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In this article, the migration of nanomaterials through a permeable domain was modeled

numerically. Aluminum oxide was dispersed into testing fluid which was selected water

in the current paper. Utilizing Darcy LAW for a porous medium helps us to find simpler

form of equations. Influences of shape factor and radiation on the thermal conduct

of nanoparticles within a porous region were scrutinized. Nanomaterial within such

region is applied under the Lorentz force. CVFEM approach for simulation goals has

been applied. This approach provides the advantages of two common CFD methods.

Impacts of radiation, magnetic, buoyancy parameters on the treatment of nanomaterials

were demonstrated. Outcomes showed that greater amounts of shape factor cause

stronger convection. Reverse relationships exist between the Hartmann number and

temperature gradient.

Keywords: nanoparticle’s shape, porous space, magnetic force, darcy LAW, radiation, nanofluid, CVFEM

INTRODUCTION

Nanotechnology is one of the most interesting fields nowadays. It is interesting due to its vast
applications in solar cells, food, fuel cells, batteries, and fuel, etc. In simple, nanotechnology has
made its way to each and every branch. Investigators started interest in this field and developed a
new sub-branch of nanotechnology, nanofluids. Nanofluids were utilized by Choi [1] for the first
time. In real-world fluids exist in abundance, among all, nanopowders can be offered as the most
applicable fluids both from its use and its unique nature. Nanofluids are two-phase nanometer-size
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fluids in which base fluid ranging up to 100 nm. Nanofluids are
used in metal oxides, oxides ceramics, and allotropes of carbon
and in other chemical stable elements. Nanoparticles nowadays
play a key role in thermal analysis. Pak and Cho [2] used
titanium dioxide and, and found an improvement in the heat
flux. Nanofluids in which the nanoparticles size range less than
are considered more ideal [3]. Radiation impact on nanomaterial
flow was performed by Zeeshan et al. [4] and they added the
impact of MHD on titanium dioxide transportation. Impose of
nanomaterial into usual carrier fluid leads to greater conductivity
[5–10]. Copper oxide migration within an absorptive medium
with the use of Lorentz force in the actuality of magnetic force has
been demonstrated by Sheikholeslami [11]. A numerical survey
is performed by Sheikholeslami [12] for CuO-H2O nanofluid in
a penetrable medium with the help of a microscopic technique.
Shah et al. [13] have worked on the 3-D nanofluid flow of
third-grade fluid with physical properties inside a rotating
frame. An analytical investigation is performed by Dawar et
al. [14] for Casson fluid with MHD carbon nanotubes (CNT’s)
inside a rotating channel. A numerical survey is presented
by Sheikholeslami and Shehzad [15] by analyzing Fe3O4–H2O
nanofluid flow with inside a permeable channel. To depict
the changes in flow style in the appearance of Kelvin forces,
Sheikholeslami and Vajravelu [16] examined the FHD impact
on nanomaterial flow. CNT migration in a time-dependent
problem has been analyzed by Ahmed et al. [17] and they
supposed the plate is porous and Lorentz force was added in
momentum equations. The transfer of heat due to convection
of ferrofluid is described by Yimin et al. [18]. In recent years,
Thermal irreversibility in nanofluid through a pipe with a
turbulator by means of FVM was analyzed by Sheikholeslami
et al. [19]. For a detailed survey, interested readers are referred
to Sheikholeslami et al. [20], Dat et al. [21], Bhatti et al. [22],
Sheikholeslami [23], Cattaneo [24], Sheikholeslami and Shehzad
[25] for more detail and related study of nanofluids flow.
Cattaneo [24] made a modification in the thermal relaxation
time to improve the heat transfer effects. Cattaneo attempt made
for a specific material and obtained some interesting results in
the heat transmission investigation by presenting an innovative
flux approach. A Maxwell fluid was realized to this model by
Mustafa [26] for the study of upper convection. A numerical
investigation is performed by Ai and Sandeep [27] by considering
this model for MHD Casson-ferrofluid for heat transfer analysis.
Previous articles on Nanomaterials for dissimilar phenomena
and their usages can be found [28–33]. Sheikholeslami et al. [34]
recently presented the application of electric and magnetic field
of nanofluid and ferrofluid and with transfer in an enclosure
walls. Jawad et al. [35, 36] studied nanofluid thin film and their
applications. Nasir et al. [37, 38] have studied 3-D nanomaterial
flow CNTs and thermal analysis along a stretching surface.
Entropy generation in nanofluid flow can be studied in Alharbi
et al. [39]. The studied of nanofluids are further extended to
liquid film due to its abundant uses in various sciences [40–48].
Nanomaterial transportation over a wedge was scrutinized by
Hassan et al. [49]. An experimental approach was performed by
Sheikholeslami et al. [50] to study the boiling of refrigerant with
the use of nanoparticles.

