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Thoroughly mixing immiscible fluids creates droplets of one phase dispersed in a

continuum of the other phase. In such emulsions, the individual droplets have rather

mundane mechanical behavior. However, densely confining these suspended droplets

generates a packing of particles with a spectacular diversity of mechanical behavior

whose origins we are only beginning to understand. This mini review serves to survey a

non-exhaustive range of experimental dense slow flow emulsion work. To embed these

works in the context of the flow behavior of other structured fluids, we also discuss briefly

the related non-local flow modeling attempts as one of the approaches that has been

used successfully in describing emulsion flow properties and other materials.

Keywords: emulsion, non-local, yield stress fluids, surfactants, friction, anisotropy

1. INTRODUCTION

The mechanical behavior of fluids with an embedded “granular” phase is varied and complex [1–
9]. Think of a wet sandy beach or foamy chocolate mousse. These materials are a bit elastic, but
will flow when pushed. Wet sand will be hard enough to make a beach volleyball bounce, but the
bubble packing in chocolate mousse can be easily swallowed. The overlap in phenomenology of
these systems suggests that there exist concepts shared among all these materials. Think of the
flow behavior of mayonnaise, a mixture of oil droplets in water. Such dense emulsions are highly
viscous and even a bit elastic: they are so-called “yield stress” fluids and only flow when they are
exposed to a stress above a certain level. All these systems have similarities that suggest underlying
commonalities. We review here some experimental and modeling work on the slow flow behavior
of emulsions, as it can serve as a model system for a wide range of disordered materials that are
composed of a mix of a background fluid and particles.

Underlying commonalities are easy to find. For example, it seems intuitive that the flow
resistance of a suspension of oil droplets in water increases with a higher volume fraction of
oil droplets. The same intuition holds for particulate suspensions, colloidal gels and even foams.
Volume fraction is thus an important parameter, but that is only a beginning of understanding.
Indeed the viscosity of a hard particle suspension diverges at a particulate volume fraction of
about 58% [10], with only recent advances of the understanding of the microscopics of this
divergence [11]. Also for emulsions, the debate on the microscopic origin and the non-linear, even
“critical” nature of the viscous or elastic behavior has been running for decades [12–17]. While the
understanding of the micro-macro link in specific systems is progressing substantially, it seems fair
to state that a perspective that connects these dots is still beyond the state of the art.

The flow behavior of structured fluids can be considered on the scale of particle contact time.
When driving a sample of a structured fluid very slowly and at high volume fraction, interactions
between particles are long-lived and the material acts as a solid. When driving a structured fluid
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at higher rates and/or lower densities, particle interactions are
collision-like and short. When interactions are short lived, the
material behavior typically obtains a rate dependence: inertia,
collisions or the viscosity of the continuous phase starts to play
a role. Note that dynamic shear thickening studies [18–21] show
that even fast flowing suspensions can form long lived contacts
between particles under certain conditions. Here, we will only
consider flowing emulsions with long-lived contacts.

The richness in macroscopic flow behavior of structured
fluids with long lived contacts is complemented with a diversity
of their microscopic behavior. Many structured fluids display
localized “plastic” reorganizing events when deformed [22–25].
Highly viscous or “glassy” flows induce non-thermal noise on
the motion of their particulate content, non-Brownian diffusive
particle dynamics and “dynamical heterogeneities” [26, 27]. In
fluids that display “shear jamming,” highly anisotropic structural
force features emerge [28–30]. The behavior of disordered
fluids is extremely rich, and the references here cannot do
justice to efforts from the past decades to try to capture the
behavior of these systems. Experiments are evidently easier at
lower rates and for emulsions not complicated by the dynamics
of droplet rupture [31]. We therefore limit ourselves here to
review the literature on slow emulsion flows. Emulsions are
also a good model system because they are experimentally
accessible: for most emulsions, droplets can be observed via
standard microscopy techniques in a wide range of conditions.
Additionally, emulsions have a number of physico-chemical
ingredients that allows one to tune their microscopic and
macroscopic properties.

