (τ )e−ikv/(2π) and C(u, v, τ ) =∫∞

−∞ dkĈk(u, τ )e
−ikv/(2π) in the variable v, we get

∂2u Ĉk(u, τ ) =
ik

γ
Ĉk(u, τ ), (58)

ikT̂k(τ ) = 2γ
[
∂uĈk(u, τ )

]
u=0

, (59)

∂τ T̂k(τ ) = −2ikĈk(0, τ ) . (60)

Solving the first Equation (58), with the condition that
correlations vanish at u = ±∞, we get

Ĉk(u, τ ) = Ak(τ ) exp

[
−(1+ iSgn(k))

|k|1/2√
2γ

|u|
]

(61)

The Equation (59) relates the constant Ak to T̂k:

Ak(τ ) = − ik(1− iSgn(k))

2
√
2γ |k|

T̂k. (62)

Using Equations (61, 62) in Equation (60) we get the infinite line
equation in Equation (52).

We now go back to the open system case where the solution is
more non-trivial. To solve these equations in the open set-up, we
proceed as for the regular diffusive heat equation, and write the
solution as sum of a steady state part and a relaxation part

T (v, τ ) = Tss(v)+ Tr(z, τ ) (63)

C(u, v, τ ) = Css(u, v)+ Cr(u, z, τ ), (64)

where we have defined z = 1 − v. We note that under this
transformation, the “anti-diffusion” Equation (55), becomes a
diffusion equation, with v as the time variable and z the space
variable. The relaxation part satisfies the equations given in
Equations (55, 56, 57), while the steady state part satisfies these
equations but with ∂τTss(v) = 0. The boundary conditions for
the steady state part are given by Priyanka et al. [34]

Css(u, z → 0) = 0, Css(u → ∞, z) = 0, Css(u = 0, z) = J/2.

Tss(v = 0) = Tℓ, Tss(v = 1) = Tr , (65)

where we have used Equation (57) to identify J = 2Css(u = 0, z)
as the NESS current which gets determined by the boundary
conditions for Tss(v). In terms of the original unscaled variables,
the true current is given by jss = J/

√
N. The solution of the steady

state equations is given by Priyanka et al. [34]

Tss(v) = Tr + (Tℓ − Tr)
√
1− v,

Css(u, v) = −Tℓ − Tr

4

√
π

γ
erfc

(
u√

4γ (1− v)

)
,

J = Tℓ − Tr

2

√
π

γ
.

(66)

In Figure 9A, we show a comparison of the above result for
steady state temperature profile with those obtained from direct
simulations of the microscopic model, and we see very good
agreement. It is interesting to note that the temperature profile
is non-symmetric under space reversal as the microscopic model
itself does not have such symmetry. This fact is also reflected
in hydrodynamics where this shows in the existence of a single
sound mode.

For the relaxation part we look for solutions which satisfy
the initial condition Tr(z, 0), Cr(u, z, τ = 0) = 0 and boundary
conditions Cr(u, z, τ )|u→∞ = 0, Tr(0, τ ) = Tr(1, τ ) = 0.
The solution of the “anti-diffusion” Equation (55), with z as
time variable, with the boundary condition (56) can be obtained
as [34]

Cr(u, z, τ ) = −
∫ z

0

exp
(
− u2

4γ (z−z′)

)

√
4πγ (z − z′)

∂Tr(z
′, τ )

∂z′
dz′. (67)

Using this in (56) then gives finally the evolution equation for the
temperature field

∂τTr(z, τ ) =
1√
πγ

∂z

[∫ z

0
dz′

∂z′Tr(z
′, τ )√

z − z′

]
, (68)
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FIGURE 10 | The real and imaginary part of the alternate eigenvalues for the

matrix L
v in Equation (70). The first 4 eigenvalues are completely real and

distinct. The higher eigenvalue comes in complex conjugate pairs. For large

µn ∼ (nπ )3/2(1± i). For smaller n, there is a deviation from asymptotic scaling

due to finite definition of the operator (adapted from Kundu et al. with

permission from [34] Copyright (2018) by American Physical Society).

inside the domain 0 ≤ z ≤ 1. This is a non-local
equation which can be recognized as a continuity equation
∂τTr(z, τ ) = −∂zj(z, τ ) where the current j is precisely in the
form stated in Equation (3). This is the open-system analog of
Equation (51). For the infinite system, a similar computation
leads to Equation (68) but with the lower limit of integration
replaced by z = −∞, and by taking Fourier transforms, this can
be shown to reduce to Equation (52).

We now proceed to solve Equation (68) to find
the temperature evolution. It is natural to expand the
temperature profile Tr(z, τ ) in a basis set satisfying
Dirichlet boundary conditions, and we choose the set
αn(z) =

√
2 sin(nπz), n = 1, 2, 3 . . . . Substituting

Tr(z, τ ) =
∑

n T̂n(τ )αn(z) in Equation (68), we get

∑

n

˙̂
Tnαn(z) = κ

∑

n

T̂n(τ )(nπ)∂z

∫ z

0

φn(z
′)√

z − z′
dz′. (69)

Further we expand the function fn(z) =
∂z
∫ z
0 φn(z

′)/
√
z − z′dz′ = ∑

l=1 ζnlαl(z) where ζnl =∫ 1
0 dz fn(z) αl(z). Using orthogonality, we get

| ˙̂
T 〉 = κ Lv| T̂ 〉, (70)

where Lv
nl

= (nπ)ζnl and the column vector | T 〉 has elements

T̂n = 〈αn|T̂ 〉. The above equation is an infinite-dimensional
matrix representation of the non-local Equation (68). To solve
this, we diagonalize the matrix Lv as R−1

