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We derive a manifestly duality-invariant formulation of the Arnowitt-Deser-Misner action

principle linearized around anti de Sitter background. The analysis is based on

the introduction of two symmetric potentials—on which the duality transformations

act—upon resolution of the linearized constraints, along the lines of previous works

focusing on Minkowski and de Sitter backgrounds. Gauge freedom is crucially exploited

to solve the constraints in this manner so convenient for exhibiting duality invariance,

which suggests a delicate interplay between duality and gauge symmetry.
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1. INTRODUCTION

The understanding of dualities remains as one of the major challenges of modern theoretical
physics. Dualities appear in an ample diversity of scenarios—from condensed matter physics to
high energy theory—typically relating strong coupling to perturbative regimes—a rather unique
feature that has played a prominent role in the elucidation of non-perturbative aspects of quantum
field theory and string theory. In gravitational theories, duality has long been recognized as a
constituent of the hidden symmetries that emerge upon toroidal compactifications of eleven-
dimensional supergravity [1] and Einstein gravity [2, 3]. The rich algebraic structure underlying
this phenomenon suggests the existence of an infinite-dimensional Kac-Moody algebra acting
as a fundamental symmetry of the uncompactified theory [4–8] and encompassing the duality
symmetries that appear after dimensional reduction. A characteristic property of these algebras
is that they involve all the bosonic fields and their Hodge duals, including the graviton and its dual
field, and so the associated symmetry transformation for a given tensor field in the bosonic sector
relates it to all the rest of the fields (regardless their tensor structure) in a non-trivial way. In four
dimensions, the graviton and its dual field are respectively described by symmetric tensors, and it is
expected that a duality symmetry—inherited from the underlying infinite-dimensional structure—
relating them may emerge. Naturally, the construction of duality-symmetric action principles
constitutes an important part of the program aimed at the investigation of hidden symmetries and
dualities in gravity.

In this article we show the existence of an off-shell duality symmetry in linearized gravity defined
on an anti de Sitter (AdS) background, generalizing previous works where the linearization was
performed on Minkowski [9] and de Sitter (dS) [10] space-times (see also [11] for the case of
Maxwell theory). The analysis requires the linearization of the Arnowitt-Deser-Misner (ADM)
action principle [12, 13], the choice of Poincaré coordinates for the AdS background, and the
subsequent resolution of the constraints in terms of two symmetric potentials, on which the duality
rotations act.
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The presence of a duality symmetry in the linearized regime
near an AdS background was argued in [10] on the basis of
the existence of complex transformations mapping AdS into dS.
Concretely, the conformally flat form of de Sitter and anti de
Sitter metrics

d2AdS =
l2
AdS

r2
(−dt2 + dr2 + dx2 + dy2),

d2dS =
l2
dS

η2
(−dη2 + dx2 + dy2 + dz2),

are related by the transformation l2
AdS

→ il2
dS
, r → iη,

t → iz, the time-like boundary of AdS being mapped into
a space-like boundary in dS. However, inferring the existence
of a duality symmetry in the AdS case from the dS analysis
[10] by this argument implies the isolation of the radial
coordinate in the 3 + 1 space-time splitting. By contrast, our
analysis involves the ADM formalism and the isolation of the
time-like coordinate.

We should also mention that, although our result has not a
direct holographic interpretation (for we are dealing with a space-
like foliation), the problem of defining duality transformations
in gravity linearized around anti de Sitter background has also
been addressed from the perspective of holography, motivated
by the observation that there is a natural SL(2,Z) action on
three-dimensional conformal field theories (CFTs) with U(1)
conserved currents, relating the two-point function of the
spin-1 conserved current of a given CFT to the two-point
function of the spin-1 conserved current of a dual CFT [14].
The phenomenon was interpreted as the holographic image of
the SL(2,Z) electric-magnetic duality of a U(1) gauge theory
defined on the AdS4 bulk. It was subsequently shown that the
SL(2,Z) action can be extended to two-point functions of the
energy-momentum and higher spin conserved currents in three-
dimensional CFTs [15, 16], a result that led the authors to
conjecture that linearized higher-spin theories (including spin
s = 2) on AdS4 possess a generalization of electric-magnetic
duality acting holographically on two-point functions on the
boundary. In fact, discrete duality transformations for linearized
gravity around AdS with a Pontryagin term—which acts as
the analog of a theta term in electromagnetism—have been
proposed in [15] using a time-like slicing of the background
geometry. Despite the different character of the space-time
splitting employed, it seems appropriate to keep these works in
mind when seeking possible extensions of our result that include
topological terms.

