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In this paper, we use the modified exponential function method in terms of Kf (x) instead

of ef (x)and the extended sinh-Gordon method to find some new family solution of

the M-fractional paraxial non-linear Schrödinger equation. The novel complex and real

optical soliton solutions are plotted in 2-D, 3-D with a contour plot. Moreover, the

dark exact solutions, singular soliton solutions, kink-type soliton solution, and periodic

dark-singular soliton solutions for M-fractional paraxial non-linear Schrödinger equation

are constructed. We guarantee that all solutions are new and verified the main equation

of the M-fractional paraxial wave equation. For existence, the constraint condition is

also added.

Keywords: paraxial wave equation, complex soliton, extended sinh-Gordon method, soliton structures, contour

surfaces

INTRODUCTION

The breaking up and moving away from ultrashort pulses of a field related to electricity-producing
magnetic fields or radiation into a medium is a multidimensional important physical phenomenon.
The interaction between different physical procedures such as breaking up/spreading out, material
breaking up or spreading out, diffraction, and non-linear response affects the pulse patterns of
relationships, movement, or sound. According to the interaction of breaking up or spreading out,
diffraction and non-linearity, a non-dispersive, and non-diffractive wave packet called soliton is
created. Solitons have many uses in optical microscopy, optical information storage, laser caused
particle increasing speed, Bose-Einstein (a liquid that forms from a gas/change from gas to liquid),
and bright and sharp signal transmission.

In the research papers, researchers have been noted several computational methods for solving
NPDEs, building separate solitons, and other alternatives for distinct types of NPDEs such as, the
Haar wavelet method [1], the homotopy perturbation method [2], the Adomian decomposition
method [3, 4], the shooting method [5–8], the sine-Gordon expansion method [9–12], the inverse
scattering method [13], the sinh-Gordon expansion method [14–16], the tan(φ (ξ) /2)-expansion
method [17, 18], the inverse mapping method [19], modified exp (−ϕ (ξ))-expansion function
method [20–23], the decomposition-Sumudu-like-integral-transform method [24], a functional
variable method [25], the Bernoulli sub-equation function method [26–28], modified exponential
function method [29], the modified auxiliary expansion method [30], the Riccati-Bernoulli sub-
ODEmethod [31], the extended trial equation method [32, 33], and tanh function method [34, 35].
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FIGURE 1 | 2-D, 3-D, and contour plot of dark soliton solution Equation (20)

when λ = 3,µ = 2,β = 0.6,α = 0.9, ε = 0.2, c = 0.3, t = 2, γ = 3 and z = 2

for 2-D.

FIGURE 2 | 2-D, 3-D, and contour plot of singular soliton solution Equation

(21) when λ = 0.3,µ = 0,β = 0.6,α = 1/3, ε = 2, c = −0.3, t = 2, γ = 3 and

z = 2 for 2-D.

Also, different methods have been used to solve fractional
differential equation such as, the finite difference method [36],
the improved Adams–Bashforth algorithm [37, 38], Adams-
Bashforth-Moulton method [39], the extended fractional sinh-
Gordon expansion method [40], the Laplace transforms [41],
the q-homotopy analysis transform method [42], local fractional
series expansion method [43], the wavelets method [44], Local
fractional homotopy perturbation method [45], and many other
techniques [46, 47].

In this paper, we will construct some new complex and real
soliton solutions of M-fractional paraxial non-linear Schrödinger
equation in Kerr media by using a modified expansion function
method as well as by the extended sinh-Gordon method. Over
the previous two centuries, the field of fractional calculus has
drawn many researchers’ attention. They are used for modeling

FIGURE 3 | 2-D, 3-D, and contour plot of dark soliton solution Equation (22)

when λ = 3,µ = 1,β = 0.1,α = 0.9, ε = 0.2, c = 0.3, t = 2, γ = 3,

a0 = 1,b0 = 2 and z = 2 for 2-D.