L
v
R = µ, which gives

the time dependent solution as | T̂ (τ ) 〉 = ReκµτR−1| T̂ (0) 〉
where Rn,l = 〈αn|ψl〉 denotes the n-th element of the l-th right-
eigenvector of the matrix Lv and the diagonal matrix µ contains
the corresponding eigenvalue µl. The matrix Lv is real but non-
symmetric and it has left eigenvectors 〈χl| whose elements are

given by 〈χl|αn〉 = R
−1
l,n

. The formal solution for the temperature
field Tr(z, τ ) can then be written as

Tr(z, τ ) =
∑

n

T̂n(τ )αn(z)

=
∑

n,m,l

Rn,le
κµlτR

−1
l,m

[∫ 1

0
dz′Tr(z′, 0)αm(z′)

]
αn(z)

=
∫ 1

0
dz′
[
∑

l

ψl(z)χl(z
′)eκµlτ

]
Tr(z

′, 0), (71)

where ψl(z) = 〈z|ψl〉 = ∑
n Rnlαn(z) and χl(z) = 〈χl|z〉 =∑

n R
−1
ln
αn(z). Finding the eigenspectrum of the matrix L

v is
a difficult problem as the matrix is infinite-dimensional and
non-symmetric. However, one can truncate the matrix at some
order and diagonalize it numerically, assuming that the spectrum
converges with increasing truncation order. In [34] the authors
used this approach to compute the eigenspectrum and thereby
study the time evolution of the temperature profile. This is shown
in Figure 9B. The spectrum is shown in Figure 10 where it is

seen that for large n, µn ∼
√
π
2 |nπ |3/2(1 ± i) which is similar

to the spectrum of the non-local operator Lv in Equation (52)
describing the evolution in infinite system. In Figure 11 we
show the left and right eigenvectors χn(z) = ∑

l=1 R
−1
nl
αl(z)

and ψn(z) = ∑
l=1 Rlnαl(z), respectively, corresponding to

the first eight eigenvalues. One observes that the eigenvectors
corresponding to the first four eigenvalues are real whereas the
eigenvectors corresponding to the eigenvalues with n > 4 are
complex and come in conjugate pairs.

4.2. Harmonic Chain With Momentum
Exchange
In the previous section we discussed transport in the HCVE
model which has two conserved quantities, namely volume and
energy. In this section, we discuss heat transport in the harmonic
chain momentum exchange (HCME) model which has three
conserved quantities, namely volume, momentum and energy,
that are the same as the ones in usual anharmonic chains with
Hamiltonian dynamics [3, 4]. The model consists of a harmonic
chain of particles each of unit mass and described by the degrees
of freedom qi, pi, with i ∈ Z, corresponding respectively to
position and momentum. As for the HCVE system, the dynamics
of the HCMEmodel also has two parts: (i) the usual deterministic
part given by the Hamiltonian equations q̇i = pi, ṗi =
ω2(qi+1 − 2qi + qi−1), i ∈ Z, where ω is the strength of
the harmonic interaction and (ii) a stochastic part consisting of
exchanges of momenta between neighboring particles (chosen at
random) occurring with rate γ . In the absence of the stochastic
exchange, the underlying Hamiltonian dynamics is integrable
and the transport in this system is ballistic due to the absence
of any scattering mechanism. The stochastic exchange introduces
a momentum conserving scattering mechanism, which should
make the transport behavior non-ballistic. However, it turns
out that the stochastic mixing is not sufficient to make the
transport behavior diffusive. It has been shown rigorously that
the energy current correlation in equilibrium of an infinite chain
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FIGURE 11 | Left and right eigenvectors of matrix L
v in Equation (70) for n = 1, 2, 3, 4, 5, 6, 7, 8. The real parts are indicated by blue lines while orange denotes the

imaginary part. Note that the eigenvectors corresponding to the real eigenvalues (n = 1, 2, 3, 4) are also real where the eigenvectors corresponding to complex

eigenvalues (n = 5, 6, 7, 8 . . . ) are complex (adapted from Kundu et al. with permission from [34] Copyright (2018) by American Physical Society).

decays as t−1/2 similar to that in the HCVE model [9]. This,
through the closed system GK formula in Equation (10), implies
the anomalous system size scaling of the steady state current
as j ∼ N−1/2.

The HCME dynamics conserves the following three
quantities: (a) total stretch

∑
i ri where ri = qi+1 − qi, (b)

total momentum
∑

i pi and (c) the total energy
∑

i ei with
ei = p2i /2 + ω2r2i /2. As a consequence, the corresponding local
densities evolve slowly in the macroscopic length and time scales.
In [29], it has been analytically shown that the local energy
density e(x, t) in the isolated system evolves according to the
following fractional diffusion equation

∂te(x, t) = −κ̄(−1)3/4e(x, t), −∞ < x <∞,

where κ̄ = ω3/2

2
√
2γ

, (72)

and the fractional operator in Fourier space is represented
by (−1)3/4eikx = |k|3/2 eikx. The NESS of this system was
analyzed in detail in [26–28] where the scaling j ∼ N−1/2

and a closed form for the non-linear temperature profile
were established. More recently the fractional-equation-type
description of this system in the open set-up was further
discussed in [37]. We summarize below some of these results
for the open system. We first discuss the steady state and
relaxation properties which is followed by the discussion on the
evolution of the fluctuations and in the end we discuss the role of
boundary conditions.

4.2.1. Typical Behavior of Temperature, Current, and

Other Correlations
In the open system HCME set-up, the two ends are attached
to two reservoirs at temperatures Tℓ and Tr . The equations of
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motion are now modified by adding Langevin forces to the 1st
and the Nth particles:

q̇i = pi,

ṗi = (1− δi,1 − δi,N)ω2(qi+1 − 2qi + qi−1)

+δi,1[ω2(q2 − ζq1)− λp1 +
√
2λTℓξ1]

+δi,N[ω2(qN−1 − ζqN)− λpN +
√
2λTrξN],

+stochastic exchange of momenta at rate γ , (73)

for i = 1, 2 . . . ,N, where ξ1,N are independent Gaussian
white noises with mean zero and unit variance, λ is the
friction coefficient, and the parameter ζ has been introduced
to describe different boundary conditions. Free boundary
conditions correspond to ζ = 1 while fixed boundary conditions
are given by ζ = 2. We will first discuss the fixed boundary case,
i.e., ζ = 2.