2. SLOW FLOWS

The most common way to describe the flow behavior of
emulsions and other structured fluids is the phenomenological
Herschel-Bulkley (HB) model [32, 33]:

σHB = σ0 + kγ̇ (r)n. (1)

Here, σHB denotes the shear stress, σ0 the yield stress, γ̇ (r) the
local shear rate, k a proportionality constant representing some
time scale [33] and n a power law index. TheHBmodel effectively
captures the macroscopic flow response of many systems [8, 16,
33–38]. In the slow flow limit, HB materials should therefore not
display any motion when stress at which they are locally driven is
below the yield stress. Onemight even naively argue that it is only
the microscopic interactions that determine the yield stress value.
Experiments have shown otherwise. Dense emulsions confined
to a narrow flow geometry display flow in regions of the channel
where they are exposed to a stress below their yield stress [39–
41]. Observing such slow creeping flow behavior was not new; it
had for example been observed for granular materials [42, 43]
and metals [44, 45]. For emulsions it turns out to be possible
to develop a so-called non-local or gradient continuum model
that quantitatively captures the slow flow behavior [39, 40]. A
“local” constitutive relation (e.g., for steady shear flow) describes
the shear stress at a point in space as a function of the shear rate
at the same point. In a non-local model, the constitutive relation

also depends on spatial gradients of the stress and/or shear rate.
Dimensional analysis alone will convince the reader that such a
model must introduce coefficients with units of length. In this
sense non-local models “know” about the size of microstructural
features to which local models are blind. Gradient terms in
a constitutive relation can be introduced phenomenologically,
without an underlying microstructural model. And indeed
there exists an extensive literature on empirical gradient and
non-local flow models, largely developed by the engineering
community. Recent work on emulsions and related yield stress
fluids, however, has advanced hand-in-hand with a specific
microscopic picture of how non-local effects emerge. Namely,
plastic rearrangements are presumed to propagate mechanical
noise, by which subsequent rearrangements can be triggered. The
“kinetic elasto-plastic” model (KEP) [9, 46–49] is a prominent
example of this approach. It should be noted however, that other
modeling attempts also effectively capture the flow behavior of
emulsions, such as lattice Boltzmann methods [50–52].

2.1. KEP at a Glance
The KEP perspective assumes that local flow behavior captured
by the local dimensionless spatial velocity gradient also called
shear rate γ̇ (r), is determined by the rate at which local buildup
of elastic stress dissipates via small “plastic events.” The intuitive
picture is that such local plastic events in a flowing region can
induce stress modifications at a finite length scale ξ away from
these events, via the propagation of mechanical fluctuations.
Such fluctuations can so induce rearrangements in regions of
the materials where the local stress is below the yield stress. See
Figure 1A for a sketch. This rearrangement perspective wasmade
quantitative [48] by rewriting the Newtonian relation between
the local shear force σ (r) at position r and the local flow rate
via the concept of viscosity σ = ηγ̇ , with η the fluid viscosity.
In a conventional Newtonian fluid η is a material parameter. In
the KEP perspective, we want to capture the elastic nature of the
complex fluid, but we also want to incorporate the plastic flow
that occurs when we impose the existence of a local flow with,
say, a moving boundary. We hence write that the local shear
stress σ in a fluid is related to the rate of local plastic events. This
plastic event rate is assumed to be proportional to the local shear
rate γ̇ and the so-called local “fluidity” f (r) through the relation
σ = 1

f
γ̇ . The fluidity f is thus an inverse viscosity, with the key

distinction that fluidity is a field rather than a material constant.
To determine the form of this field, it is necessary to describe its
spatial evolution. To do this, one defines the “bulk” fluidity

fb(r) =
1

η
=

γ̇ (r)

σHB(γ̇ (r))
, (2)

that is obtained in homogeneous flow conditions. Local
deviations from the bulk fluidity are then assumed to obey a
diffusion equation

f (r) = fb(r)+ ξ 2∇2f (r). (3)

We readily see that the existence of a local finite fluidity diffuses
into neighboring regions with a typical length scale ξ ; having a
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FIGURE 1 | (A) The canonical kinetic elasto-plastic perspective in which induced flow generates non-local structural changes. From Bocquet et al. [48]. (B)

Schematic of surfactant and particle stabilized oil in water (o/w) emulsions. From Chevalier and Bolzinger [53]. (C) Evidence for multiple contact dynamics in a simple

train of bubbles. From Ginot et al. [54].

finite local flow rate somewhere will thus induce flow elsewhere.
The length scale ξ so captures the cooperativity between different
flowing regions. In slow flows, the yield stress is approached
from below, whence ξ depends on the distance to the yield stress
σ0 of the fluid [48, 55]. The expression for ξ comes in a few
forms in the literature; one common one is ξ = Ad