FIGURE 4 | 2-D, 3-D, and contour plot of singular soliton solution Equation

(23) when λ = 1,µ = 0,β = 0.6,α = 1
3 , ε = 2, c = 0.3, t = 2, γ = 0.3,

a0 = 0.1,b0 = 1 and z = 2 for 2-D.

multiple non-linear features such as biological procedures, fluid
mechanics, chemical processes, etc. Fractional order partial
differential equations serve as the generalization of partial
differential equations in the classical integer-order. The literature
contains several definitions of fractional derivatives, such as
the Hadamard derivative (1892) [48], the Weyl derivative [49],
Caputo, Riesz derivative [50], Riemann-Liouville, Grunwald-
Letnikov definitions, Atangana-Baleanu derivative in the context
of Caputo, Atangana-Baleanu fractional derivative in the
context of Riemann-Liouville [51, 52], Erdelyi-Kober [53], and
the conformable fractional derivative [54]. Atangana et al.
provided the conformable fractional derivative with some new
characteristics [55]. Sousa and Oliveira in [56] have recently been
created the new truncated M-fractional derivative.
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FIGURE 5 | 2-D, 3-D, and contour plot of periodic singular soliton solution

Equation (24) when λ = 0.1,µ = 0.3,β = 0.6,α = 0.9, ε = 0.1, c = 0.3, t =
2, γ = 0.3, a0 = 0.5,b1 = 0.2 and z = 2 for 2-D.

FIGURE 6 | 2-D, 3-D, and contour plot of periodic singular soliton solution

Equation (25) when λ = 1,µ = 1,β = 0.6,α = 0.9, ε = 0.1,c = 3, t = 2,

γ = 3a0 = 0.5,b0 = 0.2 and z = 2 for 2-D.

THE TRUNCATED M-FRACTIONAL
DERIVATIVE

In this section, we give some definitions, theorems,
and properties of the truncated M-fractional derivative
of order α.
Definition 1. If the function f : (0,∞) → R, then, the new
truncated M-fractional derivative of function of order α is
defined as,

D
α,β
M f (t)

= lim
ε→0

f
(

tǫβ

(

εt1−α
))

− f (t)

ε
, for all t > 0, 0 < α ≤ 1, β > 0,

where ǫβ (.) is a truncated Mittag-Leffler function of one
parameter [56].

FIGURE 7 | 2-D, 3-D, and contour plot of Equation (27), when t = 2, c = 3,

γ = 2,α = 0.5,β = 0.6 and z = 2 for 2-D.

FIGURE 8 | 2-D, 3-D, and contour plot of Equation (28), when t = 2, c = 3,

γ = 0.2,α = 1
3 ,β = 0.6 and z = 2 for 2-D.

Theorem 1. Let α ∈ (0, 1] , β > 0 and f = f (t), g = g (t) be
α-differentiable at a point t > 0, then:

I D
α,β
M

(

af + bg
)

=aDα,β
M f + bD

α,β
M g, for all a, b ∈ R.

II D
α,β
M (c)=0, for all c ∈ R.

III D
α,β
M

(

f .g
)

=gDα,β
M

(

f
)

+ fD
α,β
M

(

g
)

.

IV D
α,β
M

(

f
g

)

=
gD

α,β
M (f )−fD

α,β
M (g)

g2
.

Furthermore; if the function f is a differentiable function; then

D
α,β
M

(

f (t)
)

= t1−α

Ŵ(β+1)
df
dt
.
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FIGURE 9 | 2-D, 3-D, and contour plot of Equation (29), when t = 2, c = 0.3,

γ = 0.2,α = 0.5,β = 0.6 and z = 2 for 2-D.

FIGURE 10 | 2-D, 3-D, and contour plot of Equation (30), when t = 2, c = 0.3,

γ = 0.2,α = 0.5,β = 0.6 and z = 2 for 2-D.

GENERAL FORM OF METHODS

Modified Expansion Function Method
Step 1. Suppose that, we have the following non-linear partial
differential equation (NLPDE)

P
(

u,Dα,β
M,xu, u

2D
α,β
M,xu,D

α,β
M,tu,D

2α,β
M,t u, . . .

)

= 0. (1)

To find explicit exact solutions of Equation (1), we use the
following transformation

u
(

x, y, t
)

= U (ξ) , ξ =
Ŵ (β + 1)

α

(

xα − ν tα
)

, (2)

where ν is arbitrary constant and ξ is the symbol of the wave
variable. Substituting Equation (2) to Equation (1), the result is
a non-linear ordinary differential equation (NLODE) as follow

N
(

U,U2,U ′,U ′′, . . .
)

= 0. (3)