We will be interested not only in NESS properties, such as
the form of the temperature profile and the current scaling
with system size but also in the temporal evolution of the
temperature from some arbitrary initial profile to the steady
state form. As in the case of the HCVE model, the analytical
tractability of the HCME system comes from the fact that the
evolution of the two-point correlations is given by a closed set
of equations. The two point correlations include Ui,j = 〈qiqj〉,
Vi,j = 〈pipj〉, and Zi,j = 〈qipj〉 and the local temperature
defined as Ti(t) = 〈p2i 〉 consists of the diagonal elements of
V. For these, one obtains a set of coupled linear equations,
similar in form to Equation (54), which one needs to solve
with appropriate boundary and initial conditions. The number
of equations in this case is much larger than the HCVE case
and hence it is even more difficult to solve them analytically
for finite N. Observations from numerical solutions of these
equations reveal [27] that for largeN, the temperature fieldTi and
the correlations z+i,j =

(
Zi,j − Zi−1,j + Zj,i − Zj−1,i

)
/2 show the

following scaling behaviors: Ti(t) = T (i/N, t/N3/2) and z+i,j =
1√
N
C
(
(|i− j|)/N1/2, (i+ j)/2N, t/N3/2

)
. Hence, for large N it is

instructive to construct solutions of these scaling forms. Inserting
these scaling forms in the discrete equations of the two point
correlations and taking the large N limit one finds, at leading
order in 1/

√
N, the following partial differential equations [27]

γ 2∂4uC(u, v, τ ) = ω2∂2v C(u, v, τ ), (74)

∂vT(v, τ ) = −2γ ∂uC(u, v, τ )
∣∣
u→0

, (75)

∂τT(v, τ ) = ω2∂vC(u, v, τ )|u→0, (76)

where the scaling variables u = |i− j|/
√
N, v = (i+ j)/2N, τ =

t/N3/2 are defined over the domain u ∈ [0,∞) and v ∈
[0, 1] with boundary conditions C(u, 0, τ ) = C(u, 1, τ ) =
0, C(∞, v, τ ) = 0, ∂3uC(0, v, τ ) = 0 and T(0, τ ) = Tℓ and
T(1, τ ) = Tr . We again note that for the isolated infinite system,
one can follow the same procedure as above, but now replacing
the scale parameter 1/N → a where a is the lattice spacing, to
obtain the same set of Equations (74–76) with a different domain
{−∞ ≤ u ≤ ∞; − ∞ ≤ v ≤ ∞}. Defining Fourier

transforms T (v, τ ) =
∫∞
−∞ dkT̂k(τ )e

−ikv/(2π) and C(u, τ ) =∫∞
−∞ dkĈk(u, τ )e

−ikv/(2π) in the variable v, we get

∂4u Ĉk(u, τ ) = −ω
2k2

γ 2
Ĉk(u, τ ), (77)

ikT̂k(τ ) = 2γ ∂uĈk(u, τ )
∣∣
u=0

, (78)

∂τ T̂k(τ ) = −ikω2
Ĉk(0, τ ) . (79)

Solving the first Equation (77), with the condition that
correlations vanish at u = ±∞, ∂3uC(u = 0, v, τ ) = 0 and

requiring that Ĉk(u, τ ) is real [since C(u, v, τ ) = C(u,−v, τ )],
we get

Ĉk(u, τ ) = Ak(τ )

[
cos

(√
ω

2γ
|k|1/2u

)

− sin

(√
ω

2γ
|k|1/2u

)]
exp

(
−
√
ω

2γ
|k|1/2|u|

)
(80)

The Equation (78) relates the constant Ak to T̂k:

Ak(τ ) = − ik

2
√
2γω|k|

T̂k. (81)

Using Equations (80, 81) in Equation (79) we get

∂τ T̂k(τ ) = − ω3/2

2
√
2γ

|k|3/2T̂k(τ ) , (82)

which is the Fourier representation of Equation (72), with κ̄ =
ω3/2/2

√
2γ .

We now go back to the open system case where the solution is
more non-trivial. The boundary conditions for this case are given
by C(u, 0, τ ) = C(u, 1, τ ) = 0, C(∞, v, τ ) = 0, ∂3uC(0, v, τ ) = 0
and T(0, τ ) = Tℓ and T(1, τ ) = Tr (see [27, 37]). Note that the
domain of the v variable in [27] is v ∈ (−1, 1).

In the steady state, the analytical solutions of these equations
[with ∂τT(v, τ ) = 0] were obtained in [26] and are given by

Tss(v) = T +1T2(v), where 2(v)

= π3/2

[
√
8− 1]ζ (3/2)

∑

n odd

φn(v)

λ
3/4
n

, (83)

Css(u, v) = − 1T
√
π

2
√
ωγ [

√
8− 1]ζ (3/2)

∑

n odd

exp

(
−
√
nπω

2γ
u

)

[
cos

(√
nπω

2γ
u

)
− sin

(√
nπω

2γ
u

)]
sin(nπv)

n
, (84)

where T = (Tℓ + Tr)/2,1T = Tℓ − Tr and φn(v) = δn,0 + (1−
δn,0)

√
2 cos(nπv) for n ≥ 0. From Equation (76) we see that the

current J = −ω2C(u, v, τ )|u→0 is given by

J = (ωπ)3/2

8
√
γ [

√
8− 1]ζ (3/2)