(σ0−σ )m . The
constants A, σ0 are all material parameters; their dependence
on microscopic physics such as the friction coefficient µ or the
volume fraction φ are not very clear, although it is believed that
A is induced by steric hindrance effects [56]. Parameter d is a
typical particle size. The exponent m is explicitly predicted when
certain assumptions are made regarding the microscopics [48]
but was also empirically determined to be 0.5−0.6 in a generalized
fluidity model applied to granular flows [55, 57]. For confined
frictionless emulsions, ξ was empirically found to depend on
the volume fraction φ of the emulsion [39]. Cooperative effects
are also present in complex fluids without a yield stress, albeit
with a length scale that remains on the order of the particle
size [58]. Several references here have already indicated that the
generalization of this KEP based non-local modeling to granular
flows is also possible both in two and three dimensions [38,
55, 59] including subtle “secondary rheology” effects [60]. Even
wormlike micellar fluids [61] and cellulose solutions [62] have
been effectively captured with gradient type models, and metal
plasticity has for some time been described with gradient type
models [63]. In the light of the phenomenological diversity, it
is all the more exciting that there might be cross-fertilization
possible in the understanding of complex disordered fluids, a
process that is already ongoing [9].

2.2. Flow Instabilities
It should be noted that the HB description of structured
fluids is not always applicable. Suspensions of soft frictional

particles have an effective friction coefficient that can get smaller
with rate [64]. Such flow instabilities have been observed in
multiple systems [65, 66] but were then linked to shear-induced
weakening: the shear induces so much fluctuations that the yield
stress is affected, even creating an additional critical point [67].
These experimental observations suggest that both microscopic
interactions and fluctuations play a role in the flow behavior
of structured fluids. The question is how to incorporate such
microscopics in the non-local models that already exist. Finding
the link between microscopics and non-local modeling link is
challenging for several reasons, especially because of the central
role of friction.

3. MICROSCOPIC INTERACTIONS

Experiments on disordered fluids [28, 68], discrete element
simulations [18, 69], and modeling [70] suggest that flow
complexity in disordered fluids arises from the multitude
of interparticle forces. For emulsions, the role of the many
microscopic ingredients that determine the flow behavior has
been captured in the review by Höhler and Cohen-Addad [33],
such as interfacial energy, capillary pressure, long range
molecular interactions, entropic effects and interfacial rheology;
different surfactants can for example change the exponent n in
the fast flow limit. However, it is not clear how the critical yield
stress σ0, the main ingredient for the length scale ξ , arises from
the microscopic physics [33]. The amplitude parameter A in the
fluidity model for emulsions is currently a fit parameter whose
physical meaning is not well-understood. Which microscopic
mechanisms are responsible for these model parameters? There
are many options; interparticle friction may be considered a
player. Friction is conjectured to be at the heart of shear
jamming [28], discontinuous shear thickening [18, 68], the
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viscosity divergence of hard sphere suspensions [11] and related
to criticality in fluctuating granular flows [67].

3.1. The Many Faces of Friction
Friction is a phenomenon in which many lengths and time scales
are relevant [71]. Contact friction is traditionally modeled with
Amonton-Coulomb’s law [72], which states that the frictional
force FT tangential to a contact FT ≤ µFN is less than or equal to
a fraction µ of the normal force FN on that contact. However,
contact roughness, lubrication and elasticity complicate this
perspective. The Stribeck curve [73, 74] summarizes much
empirical work on lubricated friction; it indicates that the
effective friction coefficient of a lubricated contact is rate
dependent and can vary over orders of magnitude. There is
also a role for contact elasticity coupled to to hydrodynamic
effects [75–77] with roots in older work [78, 79]. Additionally,
rate dependence in the contact laws is often observed [71], for
example logarithmic strengthening [80, 81]. These complications
make it challenging to model friction in standard numerical
methods: frictional contacts often involve length scales much
smaller than the particle diameter and time scales much shorter
than a collisional contact time, presenting immediate challenges
for the complete integration of their dynamics in numerical
simulations. The relevance of such small lengthscales for slow
collective particle dynamics is however evidenced by several
works [26, 82].