The rest of the article is organized as follows. In
section II we derive the linearization of the ADM action
principle around an anti de Sitter background, as well as
the form of the gauge transformations of the canonical
variables. Section III is dedicated to the resolution of the
constraints in terms of potentials. In section IV we use the
expression of the canonical variables in terms of potentials
to construct a manifestly duality-invariant action principle.
Section V summarizes our results and addresses possible
extensions thereof.

2. THE LINEARIZED ADM ACTION

PRINCIPLE

In order to make manifest the duality symmetry, we shall use the
conformal form of the AdS metric (Poincaré coordinates):

ds2 = eω(dr2 + ηαβdx
αdxβ ), (II.1)

where ηαβ is the three-dimensional Minkowski metric, ω =

log(l2/r2) and l2 = −3/3 is the AdS radius.
Consider the ADM action principle in the presence of a

cosmological constant

SADM =

∫

dtd3x[π ijġij − NH− NiH
i].

(II.2)

The Hamiltonian and momentum constraints are

−H = g1/2((3)R− 23)+ g−1/2(
1

2
π2

− π ikπ jlgijgkl),

−H
i
= 2∇jπ

ij, (II.3)

and the corresponding Lagrange multipliers are the lapse and
shift functions

N = (−g00)−1/2, Ni = g0i. (II.4)

We may perform a power expansion around an AdS background
as follows:

gij = ḡij + hij + O(h2),

π ij
= π̄ ij

+ pij + O(p2),

Ni = N̄i + h0i + O(h2),

N = N̄ −
1

2
e−ω/2h00 + O(h2).

(II.5)

The bared quantities correspond to the background space-time,
so N̄i = 0 and N̄ = eω/2. The conjugate momentum associated
to the background metric is given by

π̄ ij
= N̄ḡ1/2

[

Ŵ̄0
kl − ḡklḡ

mnŴ̄0
mn

]

ḡikḡjl = −∂0ωδij, (II.6)

and it vanishes in the case of an AdS background.
The linearized action principle reads

S[hij, p
ij, n, ni] = pijḣij −H − nC − niC

i (II.7)

with the Hamiltonian density

−H =
1

2
eωp2 − eωpijp

ij
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+
3

4
e−ω1ωhijh

ij
+

1

2
e−ωh(∂i∂jh

ij
− 1h)

+
1

2
e−ωhhij∂iω∂jω + e−ωh∂iω∂ ih+ e−ωhij∂i∂jh

−
1

4
e−ω∂ihjk∂

ihjk − 2e−ω∂iωh
ij∂jh−

1

4
e−ω∂ih∂

ih

+e−ω∂ih
ij∂jh− e−ω∂jω∂ih

ijh (II.8)

and the constraints

C = e−ω(∂i∂jh
ij
− 1h+ ∂iω∂ ih+ h1ω), (II.9)

Ci
= ∂jp

ij
+ ∂jωp

ij
−

1

2
∂ iωp. (II.10)

These are first-class and generate the gauge transformations

δhij = ∂iξj + ∂jξi − ξi∂jω − ξj∂iω + δij∂mωξm

= eω[∂i(e
−ωξj)+ ∂j(e

−ωξi)]+ δij∂mωξm,

δpij = δij1(e−ωξ )− ∂i∂j(e
−ωξ )+ δij∂lω∂ l(e−ωξ ).

(II.11)

The Lagrange multipliers have been defined as ni = −2h0i
and n = −

1
2h

00. The equations of motion for the background
metric (A.14 inAppendix) have been used. Indices are raised and
lowered with the flat spatial metric ηij.