1T . (85)
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FIGURE 12 | (A) Comparison of temperature profiles obtained theoretically from Equation (83) (solid black line) with the same obtained from direct numerical

simulations of microscopic system for N = 128, 256, 512. The agreement between theory and numerics becomes better for larger N as can be seen in the inset where

the difference between theoretical curve (Equation 83) and simulation data are plotted for various system sizes. (B) Time evolution of temperature starting from an

initial step profile. The function 2(v, τ ) = [T (v, τ )− T̄ ]/1T, with T (v, τ ) given by Equation (93), is plotted and compared with direct numerical simulations. The dashed

lines indicate simulation results for the time-evolution in HCME at different scaled times (τ ), for system sizes N = 128 (red), N = 256 (blue), N = 512 (magenta), while

the solid lines are obtained from the theory. The boundary temperatures were fixed at Tℓ = 1.5 and Tr = 0.5 (adapted from Kundu et al. with permission from [37]

Copyright SISSA Medialab Srl, IOP Publishing).

Note that both the temperature profile and the current are
independent of the friction coefficient λ. This is true only for
the special case of fixed boundary conditions. Note also that
the temperature profile in the steady state is intrinsically non-
linear as can be seen in Figure 12A where one observes excellent
agreement with data from simulations of the microscopic
dynamics in Equation (73). It can be shown that the temperature
profile at both boundaries scales as ∼ (δv)µ with µ = 1/2 where
δv is the distance from the boundary [26]. This singular behavior
of Tss(v) is a common signature of anomalous transport and it
is characterized by the meniscus exponent µ. The value of µ
however is non-universal and depends strongly on the boundary
conditions. We will discuss this in section 4.2.3.

To solve for the approach toward the above steady state
results, we proceed as for the HCVE model. Separating the
relaxation part and the steady state part we write

C(u, v, τ ) = Css(u, v)+ Cr(u, v, τ ), (86)

T (v, τ ) = Tss(v)+ Tr(v, τ ). (87)

Since the relaxation parts satisfy Dirichlet boundary conditions
Cr(u, 0, τ ) = Cr(u, 1, τ ) = 0 and Tr(0, τ ) = Tr(1, τ ) = 0, we
expand them in the Dirichlet basis αn(v) =

√
2 sin(nπv) for

n = 1, 2, 3, . . . as

Cr(u, v, τ ) =
∞∑

n=1

Ĉn(u, τ )αn(v), (88)

Tr(v, τ ) =
∞∑

n=1

T̂n(τ )αn(v) . (89)

After inserting these expansions in Equations (74–76) and using
the orthogonality property of the αn(v) functions, one gets the

following (infinite order) matrix equation for the evolution of the
components T̂n:

˙̂
Tn = −κ̄

∞∑

l=1

L
p

nl
T̂l, n = 1, 2, . . . ,∞,

where: L
p

nl
=
[
S33/4

S
†
]
nl
, (90)

with Snl = 〈αn|φl〉 =
∫ 1
0 dzαn(z)φl(z), 3nl = λnδnl is a diagonal

matrix with λn = (nπ)2 and the constant κ̄ = ω3/2/(2
√
2γ ). In

the position basis, the above equation can be written as

∂τT (v, τ ) = −κ̄Lp
T (v, τ ), (91)

where the operator Lp is represented as

L
p

nl
=
[
S33/4

S
†
]
nl

= 〈 αn |
[ ∞∑

m=0

λ3/4m | φm 〉〈 φm |
]
| αl 〉, ∀ n, l = 1, 2, . . . ,∞

From this representation one can identify the action of Lp on
the set of basis functions φm (which satisfy Neumann boundary
conditions) [4, 37].

L
p| φm 〉 = λ3/4m | φm 〉 . (92)

For the time evolution we need the eigenspectrum of L
p

with Dirichlet boundary conditions. The eigenstates ψn(y) and
eigenvalues µn can be obtained by diagonalizing the matrix L

p
nm

in Equation (90). In [27] the spectrum was obtained numerically
by diagonalizing truncated form of the infinite-dimensional
matrix L

p. An alternate method was recently proposed in [37]

Frontiers in Physics | www.frontiersin.org 17 November 2019 | Volume 7 | Article 159

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Dhar et al. Anomalous Heat Transport in 1D

FIGURE 13 | (A) Eigenvalues of the fractional operator in Equation (90) corresponding to Dirichlet boundary conditions. For large n, the slope is seen to approach that

of n3/2 (black dashed line). For small n there is a systematic difference between the Dirichlet and Neumann eigenvalue and the inset plots the difference between the

two. For large n the difference between the two decreases inversely with n. (B) The first six eigenvectors, ψn(v) (black lines), are compared to the corresponding

Dirichlet eigenfunctions of Laplacian, i.e., sin-functions (blue dashed lines). The eigenstates are different from sin-functions, especially near the boundaries, even for

large n (adapted from Kundu et al. with permission from [37] Copyright SISSA Medialab Srl, IOP Publishing).

which gives the spectrum directly as roots of a transcendental
equation and explicit series form expressions for the wave
functions in the φn basis. The numerical values of the computed
eigenvalues are plotted in Figure 13A, where we see that for
large n the eigenvalues scale as µn ≈ (nπ)3/2. At smaller
values n there is a systematic deviation from the Neumann
spectrum, λn, for example the first three eigenvalues (µn) are
given by µ1 ≈ 2.75,µ2 ≈ 12.02,µ3 ≈ 24.22. As shown
in the inset of Figure 13A the relative difference between µn

and λn decreases as 1/n. The first few numerically computed
eigenvectors are shown in Figure 13B where they are compared
with the basis functions αn which are the Dirichlet eigenfunctions
of the usual Laplacian. We observe that they are different and
in particular show a non-analytic behavior at the boundaries.
For example near the boundaries one finds ψn(δv) ∼

√
δv,

where δv is the distance from the boundaries. The eigenspectrum
of fractional operator in a bounded domain, with different
boundary conditions, has been discussed earlier in the literature,
using somewhat heuristic approaches [75, 80–82]. However, their
connection to the spectrum of Lp defined here is unclear.

