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We numerically investigated the splitting and motions of dissipative soliton resonance

(DSR) pulses in an all-normal-dispersion Yb-doped fiber laser mode-locked by a

non-linear optical loop mirror. At certain values of the system parameters, the initial single

Gaussian pulse can evolve into an unstable DSR pulse with several dark solitons inside.

After collisions of dark solitons, a big intensity dip occurs at the center of the DSR pulse,

leading to the splitting of the DSR pulse. After splitting, the peak-to-peak separation

between two DSR pulses increases at first and finally reaches a fixed value of 193 ps,

indicating a steady-state multipulse operation The relative motions of separated DSR

pulse originate from the phase shift.
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INTRODUCTION

Passively mode-locked fiber lasers have attracted considerable attention due to their compact and
stable performance for generating ultrafast pulse with high peak power [1–4]. As powerful tools,
they also open an interest among researchers to explore new areas of soliton build-up dynamics [5–
10]. Recently, a novel pulse formation known as dissipative soliton resonance (DSR) was initially
found in the frame of complex cubic-quantic Ginzburg-Landau equation (CQGLE) in a specific
parameter space [11]. Relying on the delicate and complicated balance of dispersion, non-linearity,
loss, gain, non-linear gain saturation, and gain dispersion, the pulses in the DSR regime exhibit flat-
top profiles and wave-breaking-free features. With increasing pump power, the DSR pulse keeps
broadening its pulse width with a clamped peak power without suffering pulse breaking, which
shows great potential for high-energy pulse generation in fiber lasers. During the past decade, the
DSR phenomenon has been extensively investigated theoretically and experimentally with different
dispersion regimes, mode-locking techniques and emission wavelengths [12–30]. It was found that
the peak-power-clamping effect caused by reverse saturable absorption plays an important role in
the formation of DSR pulses.

Although in the DSR regime light pulses are supposed to be wave-breaking-free, multipulse
operation is still possible. In 2013, Komarov et al. have numerically demonstrated that an initial
multipulse field with different amplitudes can evolve into a steady-state multipulse operation
in DSR regime, where the number of pulses depends on the initial conditions [31]. In 2016,
Armas-Rivera et al. have observed that a single DSR pulse splits into two equidistant trapezoidal-
shaped DSR pulses by roundtrip at sufficiently high pump power [32]. In 2017, we have
developed a harmonic DSR Er-dope fiber laser mode-locked by non-linear polarization rotation
and numerically investigated its multipulse dynamics [33, 34]. Recently, Chowdhury et al. have
observed DSR pulse splitting by rotating polarization controllers in an all-normal dispersion
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non-linear amplifying loop mirror based mode-locked Yb-doped
fiber laser, and they have also numerically studied the multipulse
dynamics of DSR with multipulse input field [35]. Very recently,
Wang et al. have observed unusual evolutions of DSR in an all-
normal dispersion fiber laser, where increasing pump power leads
to pulse breaking and multipulse operation [36]. However, the
entire splitting process from one single pulse to multiple DSR
pulses and itsmechanism has not been numerically demonstrated
so far.

In this paper, we numerically investigated the DSR pulse
splitting process in a non-linear optical loop mirror (NOLM)
mode-locked Yb-doped fiber laser using the scalar non-linear
Ginzburg-Landau equation. It is found that, with specific
parameter selection, the initial single pulse can evolve into an
unstable DSR pulse with several dark solitons inside, and then
split into two stable DSR pulses with the same pulse properties
(pulse shape, duration, peak power, chirp, and so on) and fixed
peak-to-peak (PP) separation. This steady-state two DSR pulses
operation can be attributed to energy quantization effect [37] and
phase shift of pulses [38].

NUMERICAL MODEL

The schematic of the proposed NOLM mode-locked Yb-doped
fiber laser is shown in Figure 1. The cavity consists of a 1-m-
long Yb-doped fiber (YDF), 5-m-long single mode fiber (SMF), a
saturable absorber (SA) with a sinusoidal transmission function,
and a 90:10 optical coupler (OC) with 10% output. To take
every component in the cavity into account, our simulations are
still based on the pulse tracing technique. The simulations start
from a weak single Gaussian pulse. The pulse propagation in
the fiber sections is modeled by a scalar non-linear Ginzburg-
Landau equation:
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where A is the slowly varying electric field envelope, z is the
propagation distance, and t is the pulse local time. β2 and γ refer
to the group velocity dispersion and the non-linearity of fiber,
respectively. In the simulation all the fibers are assumed to have
the same non-linearity of γ = 3W−1·km−1, while the dispersion
parameters are β2,YDF = 20 ps2·km−1, β2,SMF = 22 ps2·km−1, For
the YDF, g is the saturable gain of the fiber and �g= 40 nm is the
gain bandwidth with a parabolic shape. For the SMF, g = 0. For