FIGURE 1 | Present tank and sample element.

TABLE 1 | Coefficient of carrier fluid.

Coefficient values Al2O3-H2O

α1 52.813488759

α2 6.115637295

α3 0.6955745084

α4 4.17455552786

α5 0.176919300241

α6 −298.19819084

α7 −34.532716906

α8 −3.9225289283

α9 −0.2354329626

α10 −0.999063481

Though there is intense research in the literature about
nanofluid modeling and the MHD effect in different categories,
there is still limited information about the complex geometries
and Darcy model. Additionally, the radiative effect is an
important source. The determination of this article is to study
the migration of nanopowder within a porous space. The
effects of shape factor and radiation on the thermal conduct of
nanomaterials within a porous space were scrutinized.

PROBLEM EXPLANATION

In this modeling and simulation, water-based nanofluid exists
through permeable geometry has considered. Impact of Lorentz
force and thermal behavior are taken on nanofluid. Sketch of
the porous tank is depicted in Figure 1. Nanofluid is thermally
conducting and impact of Lorentz force was involved. Control
Volume finite element technique with a triangular element has
been used (see Figure 1). Needed boundary constraints were
established in Figure 1. The Darcy LAW [15] is involved for
porous terms.
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TABLE 2 | Some physical thermal features.

Cp
(

jkg−1K−1
)

Cp
(

jkg−1K−1
)

β ×

105
(

K−1
)

K
(

Wm−1.K−1
)

σ(� ·m)−1

H2O 4,179 4,179 21 0.613 0.05

Al2O3 765 765 0.85×10−5 25 1 × 10−10

TABLE 3 | Structure of m at dissimilar values.

Shape

5.7 3.7 4.8 3 m

TABLE 4 | Deviation of Nuave at different mesh size when Ra = 600,

Ha = 0,Rd = 0.8 and φ = 0.04.

Mesh size

41 × 121 51 × 151 61 × 181 71 × 211 81 × 241

5.0591 5.0688 5.0715 5.0767 5.0793

FIGURE 2 | Justification for nanofluid [5].

GOVERNING EQUATIONS, FORMULATION,
AND CVFEM

Nanopowder migration through a permeable domain with the
help of Darcy model was considered in the current article and

involving single-phase model results in below equations:

∂u

∂x
+
∂v

∂y
= 0 (1)

µnf

K
u = −

∂P

∂x
+ σnf B

2
0

[

(sin γ ) v (cos γ )− u(sin γ )2
]

(2)

µnf

K
v = −

∂P

∂y
+ (T − Tc) gρnf βnf

+ σnf B
2
0 (cos γ ) [(sin γ ) u− (cos γ ) v] (3)

∂qr

∂y

(

ρCp

)−1

nf
+

(

∂T

∂y
v+ u

∂T

∂x

)

= knf

(

∂2T

∂y2
+
∂2T

∂x2

)

(

ρCp

)−1

nf
,

,

[

T4 ∼= 4T3
c T − 3T4

c , qr = −
4σe

3βR

∂T4

∂y

]

(4)

The fundamental characteristics of nanofluid are estimated as:

ℜnf = ℜf +
(

ℜs −ℜf

)

φ (5)

ℜ = Cpρ

(ρβ)nf + (ρβ)f (φ − 1) = φ(ρβ)s (6)

ρnf = (1− φ)ρf + φρs (7)

σnf

σf
− 1 =

(

−1+ σs
σf

)