Using these Dirichlet eigenvalues and eigenfunctions, we
follow the steps leading to Equation (71) and obtain the following
for the time evolution of an arbitrary initial profile:

Tr(v, τ ) =
∫ 1

0
dv′
[ ∞∑

l=1

ψl(v)ψl(v
′)e−κ̄µlτ

]
T (v′, 0) . (93)

In Figure 12B, a numerical verification of the above time
evolution is shown. We note that Equation (91) can be cast in
the form of a continuity equation ∂τTr(v, τ ) = −∂vj(v, τ ) with j
in the form [37]

j(v, τ ) = −κ̄
∫ 1

0
dv′K(v, v′)∂v′T (v′, τ ) , (94)

where the kernelK is defined through it’s action on a test function
g(v) =∑∞

n=1 gnαn(v)

∫ 1

0
dv′K(v, v′)g(v′) =

∞∑

n=1

1√
nπ

gnαn(v) . (95)

The operator Lp can be expressed in terms of K as

〈v|Lp|v′〉 = ∂vK(v, v′)∂v′ . (96)

4.2.2. Characterization of Fluctuations
The discussions till now describe only the average or typical
behavior of the conserved density fields and the associated
current fields. The equation (91) describes the evolution of
the average temperature profile as well as the evolution of
a localized energy pulse in a thermally equilibrated system.
However, other interesting aspects that characterize the NESS are
the distributions of density and current fluctuations, long range
correlations and the large deviations. To study these aspects, one
requires to have a stochastic description of the evolution at the
macroscopic length and time scales.

In the context of diffusive transport, a general framework
called the macroscopic fluctuation theory has been developed in
the last decade which allows to provide such a description for
fluctuations [83–85]. Starting from the microscopic description
of the system one can show that in the diffusive scaling limit,
the fluctuating energy density field e(x, t) and the corresponding
fluctuating current Je(x, t) still satisfy the continuity equation
but now, in addition to the regular diffusive part of the current,

there is a fluctuating part Je(x, t) = −D(e) ∂e(x,t)
∂x +

√
χ(e) η(x, t),

where χ(e(x, t)) is the mobility of the system which is related
to the diffusivity D(e(x, t)) through the fluctuation dissipation
relation and η(x, t) is a mean zero white Gaussian noise with the
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properties 〈η(x, t)〉 = 0 and 〈η(x, t)η(x′, t′)〉 = δ(x− x′)δ(t − t′).
The evolution equation for the energy density is given by

∂e(x, t)

∂t
= ∂

∂x

[
D(e)

∂

∂x
e(x, t)−

√
χ(e) η(x, t)

]
. (97)

Starting from this stochastic equation one can compute various
moments, fluctuations and correlations of e(x, t) and j(x, t) both
in stationary and non-stationary regime. This description also
allows one to compute the probabilities of observing atypical
density and current profiles which are characterized by large
deviation functions. The whole program has been established
and applied in several microscopic systems which show diffusive
behavior at macroscopic scales. We ask if a similar procedure
works for our system, displaying anomalous transport, and
described by the fractional diffusion equation. Recently such an
extension has been proposed in [37] which we now describe.
The approach in [37] is to include a noise part in the current
expression in such a way that the fluctuation-dissipation theorem
is satisfied. For a system in equilibrium at temperature T this
leads to the unique choice

∂τ e(v, τ ) = −∂vj(v, τ ),

with j(v, τ ) = −κ̄
∫ 1

0
dv′K(v, v′)∂v′e(v′, τ )

−
√
2κ̄T

∫ 1

0
dv′B(v, v′)η(v′, τ ), (98)

where η(v, τ ) is white Gaussian noise with
〈
η(v, τ )

〉
= 0,〈

η(v, τ )η(v′, τ ′)
〉

= δ(v − v′)δ(τ − τ ′) and the fluctuation-
dissipation theorem implies the relation

K(v, v′) = BB†(v, v′) , (99)

with B† defined as the adjoint of B. It was verified in Kundu
et al. [37] that Equation (98) reproduces correctly results on
energy correlations and current fluctuations in equilibrium.
Extending this approach to the non-equilibrium situation
was also attempted in [37] and a conjecture for long-range
correlations in the NESS was proposed.

4.2.3. Role of Boundary Conditions: Hydrodynamic

Theory
In the previous section we have mainly discussed the fixed
boundary condition, in which case we have learned that the
transport behavior in HCME model is anomalous with exponent
α = 1/2 and the Fourier’s law gets modified to a non-local
linear response relation as in the form of Equation (94) with
an explicit form for the kernel K(v, v′) given in Equation (95).
Also in this case the evolution of the temperature profile is
given by a non-local equation (91) with L

p defined through
Equations (95) and (96). In this section we would like to
understand the dependence of these results on the choice of
boundary conditions. In particular we focus on the case of free
boundary conditions, i.e., for ζ = 1 in Equation (73).

Energy transport in HCME with free boundary condition
was studied numerically in [28] where it was observed that the

system size scaling of the current j in the steady state is again
proportional to 1/

√
N, as for fixed BC. However, in contrast to

the fixed BC case, the proportionality constant depends on the
friction coefficient λ. It was also observed that the temperature
profile in this case is non-linear but the associated meniscus
exponent µ depends strongly on the relative values of λ and ω.
For this case finding the appropriate boundary conditions for
Equations (74, 75, 76) is a difficult problem [28] and has so far
not been possible. A different approach, based on linear response
theory and NFH was proposed in [36] and we present some
details here.