FIGURE 1 | Schematic of the NOLM mode-locked Yb-doped fiber laser.

the YDF, the gain saturation effect is considered as

g = g0 exp

(
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∫
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where g0 = 3 m−1 is the small signal gain coefficient, which
relates to the doping concentration of the gain fiber; Esat refers to
the gain saturation energy, which relates to the pumping strength.

In our simulations, a simple model of NOLM is adopted, and
its transmission function can be expressed as:

T =
1

2

[
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2
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+ 80π

)]

(3)

where q is the modulation depth,80 accounts for linear bias, and
Isat is the saturation power. In our simulations, we set q= 0.4,80

= 0, and Isat = 40 W.

SIMULATION RESULTS AND DISCUSSION

Several previous theoretical works have studied the multipulse
dynamics of DSR [31, 33, 35]. To generate multiple DSR pulses,
all these simulations required amultipulse initial field, and during
the evolution from the initial field to multiple DSR pulses,
no pulse splitting process was found. To investigate the pulse
splitting process of DSR, in our simulations we use only one
single Gaussian pulse with weak peak power as the initial field.

The pulse splitting process of DSR was observed when the
pump strength was selected as Esat = 2 nJ. The 2D Color fill
and 3D color map surface of the pulse evolution are shown in
Figures 2A,B, respectively. From Figure 2A, we can obviously
see that after a chaos process, one pulse splits into two stable
DSR pulses. The PP separation between these two DSR pulses
increases rapidly at the beginning of roundtrips, and eventually, it
reaches a value of∼193 ps and keeps constant after the roundtrip
number N > 4,000. Figure 2C shows the temporal profiles of
the two DSR pulse at N = 5,000. The two DSR pulse have the
same shape, pulse duration of∼41 ps, and peak power of∼5.5W.
As shown in Figure 2D, the two DSR pulses still have the same
instantaneous frequency profiles. The pulses have non-zero linear
frequency chirps across their flat-top part and exponential chirps
at the edges, which are essential features of DSR.

For better understanding the pulse splitting phenomenon
in DSR regime, we focused on the evolutions of the first
500 roundtrips. Figures 3A,B show the pulse evolution of the
first 500 roundtrips when Esat was set to 2 nJ and 1.98 nJ,
respectively. When Esat = 2 nJ, after a chaos process the initial
input pulse firstly evolves into an unstable DSR pulse with
several dark solitons inside it. These dark solitons evolved from
noise perturbations are commonly observed in dissipative soliton
fiber lasers, since they are the stable solutions of the non-
linear Schrodinger equation in the normal dispersion regime.
When dark solitons are formed inside a dissipative soliton, the
sloped background intensity will impose additional phase shifts
on them, resulting in varying transverse velocities, which is
proportional to the background intensity. Consequently, dark
solitons in a dissipative soliton always walk off from the bright
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FIGURE 2 | Pulse splitting process of DSR at Esat = 2 nJ. (A) 2D Color fill, (B) 3D color map surface of evolutions. (C) Temporal profiles and (D) instantaneous

frequency profiles at N = 5000.

FIGURE 3 | Pulse evolution of first 500 roundtrips at (A) Esat = 2 nJ, (B) Esat = 1.98 nJ.

pulse and eventually decay with curved trajectories toward wings
of the bright pulse [39]. However, in the DSR square-shaped
pulse in our simulation, the formed dark solitons are on a quasi-
cw background with almost constant intensity level, and thus
no additional phase shift is imposed on them, making them
move with constant transverse velocities (in other words, they

have straight trajectories). This make the dark solitons possible
to avoid decaying at the wings of the background pulse. Here,
as shown in Figure 3A, although 2 gray solitons decay in the
background, 4 dark solitons move straight toward the center
of the background DSR pulse, and after collisions they finally
converge into one big intensity dip when the roundtrip number
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FIGURE 4 | Pulse temporal profiles at N = 100 at (A) Esat = 2 nJ, (B) Esat = 1.98 nJ.

FIGURE 5 | Pulse properties at different roundtrips when Esat = 2 nJ. (A) Temporal profile at N = 120. (B) Instantaneous frequency profile at N = 120. (C) Temporal

profile at N = 500. (D) Instantaneous frequency profile at N = 500.