(3φ)
(

2+ σs
σf

)

+ φ

(

1− σs
σf

) (8)

To apply the effects of shape factor and kBrownian, the following
correlations were examined:

µeff = µstatic +
kBrownian

kf
×
µf

Prf

kBrownian = 5× 104cp,f ρf g
′(dp,φ,T)φ

√

κbT

ρpdp
(9)

g′
(

dp,φ,T
)

=

(

a1 + a5Ln
(

dp
)2

+ Ln (φ) a4Ln
(

dp
)

+ a2Ln
(

dp
)

+a3Ln (φ)
)

Ln (T)+
(

a6 + a10Ln
(

dp
)2

+ a8Ln (φ)

+a7Ln
(

dp
)

+ a9Ln
(

dp
)

Ln (φ)
)

knf

kf
=

−ℑmφ + kp + ℑφ + kf +mkf + kf

kfm+ kp + ℑφ + kf
,

ℑ = kp − kf (10)

Equation (11) presents a dimensionless form:

9 = ψ/αnf , θ =
T − Tc

1T
,1T = L

q′′

kf
, (X,Y) = L−1

(

x, y
)

(11)

So, the last format of equations is:

∂29

∂Y2 +
∂29

∂X2 = −Ha
A6
A5

[

2 (sin γ ) ∂29
∂X ∂Y (cos γ ) +

∂29

∂Y2

(

sin2γ
)

+ (cos γ ) ∂
29

∂X2 (cos γ )
]

−
A3 A2
A4 A5

∂θ
∂X Ra

(12)
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FIGURE 3 | Changing in behavior of nanofluid with rise of φ on nanofluid behavior. (φ = 0.04 (—) and φ = 0 (———)) when m = 5.7,Rd = 0.8,Ra = 600,Ha = 0.

(

1+
4

3
RdA4

)

∂2θ

∂Y2
+

(

∂2θ

∂X2

)

=
∂θ

∂X

∂9

∂Y
−
∂9

∂X

∂θ

∂Y
(13)

The mentioned variables in Equation (13) are:

Ha =
σfK B20
µf

, Ra =
g K (ρβ)f L1T

µf αf
, Rd = 4σeT

3
c /
(

βRkf
)

A1 =
ρnf
ρf

, A2 =
(ρCP)nf
(ρCP)f

, A5 =
µnf

µf
,

A3 =
(ρβ)nf
(ρβ)f

, A6 =
σnf
σf

, A4 =
knf
kf

(14)

Besides, summarizations of boundaries are:

θ = 0.0 on outer surfaces

9 = 0.0 on all walls
∂θ

∂n
= 1.0 on inner wall (15)

Nuloc and Nuave are:

Nuloc =
1

θ



1+
4

3

(

knf

kf

)−1

Rd





(

knf

kf

)

(16)

Nuave =
1

S

s
∫

0

Nuloc ds (17)

Simulation Technique, Grid and Verification
Sheikholeslami [29] has been discovered a new approach namely
CVFEM for analyzing thermal problems. This technique utilizes
a triangular element and the Gauss-Seidel approach uses for
the final step of calculating scalars. Tables 1–3 illustrate the
properties of carrier fluid. Grid size must be independent of
outcomes and we present special cases in Table 4. Validation for
presents study for nanofluid [5] are presented in Figure 2 and
provide nice accuracy.

RESULTS AND DISCUSSION

In this article transportation of electrically and thermally
conducting nanomaterial with different shapes were modeled
numerically. Aluminum oxide was dispersed into testing fluid
which was selected water in current paper. Utilizing Darcy low
for porous medium helps us to find simpler form of equations.
Impacts of shape factor and the radiation on thermal conduct
of nanoparticles inside a permeable space were investigated.
Impacts of Radiation parameter, shape factor, magnetic force, and
fraction of alumina have been demonstrated. The Darcy Law is
involved for a permeable term in geometry.