In emulsions, the contact forces between two fluid droplets
are expected to be purely viscous and vanish in the slow flow
limit. However, even foams, consisting entirely out of fluids,
are known to be very much affected by the friction between
the foam bubbles [5]. For droplets in emulsions, very similar
considerations hold [33]: emulsion droplets are usually stabilized
against coalescence with small molecular surfactants, proteins or
particles. The last case is also known as a Pickering emulsion [53].
See Figure 1B for a sketch. These ingredients add substantial
complexity to the dynamics of two droplets rubbing against
each other [83]. Amphiphilics are well-known to have complex
phase behavior [84] at an interface. Droplets fully coated with
surfactants of macromolecular or particulate nature are believed
to have a yield stress [85]; emulsions can even be coated with
colloidal particles [86], or the chemical composition of the
interface can be modified to change interfacial mechanics [87]
and the contact friction [88, 89]. In fact the mechanics of
interfaces packed with particles has non-trivial dynamics of
itself [90]. Interface mechanics may so provide emulsion droplet
contacts with a static yield criterion, however small.

To illustrate the complexity of friction in structured fluids
studies, it is helpful to consider that at the same time, numerous
simulations have shown that even when one sets the interparticle
friction coefficient to zero, the macroscopic friction coefficient of
a structured fluid remains finite [91–94]. Even though numerical
simulations of comparable systems have found contradicting
relationships between the microscopic and macroscopic friction
coefficient [93–95], the emergence of a non-zero macroscopic
friction coefficient, where microscopically it is negligible, has
been been confirmed in experiments [64]. Non-sphericity can
further complicate the relation between the microscopic contact

laws and the emergent frictional properties [92] but should
be less important in slowly sheared emulsions, as the Laplace
pressure will keep droplets in emulsions mostly spherical.
The question remains: what is the role of friction, and other
microscopic particle interactions, on the flow behavior of a
structured fluids?

4. FLUCTUATIONS

KEP models rely on some form of “fluctuation” to propagate
elastic events through a disordered medium, so fluctuations
are also an ingredient that needs to be integrated in non-local
modeling. In fact, particle velocities arising from thermal motion
are a main ingredient of the kinetic part of the Irving-Kirkwood
stress tensor and hence also a likely ingredient for any continuum
theory that describes flow behavior of structured fluids. However,
the particles in the dense structured fluids we discuss here do not
show intrinsic thermalmotion, in part because of their dissipative
interactions. We should then note that microstructural disorder
itself is already enough to cause ballistic-like diffusive motion
in quasi-static flow [96], and additional velocity fluctuations
at finite shear rates are thus to be expected. Particle velocity
fluctuations are created in the presence of a mean flow itself
and are generally quantified by the square of the RMS velocity
fluctuations, but can also be based on breaking contacts [49].
The velocity fluctuations can be seen to represent the number of
plastic events per unit of time. Such particle velocity fluctuation
based “granular temperature” concepts have indeed been used
since a long time [42, 97]. Hard particle simulations [98] suggest
that the local velocity fluctuations with respect to the mean flow
field are responsible for the fluidity field in the creep flow of
granular materials driven below their yield stress. Emulsion flow
experiments have provided a direct link between these velocity
fluctuations and the fluidity field [99]. Even in the fast flow limit,
flow induced velocity fluctuations have been observed to capture
flow behavior in a range of geometries rather well [100].

The coupling of mean flow to velocity fluctuations depends
on many microscopic parameters, including damping and
interparticle friction. In the “emulsion” limit, where friction is
low and rate dependent, one can expect different HB exponents
than in dry granular materials, where friction is often assumed
to be rate independent [15]. The value of the dry friction
coefficient does not significantly affect the HB model [56]
although in the limit of zero friction, the macroscopic friction
remains finite as discussed above. This suggests that dissipation
in structured fluids emerges from non-frictional sources such
as velocity fluctuations. The coupling of the mean flow and its
fluctuations also gives rise to different types of fluctuations [15,
101]. One might also believe that viscous damping suppresses the
coupling between mean flow and fluctuations and the associated
self-induced weakening, but the viscous damping needs to be
strong enough: glass bead suspensions with water also show a
logarithmic negative rate dependence [64]. Emulsions can also
be composed of droplets that are smaller than a micrometer.
For such emulsions, thermal fluctuations are large enough to
affect droplet motion. It is not clear how thermal and mechanical
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noise are different in the way they affect the flow behavior of
emulsions [9].