This approach starts with the following non-local linear
response result

j(x) = −
∫ N

0
dy KN(x, y)

dT(y)

dy
, (100)

which is based on a linear response calculation as done in [67] but
around a local equilibrium state characterized by a temperature
profile. According to this calculation the Kernel is related to the
equilibrium current-current correlation [36]

KN(x, y) =
1

T̄2

∫ aN

0
dt 〈j(x, t)j(y, 0)〉eq, (101)

where j(x, t) is the local current and a is a constant. For systems
with AHT we expect N〈j(x, t)j(y, 0)〉eq ∼ t1−α which means that
KN(x, y) should scale as Nα−1. Hence we expect that the limit

K(v, v′) = lim
N→∞

N1−αKN(vN, v′N), (102)

exists, which implies also that j = J/N1−α with J given by

J = −1T

∫ 1

0
dv′ K(v, v′) ∂v′2(v′). (103)

where the temperature profile T(x) is assumed to have the scaling
form T(x) = T̄+1T 2(x/N). This equation can then be used to
compute the NESS temperature profile and also the current. The
remaining task now is to compute the kernel K(v, v′).

For HCME, the kernel K(u, v) has recently been computed in
[36] using the techniques of NFH as introduced in section 3.2.
Following this procedure for the HCME model, one finds that
on hydrodynamic length and time scales, a random fluctuation
created inside the system decomposes into two ballistically
moving but diffusively spreading sound modes φ± and a
stationary heat mode φ0. In terms of the local stretch ri = qi+1 −
qi and energy ei = p2i /2+ ω2r2i /2, the sound modes and the heat
mode are expressed as φ± = ωr∓p and φ0 = e, respectively. The
evolution of these modes are given by [4]

∂tφ± = −∂x[±csφ± − D∂xφ± −
√
2Dη±], (104)

∂tφ0 = −∂x[G(φ2+ − φ2−)− D0∂xφ0 −
√
2D0η0],

where cs = ω is the speed of sound, η+, η0 and η− are
uncorrelated Gaussian white noises, G = ω

4 and D and D0 are
phenomenological diffusion coefficients.
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The instantaneous energy current can be read from (104),

j(x, t) = G[φ2+(x, t)− φ2−(x, t)], (105)

neglecting the sub-dominant terms arising from the momentum
exchange and the noises η± [62]. The stochastic momentum
exchange process generate a diffusive contribution (see Equation
104) which becomes sub-leading at largeN and the noises η± also
do not contribute since their time averages vanish.

In order to compute the kernel in (101) using the form of j(x, t)
in (105), one needs to solve the equations of φ± in (104) inside
a finite domain with suitable BCs. At this point we would like
to mention that originally the NFH theory was formulated for
an infinite domain [62]. The work in [36] provides an extension
to incorporate boundary conditions for a finite domain, in the
context of the HCMEmodel. As the equations for φ+ and φ− are
independent of φ0, it is straightforward to write the solution in
terms of the appropriate Green’s function, as shown later.

We now discuss how to get the boundary conditions of fields
φ±. The strategy that has been followed in [36] is to introduce
extra stretch and momentum variables in such a way that the
equations at the boundary points (i = 1,N) are also included
into the structure of the bulk equations. This can be achieved
by introducing additional conditions, which after appropriate
coarse-graining become the hydrodynamic BCs. To explain the
procedure let us consider the free BC case as an example. We first
introduce an extra dynamical variable r0 in such a way that the
form of the equation satisfied by p1 becomes same as that of the
bulk evolution equations with the condition

ω2r0 = λp1, (106)

where we have neglected the noise terms in (73). This provides
one BC. We need another BC as the Equation (104) is of second
order in space. As before, introducing p0 in such a way that one
can make r0 to satisfy a regular equation of motion in the bulk
at the cost of an extra condition, provides the second BC. Taking
single derivative with respect to time on both sides of the first
condition yields

p1 − p0 = λ(r1 − r0). (107)

One can get two other boundary conditions by applying similar
procedure to the equations of the last (Nth) particle. Finally,
coarse-graining over space and expressing the stretch r and
momenta p in terms of the sound modes φ±, we obtain the
following BCs for free boundaries:

(∂xφ+ + w ∂xφ−)|x=0 = (φ+ − w φ−)|x=0 = 0,

(∂xφ− + w ∂xφ+)|x=N = (φ− − w φ+)|x=N = 0 (108)

where

w = λ− ω
λ+ ω . (109)

These BCs can be interpreted physically as some sort of partially
“reflecting” boundaries. The BCs on the first (second) line of
Equation (108) mean that when a φ+ (resp. φ−) Gaussian peak

hits the right (resp. left) boundary, it gets reflected as a φ− (resp.
φ+) Gaussian peak with area under the peak reduced by a factor
w. This feature has been observed in numerical simulations and
the validity of (108) has been confirmed [36]. There are two
interesting cases w = 0 and w → 1. In case of resonance
(also called impedance matching) λ = ω, i.e., w = 0 [66],
once a φ± peak hits the boundary nothing gets reflected because
everything gets absorbed at the boundary reservoirs. On the
other hand, w → 1 corresponds to almost perfectly reflecting
case. This situation arises for the fixed BCs in the microscopic
dynamics. Following a similar procedure as done for free BCs, it
is possible to show that one arrives at the same hydrodynamic
BCs Equation (108) except now w = 1. From Equation (109),
one can easily see that the w → 1 limit is achieved for λ →
∞. In this limit, the 1st and the Nth particles hardly move,
i.e., their positions q1 and qN stay very close to 0 for all times
due to infinite dissipation and therefore mimic the fixed BCs
for the microscopic dynamics. So for fixed BCs we have the
hydrodynamic BCs Equation (108) with w = 1.