Impacts of imposing nanopowders into H2O by selecting
other parameters are shown in Figure 3. Actually this is the
nanofluid scattering rule. It is observed that nanofluid motion
augmented with the imposing of nanoparticles. The impacts
of Hartmann for different cases were plotted in Figures 4, 5.
Impose of the Lorentz effect declines themotion of nanoparticles.
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FIGURE 4 | Showing variation of Ha when φ = 0.04, m = 5.7, Rd = 0.8, Ra = 100.

Actually, with the augmentation of the magnetic parameter,
the top two eddies were amalgamate together and the thermal
spiral disappear. It is observed that adding magnetic impact,
stronger conduction occurs. Reverse relationships exist between
the Hartmann number and temperature gradient. Impacts of
scrutinized variables on Nusselt number were displayed in
Figure 6. Variations for different cases are presented here.

Distortion of isotherms augments in consequence of augment
in buoyancy and makes stronger vortex which indicates the
growth of free convection. With the domination of convective
mode, isotherms become more complex with generating plume.

Therefore, increasing permeability and buoyancy termmakes the
Nusselt number to augment. Resistance against the nanomaterial
migration reduces with augment of Lorentz forces and in turn,
Nusselt number can reduce. Temperature distribution becomes
less complex with involving magnetic field and higher Lorentz
force can eliminate the plumes. Shear stress among nanoparticles
declines with augment of permeability of the region. So, the
power of the flow augments with rise of permeability which
indicates greater convective flow. The influence of permeability
on the style of nanofluid flow reduces with decreasing buoyancy
forces. Greater nanofluid mixing occurs within the domain with
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FIGURE 5 | Showing variation of Ha when φ = 0.04, m = 5.7, Rd = 0.8, Ra = 600.

the rise of buoyancy forces and this influence reduces with
imposing magnetic field. Resistance against the nanomaterial
migration declines with augment of Darcy number but opposite
phenomena appear with augment of the Hartmann number.
Magnetic forces work against buoyancy forces, which can reduce
the strength of streamline and imposing greater magnetic force,
leads to conduction domination. The temperature gradient
becomes independent on the Lorentz forces again, owing to the
weakening of the buoyancy.

Changes of Nusselt number respect to variables are
presented in Figure 6. The mathematical relationship has

presented in Equation (18).

Nuave = 3.34+ 0.087m+ 1.04Rd + 0.19Ra− 0.14Ha

+1.1× 10−2mHa− 0.092RdHa− 0.19RaHa

+1.359× 10−4m2 (18)

It is concluded that the augment in distortion of temperature
with buoyancy terms and permeability enhances the gradient
of temperature. Moreover, transmission mode improves with a
boost of the Lorentz force. Thus, convection diminishes with the
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FIGURE 6 | How Rd, m, φ, Rd, Ha affect the Nuave.
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escalation of the magnetic field. It is found from Figure 6 that
Nusselt number is augmenting function for radiation parameter.

CONCLUSIONS

In current CVFEM simulation, nanomaterial was offered as a
feasible way to more augmentation of convection in permeable
tank and various shapes of powder ware involved. To manage
the migration of particles, magnetic forces was employed, and the
influence of radiation has been imposed in the energy equation.
Outcomes prove that augmenting Lorentz force declines the
convection and make isotherms to lower dense near the wall. An
indirect relationship was reported for temperature gradient and
Lorentz forces. Furthered distortion was observed in isotherms
with the rise of buoyancy force.
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NOMENCLATURE

Lf Latent heat of solidification

Cp Heat capacity

dp Diameter of alumina

NEPCM Alumina-enhanced PCM

T ˙̇̇ Temperature

k Thermal conductivity

CVFEM Control volume based finite Element method

Etotal Energy saving

Greek symbols

φ Concentration of alumina

κb Boltzmann constant

α Diffusivity

Subscripts

nf Nano enriched PCM

f fluid

P solid

Frontiers in Physics | www.frontiersin.org 10 November 2019 | Volume 7 | Article 164

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Numerical Simulation of Magnetohydrodynamic Nanofluids Under the Influence of Shape Factor and Thermal Transport in a Porous Media Using CVFEM
	Introduction
	Problem Explanation
	Governing Equations, Formulation, and CVFEM
	Simulation Technique, Grid and Verification

	Results and Discussion
	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References
	Nomenclature


