
ORIGINAL RESEARCH
published: 03 December 2019
doi: 10.3389/fphy.2019.00204

Frontiers in Physics | www.frontiersin.org 1 December 2019 | Volume 7 | Article 204

Edited by:

Uroš Tkalec,

University of Ljubljana, Slovenia

Reviewed by:

Douglas John Cleaver,

Sheffield Hallam University,

United Kingdom

Simon Čopar,
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Numerical modeling of nematic liquid crystals using the tensorial Landau-de Gennes

(LdG) theory provides detailed insights into the structure and energetics of the enormous

variety of possible topological defect configurations that may arise when the liquid

crystal is in contact with colloidal inclusions or structured boundaries. However, these

methods can be computationally expensive, making it challenging to predict (meta)stable

configurations involving several colloidal particles, and they are often restricted to system

sizes well below the experimental scale. Here we present an open-source software

package that exploits the embarrassingly parallel structure of the lattice discretization

of the LdG approach. Our implementation, combining CUDA/C++ and OpenMPI, allows

users to accelerate simulations using both CPU and GPU resources in either single- or

multiple-core configurations. Wemake use of an efficient minimization algorithm, the Fast

Inertial Relaxation Engine (FIRE) method, that is well-suited to large-scale parallelization,

requiring little additional memory or computational cost while offering performance

competitive with other commonly used methods. In multi-core operation we are able

to scale simulations up to supra-micron length scales of experimental relevance, and in

single-core operation the simulation package includes a user-friendly GUI environment

for rapid prototyping of interfacial features and the multifarious defect states they can

promote. To demonstrate this software package, we examine in detail the competition

between curvilinear disclinations and point-like hedgehog defects as size scale, material

properties, and geometric features are varied. We also study the effects of an interface

patterned with an array of topological point-defects.

Keywords: Landau-de Gennes modeling, nematic, topological defect, numerical modeling, GPGPU

1. INTRODUCTION

Nematic liquid crystals’ combination of fluidity and orientational order both underlies nematics’
widespread technological applications and endows them with topological defects, localized
breakdowns in the orientational order stabilized by the medium’s broken symmetries. The
topological defects of nematics have been integral to the study of liquid crystals since the field’s
infancy [1].
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Besides their role as tabletop physical realizations of profound
topological ideas, nematic topological defects—including
disclination lines, point-like hedgehogs, and surface-bound
boojums—are of great interest for their importance in nematic
colloidal suspensions [2]. These composite materials, formed
by suspensions of colloidal particles or nanoparticles in
nematics, promise new routes to directed self-assembly and self-
organization. Nanoparticles in nematics are pushed by elastic
forces to assemble in pre-existing defect lines, meaning that
sculpted disclinations provide a path to controlled nanoparticle
assembly. Applications include plasmonic properties for
metamaterials [3, 4], molecular self-assembly [5], and quantum-
dot assembly in microshells [6, 7]. Even greater complexity
arises in the cases of colloidal particles in the size range of
tens of nanometers to several microns, which often have
companion topological defects and which interact through forces
mediated by nematic elasticity. Self-assembled structures of
colloidal particles with companion defects include bound pairs,
chains [2, 8] and triclinic 3D crystals [9]; with the aid of laser
tweezers, other configurations such as 3D crystals with tetragonal
symmetry [10] and sophisticated disclination knots [11–14] can
be stabilized. Tailored self-assembled colloidal structures hold
promise as optical metamaterials for photonics applications,
such as photonic bandgap crystals and microlasers [15–18].

Nematic defect configurations can also be controlled by non-
trivial boundary surfaces [19]. Substrate patterning strategies
include topographic variations such as “lock-and-key” docking
sites for colloidal particles [20–22] and chemical patterning
where the boundary condition shifts abruptly [23, 24]. Complex
director fields, including disclinations, can be prescribed on
a substrate by photoalignment [25] or by scribing with an
atomic force microscope [26]. Confinement in geometries such
as capillaries [27], droplets [28], shells [29], and thin films [30]
produces a wealth of point- and line-defect behaviors stabilized
by topology and energetics.

The rapidly expanding variety of experimentally created
nematic defect configurations has benefited greatly from the
understanding provided by robust modeling approaches. One set
of approaches is based on the Frank-Oseen elastic free energy,
which penalizes deformations of the nematic director n̂(x), and
which in its simplest form reads

F
(1)
FO = K

2

∫

dV

3
∑

i,j=1

(∂inj)
2. (1)

The superscript (1) refers to the approximation of a single elastic
constant K in this expression. However, the n̂ = −n̂ symmetry
of nematics presents challenges for this model in the presence of
disclinations with half-integer winding number, especially if their
locations are not known beforehand.