3. RESOLUTION OF THE CONSTRAINTS

We notice that, in order to solve the constraints (II.10) in
terms of potentials, it is convenient to perform specific gauge
transformations that render them in a form similar to the flat
background case. Consider the gauge choice

hij = jij + eω[∂i(e
−ωvj)+ ∂j(e

−ωvi)]+ δij∂mωvm,

pij = qij + δij1u− ∂ i∂ ju+ δij∂kω∂ku, (III.1)

where jij satisfies ∂iω∂ ij+1ωj = ∂ i(∂iωj) = 0 and qij is traceless.
To prove the existence of such a gauge, it is sufficient to find two
particular functions vi and u verifying

∂ i(∂iωh) = ∂ i[∂iω(2∂mv
m
+ ∂mωvm)] (III.2)

and

p = 21u+ 3∂mω∂mu. (III.3)

The following choice fulfills the previous requirements:

vi = ∂i1
−1(eω/2 h− f (t, x, y)(∂rω)

−1

2
),

u =
e−3ω/4

2
[1 −

15

8
1ω]−1[e3ω/4p]. (III.4)

where f (t, x, y) is a function independent of the radial coordinate
r, obtained from the integration of (III.2). In the sequel we shall
not specify a particular form for the functions u and vi: they will
be treated as scalar and vector potentials, respectively.

The constraints now read

e−ω(∂i∂jj
ij
− 1j) = 0, (III.5)

e−ω∂j(e
ωqij) = 0, (III.6)

and remain invariant under the residual gauge transformations

δjij = ∂iχj + ∂jχi, (III.7)

δqij = e−ω(δij1χ − ∂ i∂ jχ). (III.8)

We may use the residual gauge freedom (III.7) to carry away
the trace of jij. This is clearly consistent with the previous gauge
choice (III.2). The constraint (III.5) is then solved in terms of
potentials as follows:

jij = ǫiab∂
aφb

j + ǫjab∂
aφb

i + ∂iwj + ∂jwi,

(III.9)

for some vector potential wi. On the other hand, the residual
gauge freedom (III.8) may be used to write qij –constrained to
obey q = 0– in terms of an unconstrained variable kij defined as

qij = kij + e−ω(δij1s− ∂ i∂ js) (III.10)

for some function s such that k = −2e−ω1s. The constraint
(III.6) is solved as follows:

qij = e−ωǫimnǫjkl∂m∂kPnl + e−ω(δij1s− ∂ i∂ js).

(III.11)

An alternative way to derive the previous expression is to first
solve (III.6) in terms of a constrained potential Qij

qij = e−ωǫimnǫjkl∂m∂kQnl (III.12)

and then write Qij = Pij + Tij for some unconstrained
potential Pij and some tensor Tij = Tij(P) constructed to obey
ǫimnǫ kl

i ∂m∂kPnl = ǫimnǫ kl
i ∂m∂kTnl and to generate a gauge

transformation of the form (III.8). The particular choice Tij =
1
2δ

ij(P − ∂a∂b1
−1Pab) fulfills these conditions.

The final expressions for the canonical variables are

hij = ǫiab∂
aφb

j + ǫjab∂
aφb

i + ∂iwj + ∂jwi

+eω[∂i(e
−ωvj)+ ∂j(e

−ωvi)]+ δij∂mωvm,

(III.13)

pij = e−ωǫimnǫjkl∂m∂kPnl + e−ω(δij1s− ∂ i∂ js)

+δij1u− ∂ i∂ ju+ δij∂kω∂ku. (III.14)

As observed in the case of Minkowski and de Sitter backgrounds,
there is an ambiguity in the definition of the potentials
determined by the equations
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δhij = ǫiab∂
aδφb

j + ǫjab∂
aδφb

i + ∂iδwj + ∂jδwi

+eω[∂i(e
−ωδvj)+ ∂j(e

−ωδvi)]+ δij∂mωδvm

= ∂iξj + ∂jξi − ξi∂jω − ξj∂iω + δij∂mωξm

(III.15)

and

δpij = e−ωǫimnǫjkl∂m∂kδPnl + e−ω(δij1δs− ∂ i∂ jδs)

+δij1δu− ∂ i∂ jδu+ δij∂kω∂kδu

= δij1(e−ωξ )− ∂ i∂ j(e−ωξ )+ δij∂lω∂ l(e−ωξ ).