N = 115. As a consequence, the left and right parts of the
unstable broken DSR pulse are separated by this intensity dip,
and these two parts become individual DSR pulses with the
same properties. Since the dark solitons in the system originate
from random spontaneous noise in the early build-up process
of the DSR pulse, they would emerge from the background with
varying position and blackness, which make it difficult to control
the system parameters in our simulations to realize DSR pulse

splitting. When we set system parameters (e.g., Esat , β2, and γ )
to many other different values, even very close to the original
values, the initial pulse always evolves into one stable single DSR
pulse, in other words, the dark solitons decay at wings of the
DSR pulse. As shown in Figure 3B, when Esat = 1.98 nJ, the
initial input pulse can still evolve into an DSR pulse with 4 dark
solitons. However, in this case, all the dark solitons move straight
toward the DSR pulse wings and eventually decay, leading to the
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FIGURE 6 | (A) Instantaneous frequency at pulse peak FP and (B) pulse

trajectory vs. roundtrip number N.

formation of one stable DSR pulse. The results indicate that the
DSR pulse splitting depends strongly on the system parameters,
and the physical mechanism requires further investigation.

Figure 4A shows the pulse temporal profile at N = 100 and
Esat = 2 nJ. Here we observe the gathering of the 4 dark solitons
at the center of the DSR pulse. As the collisions of dark solitons
decrease the background intensity, their blackness also decrease.
It is not surprising that they would eventually decay and form a
big gap in the DSR pulse, leading to the splitting process. While
for N = 100 and Esat = 1.98 nJ, as shown in Figure 4B, the
dark solitons are separated and have no chance of collisions. It
should be noted that the splitting mechanism of DSR pulse here
is entirely different from that of conventional soliton. Increasing
pump strength cannot lead to the splitting of the DSR pulse but
only leads to the broadening of the pulse width.

The relative motions of the two DSR pulses are similar to
that of solitons in Liu [38], which can also be attributed to the
phase shift arising from pulse interactions. When the phase shift
is imposed on a pulse, the instantaneous frequency at the pulse
peak, FP, becomes non-zero, as the instantaneous frequency is the
first derivative of phase. Figure 5A shows the temporal profile at
N = 120 when Esat = 2 nJ, where the broken DSR pulse is just
separated into two symmetrical trapezoid-shaped DSR pulses.
Figure 5B shows the corresponding instantaneous frequency at
N = 120. Obviously, both pulses have almost linear frequency
chirps with relatively large slopes across their pulse profiles. For
the left trapezoid-shaped DSR pulse, its FP < 0, and for the
right one its FP > 0, indicating that both pulses have phase
shifts. After hundreds of roundtrips, as shown in Figure 5C, at
N = 500 the trapezoid-shaped pulses transform to the typical
square-shaped DSR pulses and they separate from each other.

Figure 5D shows the corresponding instantaneous frequency at
N = 500. Each pulse still has linear frequency chirp across the
pulse profile, but the slope decrease and the FP becomes closer to
zero as compared with trapezoid-shaped DSR pulse at N = 120.
As shown in Figures 2C,D, at N = 5,000, these two DSR pulses
reach a steady-state multipulse operation with a fix PP separation
of∼193 ps and the FPof each pulse is almost equals to zero.

Figures 6A,B show the evolutions of the FP and pulse
trajectory from N = 120 to N = 5,000. The absolute value of
each FP increases at the beginning, and then it keeps decreasing
and eventually reaches zero at N = 4,000. Meanwhile, the PP
separation between two pulses keeps increasing and gradually
approaches∼193 ps atN = 4,000.WhenN > 4,000, the FPis fixed
at 0 and PP separation is fixed at ∼193 ps, indicating a steady-
state multipulse operation. Obviously, the motions of two pulses
are governed by the FP or the phase shift, in other words.

CONCLUSION

In conclusion, we have numerically studied the pulse splitting
process and their motions in DSR regime in an Yb-doped
fiber laser mode-locked by NOLM. Numerical simulations have
demonstrated that with specific system parameters selection, one
unstable DSR pulse with several dark solitons inside can split into
two DSR pulse with the same properties due to the collisions and
decay of dark solitons. The pulses can eventually reach a steady-
state operation with a fixed separation. Similar to conventional
solitons, the phase shift governs the relative motions of the
separated DSR pulses. We believe that our simulation results
can offer an insight into DSR pulse dynamics in mode-locked
fiber lasers
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