Step 2. Now the trial equation of solution for Equation (3) is
defined a

U (ξ) =

n
∑

i=1
ai
(

K−i8(ξ)
)i

m
∑

j=1
bi
(

K−8(ξ)
)j

=
a0 + a1K

−φ(ξ) + a2K
−2φ(ξ) + ...+ anK

−nφ(ξ)

b0 + b1K−φ(ξ) + b2K−2φ(ξ) + ...+ bnK−mφ(ξ)
, (4)

where ai and bi,
(

0 ≤ i ≤ n, 0 ≤ j ≤ m
)

are non-zero constants
and 8(ξ) is the auxiliary ODE given by

8′ (ξ) =
K−8(ξ) + µK8(ξ) + λ

ln (K)
, (5)

where µ, λ are constants and K > 0, K 6= 1. The auxiliary ODE
has the general solution as follows:

I When λ2 − 4µ > 0, then f (ξ) =
logK

(

−λ −
√

λ2 − 4µ tanh
(

1
2

√

λ2 − 4µ (ξ + ε)

))

.

II When λ2 − 4µ < 0, then f (ξ) =
logK

(

−λ +
√

−λ2 + 4µ tan
(

1
2

√

−λ2 + 4µ (ξ + ε)

))

.

III When λ2 − 4µ > 0 and µ = 0, then f (ξ) =
logK

(

λ
−1+cosh(λ(ξ+ε))+sinh(λ(ξ+ε))

)

.

IV When λ2 − 4µ = 0, λ 6= 0 and µ 6= 0, then f (ξ) =
logK

(

−2−λ(ξ+ε)
2µ(ξ+ε)

)

.

V When λ2 − 4µ = 0, λ = 0 and µ = 0, then f (ξ) =
logK (ξ + ε).

Extended Sinh-Gordon Expansion Method
Step 1. The same structure of step 1 of MEFM is valid.
Step 2. The trial solution of Equation (3) is expressed in the
form [19],

U (w) =
n
∑

i=1

[

bi sinh (w) + ai cosh (w)
]

i

+ a0, (6)

where a0, ai, bi (i = 1, 2, · · · , n) are constants and to find it’s value
later, w is a function of ξ that satisfies the following equation

w′ = sinh (w) . (7)

The solution of Equation (7) possess the following solutions

sinh (w (ξ)) = ± csch (ξ) or sinh (w (ξ)) = ±i sech (ξ) , (8)

and

cosh (w (ξ)) = ± coth (ξ) or cosh (w (ξ)) = ± tanh (ξ) , (9)

where i =
√
−1.

Step 3. By putting Equation (7) and the derivatives of Equation
(6) into Equation (3), we obtain a polynomial equation

in w′l sinhi (w) coshj (w)
(

l = 0, 1 and i, j = 0, 1, 2, . . .
)

. As the
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result the obtained non-linear algebraic equations by equating

the coefficients of w′lsinhi (w) coshj (w) to zero, we can find
the coefficients.
Step 4. Using Equation (9) and Equation (10), we get the
following solutions of Equation (1)

U (ξ) =
n
∑

i=1

[

±bi sech (ξ) ± ai tanh (ξ)
]

i

+ a0, (10)

U (ξ) =
n
∑

i=1

[

±ibi csch (ξ) ± ai coth (ξ)
]

i

+ a0, (11)

where the value of n will finds by using the principal
homogeneous balance.

GOVERNING EQUATION AND ITS
APPLICATIONS

Application on MEFM
The paraxial NLSE in Kerr media is given by [57]

iD
α,β
M,zu+

a

2
D
2α,β
M,t u+

b

2
D
2α,β
M,y u+ γ |u|2u = 0, (12)

where u = u
(

y, z, t
)

is the complex wave envelope function. The
constants a, b and γ are the symbols of

u
(

y, z, t
)

=
ie
− i

√
λ2−4µξ√

2
(

λ2 − 4µ
)1/4

(

λ2 − 4µ + λ
√

λ2 − 4µ tanh
(

1
2

√

λ2 − 4µ (ε + ξ)

))

23/4
√

γ
(

λ2 − 4µ
)

(

λ +
√

λ2 − 4µ tanh
(

1
2

√

λ2 − 4µ (ε + ξ)

)) . (20)

the dispersion, diffraction, and Kerr non-linearity, respectively.
In Equation (12) if ab > 0 we get elliptic non-linear Schrödinger
equation and if ab < 0, Equation (12) becomes hyperbolic non-
linear Schrödinger equation. Now assume the following
wave transformations:

u
(

x, y, t
)

= U (ξ) eiθ , ξ =
Ŵ (β + 1)