5. CHALLENGES AND OPPORTUNITIES

5.1. Anisotropy
The KEP fluidity based modeling for emulsions and other
disordered fluids has a particularly obvious area for
innovation. In many rheological experiments on sheared
colloidal systems and granular media, structural anisotropy
is important variable [28–30, 64, 91, 102, 102–108], e.g.,
the emergence of dilatancy [29, 109] and even in finite size
frictionless systems [110]. Finding how anisotropy emerges from
microscopics is an important next step to understand emulsion
rheology. Such understanding should assist KEP advances:
although the soft glassy rheology model has been extended into
tensorial form [111] and KEP based granular flow modeling [55]
has been successfully used to model three dimensional flows,
anisotropy in either force or packing microstructure, is currently
not a feature of KEP-based models.

5.2. Multiple Contacts
When emulsions have a yield stress, individual droplets will
have multiple contacts. The pairwise interactions of droplets
typically determined by the Laplace pressure induced by local
surface curvature will therefore likely change. Such multiple
contact dynamics has already been observed in foams [54, 112]
(See Figure 1C) and soft granular materials [113–115] and is
even considered to play a role in molecular systems [116].
These multiple contact effects act over lenghtscales larger than
the particle diameter and thus bring long range correlations.
Even though multiple contact dynamics has been shown to be
relevant for static packings, it is not clear if or how such long
range interactions are relevant during flow and/or for KEP style
modeling approaches.

5.3. Experimental Perspectives
The fluidity f =

γ̇
σ

requires knowledge of both local shear
rates and the local stress dynamics. To link interparticle forces
to fluidity, we must thus be able to probe fluidity-related
variables inside a moving disordered fluid. This is challenging
in experiments. Particle tracking will reveal spatial dynamics
in packing microstructure, but this is not trivially connected
to stress microstructure, due to the small deformations in
emulsion droplets and the indeterminacy of frictional forces.
Microstructure of stress evolution can be probed directly using
particles that change their optical response under the influence
of stress; however, this has only been probed in granular quasi-
static experiments with no control or knowledge on boundary
stresses [102, 117] and such techniques are not easily extended
to emulsions. In emulsions, only full particle shape measurement
experiments in dynamic conditions can reveal interparticle
forces, yet this has so far only been done in flowing two
dimensional emulsions [118, 119] and static packings [120, 121].

The relevance of microscopic interactions also provides new
areas for experimental progress, for example for probing the
role of friction. Friction is difficult to tune as a parameter in

most disordered fluid experiments, especially with solid particles,
where friction is complex as mentioned above. Moreover, most
solid-solid friction coefficients are limited to a range of 0.05
and 1 [122]; numerical studies suggest that it is necessary to
probe coefficients an order of magnitude lower [123, 124] to
study the effect of friction. Typically, experimental studies that
directly probe the relevance of macroscopic friction do not
control friction but concern how a change in flow behavior
can be linked to post-hoc observations of surface roughness [82,
125]. There have been many innovative studies on complex
fluids with micron sized particles [16, 90, 126–128]. Despite the
often sophisticated nature of these studies, the microstructural
interactions between employed particles are a given, not a
control parameter. When lowering the friction coefficient for
hard particles is not an option, one can also increase it. To
raise µ, changing particle shape [92] effectively increases the
friction coefficients. Similarly, using surface bumpiness is also an
effective numerical route to increase interparticle friction [124,
129], which has now also been used in experiments [130]. Some
of these methods are available for emulsions as well: there are
many surfactants and continuous phase fluids that one can
choose to tune the interparticle dissipation. With control over
microscopics, one future experiment would be to probe local
stress and flow fields at fixed driving rate while directly varyingµ.

6. CONCLUSION AND OUTLOOK

Continuum modeling of structured fluids in general and
emulsions in particular has revealed the importance of the so-
called non-local fluidity of the structured fluid, a dynamical
order parameter equivalent to an inverse viscosity. Fluidity
based modeling works, yet many questions remain unanswered.
The major missing piece in our understanding of these
complex “glassy” fluids is the connection between the “fluidity”
and microscopic physics, such as particle interactions and
fluctuations. Finding the connection between microscopics and
the fluidity parameter would be a big leap forward in our
understanding of these complex, glassy, disordered fluids.
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