Since the hydrodynamic equations (104) for φ+ and φ− along
with the BCs (108) are linear, it is easy to solve them for arbitrary
initial condition. The solutions are best expressed in terms of the
four Green’s functions fσ ,τ (x, y, t) for σ , τ = ±, as

φσ (x, t) =
∑

τ=±

[∫ N

y=0
dyfσ ,τ (x, y, t)φτ (y, 0)

+
√
2D

∫ N

y=0
dy

∫ t

t′=0
dt′fσ ,τ (x, y, t − t′)∂yητ (y, t′)

]
,

(110)

where, fσ ,τ (x, y, t) =
∞∑

n=−∞
w2n+ σ−τ

2

exp

(
− (x−στy+2σnN−σ cst)2

4Dt

)

√
4πDt

,

(111)

with w = 1 for fixed BCs and w = λ−ω
λ+ω for free BCs.

Using this expression in Equation (105) one finally gets from
Equations (101, 102) the following expression for the kernel:

K(v, v′) = A KR, where KR

= 1√
2π

∞∑

n=−∞

[
R|2n|√|2n+ v− v′|

− R|2n+1|
√|2n+ v+ v′|

]
, (112)

where the constant A = G2S2

T̄2
√
Dcs

with S = 〈φ+(x, 0)2〉eq =
〈φ−(x, 0)2〉eq = 2T̄ and R = w2. The diffusion constant
D appearing in the equation for φ± arises from the exchange
mechanism and it can be shown from a microscopic calculation
that D = γ /2. This then gives A = ω3/2/(2

√
2γ ) which we note

coincides with the expression for κ̄ in Equation (72), and so we
identify A = κ̄ . One can use this kernel in Equation (103) to
compute the current and the temperature profile2(v).
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Let us define the Greens function, GR, corresponding to the
kernel KR through the equation

∫ 1

0
dv′′KR(v, v

′′)GR(v′′, v′) = δ(v− v′). (113)

Then Equation(103) can be inverted to give

∂v2(v) = − J

κ̄1T

∫ 1

0
dv′GR(v, v′) (114)

Solving this equation with the boundary conditions 2(0) =
1/2,2(1) = −1/2 gives us the expressions for the current and
temperature profile

J = κ̄1T

[∫ 1

0

∫ 1

0
dv′dv′′GR(v′, v′′)

]−1

, (115)

2(v) = 1

2
−
∫ v
0

∫ 1
0 dv′dv′′GR(v′, v′′)∫ 1

0

∫ 1
0 dv′dv′′GR(v′, v′′)

. (116)

One uses this in Equation (103) to solve for the temperature
profile 2(v). The above analysis, based on linear response
calculation, assumes |1T| << T. However, for HCME, one
observes that the quadratic correlations satisfy a closed set of
linear equations with a source term proportional to 1T [26].
Hence the temperature profile 2(v) in (116) is also valid for
any1T.

It turns out the Equation (114) can be solved analytically and
exact expressions of the temperature profile2(v) can be obtained
in the following two limiting cases—

(i) Free resonant case R = 0: In this case the kernel is simply
given K0 = 1/

√
2π |v− v′| which is same as that of an infinite

system. For this kernel, the solution of Equation (103) can be
directly written using standard results on solution of integral
equations [86] as

∂v2(v) = − J

κ̄1T

1√
πv1/4(1− v)1/4

. (117)

This can be solved with the boundary conditions to give the
temperature profile

2R=0(v) =
1

2
−

√
πv3/42F1

(
1
4 ,

3
4 ; 7

4 ; v
)

2Ŵ
(
3
4

)
Ŵ
(
7
4

) , (118)

where 2F1 is hypergeometric function, and the current

J = κ̄1T
π

2Ŵ2(3/4)
(119)

This profile is verified numerically in Figure 14 (left panel),
where we observe diverging derivatives at the boundaries. From
the above expression it is possible to show that the meniscus
exponent is µ = 3/4.

(ii) Perfectly reflecting case R → 1: As mentioned above this
is equivalent to fixed BC for which the temperature profile, given
in Equation (83), was computed from microscopic calculation

in the previous section. In this case it is known [37] that the
eigenfunctions of the operatorKR are precisely the sine-functions
αn(v), i.e.,

∫ 1

0
dv′KR(v, v

′)αn(v′) = (nπ)−1/2αn(v) , (120)

which is consistent with Equation (95). This then gives us the
corresponding Green’s function

GR(v, v
′) =

∞∑

n=1

(nπ)1/2αn(v)αn(v
′) . (121)

Using this and Equations (114, 115) we recover the exact
expressions for the temperature profile and current given in
Equations (83, 85) [37].

For free BCs with λ 6= ω we have 0 < R < 1. In
this case it is difficult to solve Equations (103, 112) analytically
but numerical solutions have been obtained. In Figure 14 (right
panel) a comparison of the temperature profile obtained from
the numerical solution and from direct microscopic simulations
for R = 1/2 and one can observe excellent agreement. Note
again that the temperature profile is singular at the boundaries.
It turns out that the exponent µ characterizing this singularity
depends on not only on α but also on R [66]. To determine
this dependence we take a derivative with respect to v of

Equation (103) and get
∫ 1
0 dv′ ∂vKR ∂v′2(v′) = 0. Although

the integral is identically zero for all v, the individual terms in
the integrand have divergences. For example, the kernel diverges
as KR ∼ |v − v′|−1/2 while ∂v′2(v′) diverges as |δv|µ−1.
Requiring that all divergent integrals cancel each other, leads to
the following relation between R and µ:

R =
∫ 1
0

qµ−1−q1/2−µ

(1−q)3/2
dq

∫ 1
0

qµ−1+q1/2−µ
(1+q)3/2

dq
. (122)

The integrals can be performed explicitly to give

µ = 1− 1

π
arctan

(√
2− R2 + R√
2− R2 − R

)
, (123)

which is plotted in Figure 15 along with results extracted from
the temperature profile obtained from direct numerical solution
of Equation (103). We note that this result differs from the one
conjectured in [66] though rather interestingly, the values of µ at
R = 0 and R = 1 obtained from the two expressions agree. A
generalization of the above result for arbitrary α is possible using
the Lévy walk approach with the general kernel in Equation (42)
which leads to an expression similar to Equation (122), now with
the right hand depending explicitly on α.