(III.16)

They are solved as follows:

δφij = ∂iαj + ∂jαi + δijβ ,

δPij = ∂iγj + ∂jγi + δijη,

δvi = ξi,

δu = e−ωξ ,

δwi = −ǫiab∂
aαb,

δs = −η. (III.17)

4. MANIFEST DUALITY INVARIANCE

In this section, we shall use the expression of the canonical
variables in terms of the potentials to cast the action principle in a
manifestly duality-invariant form. Let us focus first on the kinetic
term. Written in terms of the potentials, it reads

pijḣij = e−ωǫimnǫjklǫiab∂k∂mPnl∂
aφ̇b

j. (IV.1)

The action of the duality transformation Pij → φij, φij → −Pij
on the kinetic term yields (up to total derivatives)

SK → SK −

∫

dtd3x∂kωǫimnǫjklǫ ab
i e−ω∂mṖnl∂aφbj.

(IV.2)

The crucial observation is that the extra term in (IV.2) can be
written as a sum of total derivatives:

−∂kωǫimnǫjklǫ ab
i e−ω∂mṖnl∂aφbj =

ǫimnǫjklǫ ab
i

{

−∂m[∂kωe
−ωṖnl∂aφbj]

−∂m[e
−ω∂aωṖnl∂kφbj]+ ∂k∂a[e

−ωṖnl∂mφbj]

+
1

2
∂m[∂kω∂aωe

−ωṖnlφbj]+ ∂a[∂k∂m(e
−ωṖnl)φbj]

−∂a[∂k∂m(e
−ωφbj)Ṗnl]+ ∂k∂m[∂aωe

−ωṖnlφbj]

+∂a∂m[∂kωe
−ωṖnlφbj]− ∂k∂a[∂mωe−ωṖnlφbj]

−∂k∂m[e
−ω∂aṖnlφbj]− ∂a∂m[e

−ω∂kṖnlφbj]

+ ∂k∂a[e
−ω∂mṖnlφbj]

}

. (IV.3)

Therefore, the kinetic term is invariant under duality
transformation (up to total derivatives). The argument can
be extended to show the invariance of SK under SO(2) duality
rotations (again, up to total derivatives).

On the other hand, substitution of (III.14) in the Hamiltonian
density (II.8) yields:

−H = e−ω[−ǫimnǫjkl∂m∂kPnlǫipqǫjrs∂
p∂rPqs

−ǫimnǫjkl∂m∂kφnlǫipqǫjrs∂
p∂rφqs

+
1

2
(ǫimnǫ kl

i ∂m∂kPnl)
2
+

1

2
(ǫimnǫ kl

i ∂m∂kφnl)
2]

−e−ω[∂i∂jφkl∂
i∂ jφkl

− ∂i∂jφkl∂
k∂ jφil

+∂ i∂jφik∂
j∂kφ −

1

2
∂i∂jφ∂ i∂ jφ]

+e−ω[∂ i∂jφik∂
j∂lφ

kl
−

1

2
∂ i∂ jφki∂

k∂ lφjl]

+31ω[∂iφjk∂
iφjk

− ∂iφjk∂
jφik

−
1

2
∂ jφjk∂iφ

ik

+∂ iφij∂
jφ −

1

2
∂ iφ∂iφ]+

1

2
e−ω∂ iω[∂ jφik∂j∂lφ

kl

−∂jφik∂
k∂lφ

jl
+ 2∂ jφjk∂

k∂ lφil − 2∂jφ∂ j∂kφik

−∂ jφjk∂i∂lφ
lk
+ ∂jφ∂i∂kφ

jk
+ ∂jφ

lk∂ j∂iφlk

−∂ jφkl∂i∂lφjk − ∂iφ
jk1φjk + ∂jφik1φjk

+3∂ jφkl∂j∂kφil − 3∂ jφkl∂k∂lφji − ∂jφ
jk1φik

+∂ jφ1φij + ∂iφ
jk∂j∂kφ − ∂jφik∂

j∂kφ]. (IV.4)

After integration by parts, the Hamiltonian density can be cast in
a more symmetric form:

−H = e−ω[−ǫimnǫjkl∂m∂kPnlǫipqǫjrs∂
p∂rPqs

−ǫimnǫjkl∂m∂kφnlǫipqǫjrs∂
p∂rφqs

+
1

2
(ǫimnǫ kl

i ∂m∂kPnl)
2

+
1

2
(ǫimnǫ kl

i ∂m∂kφnl)
2]+ e−ωV (IV.5)

with

V = 31ω[∂iφjk∂
iφjk

− ∂iφjk∂
jφik

−
1

2
∂ jφjk∂iφ

ik

+∂iφ
ij∂jφ −

1

2
∂ iφ∂iφ]+

1

2
∂ iω[−∂kφji∂k∂lφ

jl

−∂ jφik∂
k∂ lφjl + 2∂ jφjk∂

k∂ lφli − 2∂kφ∂k∂
lφil

+7∂jφ
jk∂i∂

lφkl − 3∂kφ∂i∂jφ
kj
+ ∂kφjl∂i∂kφ

jl

−∂jφlk∂i∂
lφjk

+ ∂iφ
jk1φjk + ∂jφik1φjk

+5∂lφ
jk∂k∂

lφij − 3∂ jφlk∂l∂kφji − 9∂kφ
jk1φji

+5∂ jφ1φji + ∂iφ
jk∂j∂kφ − ∂jφki∂

j∂kφ
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+3∂ jφ∂i∂jφ − 3∂iφ1φ + 3∂kφ
jk∂j∂

lφil

−3∂kφik∂j∂lφ
jl
− 6∂kφ

jk∂i∂jφ + 6∂ jφij1φ].

(IV.6)

One can show that the term e−ωV is a sum of total derivatives,
similarly to what we have found in (IV.3). The SO(2) duality
invariance of the action principle is now manifest.

5. CONCLUSIONS

We have shown that linearized gravity around anti de Sitter
space-time can be cast in a manifestly duality-invariant
form upon resolution of the ADM constraints in terms of
two symmetric potentials. The analysis relies on the use
of Poincaré coordinates for the AdS background metric.
Gauge freedom is exploited in order to introduce the two
symmetric potentials in the resolution of the constraints, which
suggests a close relationship and interplay between duality
and gauge symmetry. This result complements previous works
where the linearization was performed around Minkowski
and de Sitter space-times, and allows us to conclude that
SO(2) duality is a symmetry of the linearized ADM action
around maximally symmetric backgrounds. The structure
of the duality-symmetric action principle is similar in the
three cases after integrating by parts and dropping boundary
terms, the only difference being background-dependent
relative factors in the kinetic term and the Hamiltonian.
The potentials enjoy the same gauge invariances in the
three cases.

We have found that duality transformations leave invariant
the action principle up to the addition of surface terms on the
space-like boundary of AdS. An analogous phenomenon lies at
the root of the duality conjecture [15, 16] in holography: the
introduction of surface terms in the time-like boundary typically
requires the modification of boundary conditions and, since
modified boundary conditions are associated with deformations
of boundary CFTs, the action of duality in the bulk would imply
a transformation of the CFT.

An important feature of the potential formalism, which
we have also encountered in the present article, is the
absence of manifest space-time covariance. Although in
some instances it is possible to recover manifest space-time
covariance for duality-symmetric action principles (either
by the introduction of an infinite number of auxiliary fields
[17–20] with polynomial dependence or a finite number of
auxiliary fields with non-polynomial dependence [21, 22]),
when it comes to the case of gravity one may argue that
this will probably not be the case by plain contrast of two
well-known results. On the one hand (a discrete version of),
electric-magnetic duality is consistent with quantum mechanics
[23, 24]. On the other hand, the notion of manifest space-
time covariance seems to be inconsistent with the quantum
dynamics of gravity [25, 26]. The immediate conclusion
is that, at least in a background-independent approach to
quantum gravity, a discrete version of electric-magnetic duality

would be allowed, while manifest space-time covariance
would not.

Last, let us mention possible extensions of the present
work. Along the lines of [16], it would be interesting to
consider the inclusion of topological terms in the action
principle, in particular the Pontryagin term, then determine
whether the constraints are still solvable in terms of potentials
and finally search for a [perhaps SL(2,Z)] duality-invariant
formulation of the action principle. The potential analysis could
likewise be performed in the case of a time-like foliation,
as a complement to [16]. The derivation of the twisted self-
duality equations of motion also deserves investigation, including
possible connections with the parent action method for the
construction of dual Lagrangians [27, 28]. The generalization of
our work to the case of arbitrary higher spin fields coupled to
a fixed AdS background should as well be studied, building on
the works [29] and [30, 31]. Finally, it would be interesting to
study how the inclusion of boundary counterterms [32–34] in
AdS affects the potential analysis.
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