α

(

y+ z − ct
)

,

θ =
Ŵ (β + 1)

α
κ
(

y+ z − ct
)

. (13)

Inserting Equation (13) into Equation (12), and separate the
result into the real and imaginary part, we get

−
(

c2a+ b
)

U ′′ +
(

bκ2 + aκ2c2 + 2κ
)

U − 2γU3 = 0, (14)
(

1+ bκ + aκc2
)

U ′ = 0. (15)

Now, we know that U ′ 6= 0, therefore

b =
−1− aκc2

κ
. (16)

Putting Equation (16) into Equation (14) to get the closed
solution, we get

U ′′ + κ2U − 2γU3 = 0. (17)

Finding the principal balance between U ′′ and U3, we find the
following relation between n and m

n = m+ 1. (18)

Let m = 1, then n = 2. Putting the value of m = 1 and
n = 2 into Equation (4), the Equation (4) can be written as
the following

U (ξ) =

2
∑

i=1
ai
(

K−i8(ξ)
)i

1
∑

j=1
bi
(

K−8(ξ)
)j

=
a0 + a1K

−φ(ξ) + a2K
−2φ(ξ)

b0 + b1K−φ(ξ)
. (19)

Where a0, a1,a2, b0, b1 are constants and b2 6= 0 &
a1 6= 0. Using Equation (19) and its second derivative
with Equation (17), we analyze the following cases
and solutions:

Case 1. When a0 = 0, a1 = ib1λ(λ2−4µ)
1/4

23/4
√

γ (λ2−4µ)
, a2 =

i21/4b1(λ2−4µ)
1/4

√
γ (λ2−4µ)

, κ = −
√

λ2−4µ√
2

, b0 = 0, we get the

following solutions:

Solution 1.When λ2 − 4µ > 0, λ 6= 0, µ 6= 0, then

Solution 2.When λ2 − 4µ > 0, µ = 0, then

u
(

y, z, t
)

=
ie
− i

√
λ2ξ√
2 λ

(

λ2
)1/4

coth
( 1
2λ (ǫ + ξ)

)

23/4
√

γ λ2
. (21)

Case 2. When a1 = a0

(

b1
b0

+ 2
λ

)

, a2 = 2a0b1
b0λ

, κ =
√

λ2−4µ√
2

, γ = b0
2λ2

2
√
2a02

√
λ2−4µ

, then we get the following solutions

Solution 1.When λ2 − 4µ > 0, λ 6= 0, µ 6= 0, then

u
(

y, z, t
)

=
a0e

i
√

λ2−4µξ√
2

(

λ2 − 4µ + λ
√

λ2 − 4µ tanh
(

1
2

√

λ2 − 4µ (ε + ξ)

))

b0λ
(

λ +
√

λ2 − 4µ tanh
(

1
2

√

λ2 − 4µ (ε + ξ)

)) .

(22)

Solution 2.When λ2 − 4µ > 0, µ = 0, then

u
(

y, z, t
)

=
a0e

i
√

λ2ξ√
2 coth

( 1
2λ (ǫ + ξ)

)

b0
. (23)
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Case 3. When a1 = a0λ
µ
, a2 = a0

µ
, b0 = b1λ

2 , κ =

−
√

−λ2 + 4µ, γ = − b1
2µ2

a02
√

−λ2+4µ
, we get the following solution

u
(

y, z, t
)

= −
2a0e−i

√
−λ2+4µξ

(

λ2 − 4µ
)

sec2
(

1
2

√

−λ2 + 4µ (ε + ξ)

)

b1

(

λ −
√

−λ2 + 4µ tan
(

1
2

√

−λ2 + 4µ (ε + ξ)

)) (

λ2 − 4µ − λ
√

−λ2 + 4µ tan
(

1
2

√

−λ2 + 4µ (ε + ξ)

)) , (24)

where λ2 − 4µ < 0.
Case 4. When a1 = a0λ

µ
, a2 = a0

µ
,

b1 = 2b0
λ
, κ = −

√

−λ2 + 4µ, γ =
− 4b0

2µ2

a02λ2
√

−λ2+4µ
we get the following solutions

u
(

y, z, t
)

= −
a0e−i

√
−λ2+4µξλ

(

λ2 − 4µ
)

sec2
(

1
2

√

−λ2 + 4µ (ε + ξ)

)

b0

(

λ −
√

−λ2 + 4µ tan
(

1
2

√

−λ2 + 4µ (ε + ξ)

)) (

λ2 − 4µ − λ
√

−λ2 + 4µ tan
(

1
2

√

−λ2 + 4µ (ε + ξ)

)) , (25)

where λ2 − 4µ < 0.