5. SUMMARY AND OPEN QUESTIONS

Heat transport in a large class of one-dimensional systems
with Hamiltonian or conservative stochastic dynamics is known
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FIGURE 14 | Rescaled temperature profile for resonant BCs R = 0 (left) and free BCs with R = 1
2 (right). In the main plots results of Monte-Carlo simulations for

increasing system sizes N = 100, 200, and 400 are compared to the theoretical predictions given by Equation (118) for the R = 0 case (left panel) and the numerical

solution of Equations (103, 112) with R = 1
2 for the plots in the right panel. In the insets the differences between measurements and theory are shown. The other

parameter values are T+ = 1.5, T− = 0.5, and ω = γ = 1 (adapted from Cividini et al. with permission from [36] Copyright SISSA Medialab Srl, IOP Publishing).

FIGURE 15 | The meniscus exponent µ as a function of R for α = 1/2. The

prediction from Equation (123) is plotted against the values obtained from the

numerical solution of the integral Equation (103) with the kernel in

Equation (112).

to be anomalous. Some typical signatures of anomalous
transport include NESS studies which find that the thermal
conductivity κ , diverges with system size N as κ ∼ Nα ,
and the temperature profile T(x) is typically non-linear, with
a singular dependence T(δx) ∼ (δx)µ for small distance
δx from the boundary. In the closed system one finds that
heat pulses and correlation functions spread super-diffusively
and are associated to propagators that have the scaling form
t−γ G(t−γ x). The scaling form is valid for times |x| < ct,
where c is the sound speed in the system, beyond which
time the correlations decay exponentially. The scaling function

is given by the Lévy-stable distribution in the bulk and
the finite cut-off leads to the width of the pulse scaling
as σ (t) ∼ tβ/2.

In this review we discussed these signatures of anomalous
transport and showed how they can be understood within three
different but related frameworks—(a) a phenomenological model
where the heat carriers are taken to be Lévy walkers, (b) a
microscopic phenomenological approach based on non-linear
fluctuating hydrodynamics and (c) exact results obtained for
certain stochastic models. The main picture that emerges is
that anomalous heat transport can be understood by replacing
Fourier’s law in Equation (1) by a non-local fractional-type
diffusion equation given in Equation (3), where the precise
form of the kernel KR(x, y) depends on the specific set-up and
boundary conditions. For the stochastic models the form of the
kernel is known explicitly both for the closed system (infinite
line) and the open system. In the Lévy walk picture, where
the distribution of flight times has a power-law dependence ∼
1/tν+1, the kernel has the asymptotic form KR(x, y) ∼ 1/|x −
y|ν−1. We saw from the various approaches, that all the different
exponents mentioned above are related to each other and in fact
can be expressed in terms of the Lévy walk exponent as

α = 2− ν, β = 3− ν, γ = 1/ν. (124)

For the Hamiltonian models that we discussed, namely the
alternate mass hard-particle gas and the FPUTmodel, the various
exponents are given by α = 1/3,β = 4/3, γ = 3/5 and
correspond to a Lévy-walk exponent ν = 5/3. For the stochastic
momentum exchangemodel we have α = 1/2,β = 3/2, γ = 2/3
which corresponds to ν = 3/2. The meniscus exponentµ is non-
universal and depends on ν and on boundary conditions through
a single dimensionless number R, which can be interpreted as the
reflection coefficient of the Lévy walkers at the boundaries. In the
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context of the exactly solvable stochastic models, we discussed
the spectrum of the fractional-type Laplacian operator [specified
by the kernel KR(x, y)] in the open set-up, and pointed out
important differences with the spectrum of the usual Laplacian
for diffusive processes.

We conclude bymentioning some outstanding open questions
in the field.

• Hamiltonian systems—The Lévy walk behavior has been
clearly observed in large number of simulations. The
formalism of NFH gives a microscopic justification of the Lévy
walk model and the fractional-diffusion type description of the
heat mode. Some open questions include:

1. A more rigorous microscopic derivation of the evolution
equation of a localized heat pulse in an equilibrium system,
to show that the central peak satisfies a fractional-diffusion
type equation of a form similar to that in Equation (3).

2. Extension of the NFH formalism to the non-equilibrium
case to study transport in finite open system and
understand the role of BCs. Detailed simulations are also
required to understand the effect of BCs.

3. Establishing the Lévy walk picture from a
microscopic viewpoint?

• Stochastic systems—For the HCME model, the non-local
version of Fourier’s law has been established and the response
kernel KR computed so far using two methods: (i) exact
microscopic method for the BC corresponding to R = 1 and
(ii) using NFH for arbitrary R. Is it possible to extend the
exact microscopic approach to find the non-local kernelKR for
general boundary conditions. Similarly for the HCVE it would
be interesting to explore the role of BCs.

• For the HCME model, it has been possible to find the
eigenspectrum of the non-local kernel KR for the case
R = 1 and it was observed that the eigenvalues for
Dirichlet and Neumann boundary conditions differ (unlike
for the usual Laplacian). Finding the spectrum of the non-
local kernel KR for general R, for Dirichlet and Neumann
boundary conditions, is an interesting mathematical problem.
The knowledge of the spectrum, namely eigenvectors and
eigenvalues, enables one to study the time-evolution.

• For the HCME model we showed that it is possible to write
a stochastic non-local equation (Equation 98) to describe
equilibrium fluctuations. An open problem is to write such an
equation in the non-equilibrium set-up. For diffusive systems
this is given by Equation (97) and this equation enables one
to compute long-range correlations in the NESS and large
deviation functions.
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	3.1. Lévy Walk Description of Anomalous Heat Transport
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