Application on Extended Sinh-Gordon
Method
In this subsection, we apply the extended sinh-Gordon method
to the M-fractional paraxial wave equation that labeled Equation
(12). Consider the Equation (17) and applying the principal
homogeneous balance between the between U ′′ and U3, we find
n = 1. Using the value of n = 1and substituting it into Equation
(6), we get

U (w) = b1 sinh (w) + a1 cosh (w) + a0 (26)

Putting Equation (26) and its derivatives into Equation (17),
we get the polynomial equation includes for

(

i, j = 0, 1, 2, ...
)

.
Equating its coefficients to zero, and using Mathematica package,
one can investigate the following cases.

Case 5. When A0 = 0,A1 = 0,B1 = (−1)1/4√
γ

, κ = −i, we get

u
(

y, z, t
)

=
(−1)3/4
√

γ
e

Ŵ(1+β)(−ctα+yα+zα)
α

sech

(

Ŵ (1+ β)
(

−ctα + yα + zα
)

α

)

(27)

or

u
(

y, z, t
)

=
(−1)1/4
√

γ
e

Ŵ(1+β)(−ctα+yα+zα)
α

csch

(

Ŵ (1+ β)
(

−ctα + yα + zα
)

α

)

,

providing that γ > 0.
Case 6. When A0 = 0,A1 = − i

21/4
√

γ
,B1 = 0, κ = −

√
2, we get

u
(

y, z, t
)

=−
i

21/4
√

γ
e−

i
√
2(−ctα+yα+zα)Ŵ(1+β)

α

tanh

(

Ŵ (1+ β)
(

−ctα + yα + zα
)

α

)

(28)

or

u
(

y, z, t
)

=-
i

21/4
√

γ
e−

i
√
2Ŵ(1+β)(−ctα+yα+zα)

α

coth

(

Ŵ (1+ β)
(

−ctα + yα + zα
)

α

)

providing that γ > 0.

Case 7. When A0 = 0,A1 = 0,B1 = − (−1)1/4√
γ

, κ = −i, we get

u
(

y, z, t
)

=-
(−1)3/4
√

γ
e

Ŵ(1+β)(−ctα+yα+zα)
α

sech

(

Ŵ (1+ β)
(

−ctα + yα + zα
)

α

)

(29)

or

u
(

y, z, t
)

=e
iŴ(1+β)(−ctα+yα+zα)√

2α





coth
(

Ŵ(1+β)(−ctα+yα+zα)
α

)

23/4
√

γ

+
csch

(

Ŵ(1+β)(−ctα+yα+zα)
α

)

23/4
√

γ



 ,

providing that γ > 0.
Case 8. When A0 = 0,A1 = 1

21/4
√

γ
,B1 = 0, κ =

√
2, we get

u
(

y, z, t
)

=
e
i
√
2Ŵ(1+β)(−ctα+yα+zα)

α tanh
(

Ŵ(1+β)(−ctα+yα+zα)
α

)

21/4
√

γ
,

u
(

y, z, t
)

=
e
i
√
2Ŵ(1+β)(−ctα+yα+zα)

α coth
(

Ŵ(1+β)(−ctα+yα+zα)
α

)

21/4
√

γ
(30)

providing that γ > 0.

CONCLUSION

In this article, the modified exponential function method in
a new trial solution and the extended sinh-Gordon expansion
method are used to construct some new soliton solutions of M-
fractional paraxial non-linear Schrödinger equation. The new
exact solutions are included in the hyperbolic function and
trigonometric function. Figures 1, 3, 8, 10 are expressing dark
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wave solutions, Figures 2, 4 are expressing the singular wave,
Figure 7 is the kink-type soliton solution, Figure 9 is a surface
solution and Figures 5, 6 are the periodic dark-singular soliton
solutions as well as 2D, 3Dwith a contour plot of all new solutions
are plotted. We guarantee that all solutions are new and verified
the main equation of M-fractional paraxial wave equation after
it substituted to the main equation labeled Equation (6). All
our new solutions of (2+1)-dimensional M-fractional paraxial
wave equation might be useful and applicable in the optical
fiber industry.
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