This difficulty is resolved by the Landau-de Gennes (LdG)
model, the theoretical approach which is the focus of this work
and which we review in section 2. The LdG framework takes as its
order parameter the second-rank traceless nematic order tensor
Qij(x), and is well-suited to modeling arbitrary disclination
configurations, as well as biaxial nematics and the blue phases

[15, 31]. While little is known analytically about free energy
minimizers in LdG theory in any but the simplest geometries
[32, 33], numerical minimization of the LdG free energy has been
fruitfully applied over a wide range of systems [10–12, 15, 21, 34–
48]. Additionally, flow dynamics of nematics, including active
nematic systems, can be modeled by supplementing the LdG
free energy with hydrodynamical equations as formulated by
Beris and Edwards [49] or by Qian and Sheng [50] and solved
by methods such as lattice Boltzmann [51–55], multiparticle
collision dynamics and related off-lattice methods [56–58],
or finite difference and finite element approaches [59, 60].
Some methods incorporate a fast relaxation of the momentum
compared to the director, to account for the separation in time
scales for these relaxations in typical molecular liquid crystals
[52, 61].

The broad usefulness of the LdG theory goes hand in hand
with a significant limitation of scale: Resolving defects at a
priori unknown locations requires the simulation lattice spacing
to be comparable to or smaller than the size of the defect
core, the region in which nematic order breaks down, which
in thermotropic nematics is typically a few nanometers. This is
often thousands of times smaller than the individualmicron-scale
colloidal particles of interest. Therefore, a faithful rescaling of the
experimental system in numerics would require of order at least
109 lattice sites even for configurations involving only a small
number of such colloids.

Accessing such experimentally relevant lattice sizes presents
computational challenges not often seen in the simulations of
glassy and polymeric soft matter systems. The demands on
system memory quickly become prohibitive: simply maintaining
the five independent degrees of freedom at each lattice site
and storing the necessary change in those variables from one
minimization step to the next at 109 lattice sites requires
80 GB—more than on most current commodity desktops
and larger than the memory capacity of any CUDA-capable
GPU1. Additionally, there is a large direct computational cost
of even simple manipulations acting on so many degrees of
freedom; this contributes to the significant wall-time required for
most numerical energy minimizations and presents challenges
for efficient exploration of parameter spaces and colloidal
particle positions.

Consequently, LdG numerical modeling is typically applied
to systems significantly scaled down, with respect to a fixed
defect core size, as compared with the experiments that they
are intended to model. While important qualitative insights
about defects and director fields can often be obtained by
scaling down the experimental dimensions, the change in size
ratios makes quantitative prediction challenging. There can
also be major qualitative differences. The most well-known
of these is the form of the companion defect to a particle
with homeotropic (normal) anchoring: Micron-scale particles
typically have hyperbolic hedgehog companions (in the absence
of confinement or external fields) [2], whereas particles in the
few hundred nm or smaller size range have disclination loops
in the “Saturn ring” configuration [62, 63]. This constitutes

1As of July, 2019.
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a major challenge in modeling systems with multiple colloid-
hedgehog pairs. Experimental work on high-aspect ratio colloidal
particle shapes observes both hedgehogs and disclination loops,
but numerical modeling has been limited to the line defect case
[35, 38–43, 64, 65]. Adaptive mesh refinement in finite-element
simulations can help to avoid computational and memory
expense in regions not near defects [66] but typically does not
remove the need to scale down.

In this work we present an open-source finite difference-
based implementation of LdG free energy minimization with
non-trivial boundary conditions, “openQmin” [67], using a
combination of approaches designed to address the challenges
described above. It is written for heterogeneous CPU and GPU
operation to target two complementary research goals. First, it
offers a user-friendly GUI environment for rapid prototyping of
topological defect configurations as a function of liquid crystal
parameters, boundary geometry, and the presence of colloidal
inclusions. Simultaneously, it targets large-scale systems using
OpenMPI [68] to support parallelization across both CPU and
GPU resources to scale up to the supra-micron length scales
of experimental relevance. We employ efficient minimization
algorithms, such as the Fast Inertial Relaxation Engine (FIRE)
method, to maintain reasonable convergence times even for
large-scale parallelized calculations.

The remainder of the paper is structured as follows. We
begin with a review of the LdG theory in section 2. Section
3 lays out our numerical approach, first discretizing the LdG
theory for a finite-difference method, and then outlining our
use of minimization algorithms and OpenMPI parallelization.
In section 4 we present two sample studies demonstrating the
effectiveness of this approach. We first perform a classic analysis
of the companion defects to homeotropic spherical particles at
varying system sizes, and then examine the effects of a boundary
patterned with surface disclinations in a supra-micron-scale
system. Section 5 briefly describes the GUI version of openQmin
with an example of the rapid prototyping workflow it enables.
Finally, in section 6, we discuss both the range of use we foresee
for openQmin and some future directions for additional physics
that could be studied in this framework.

2. LANDAU DE-GENNES THEORY FOR
NEMATIC LIQUID CRYSTALS

Here we give a brief overview of those aspects of the LdG
theory used in our numerical approach. The theory is of
course well-established [69] and its use in a finite difference
numerical free energy minimization scheme is described in
several sources; the reader is directed to Ravnik and Žumer [47]
for a thorough explanation.

Uniaxial nematic liquid crystals are characterized by
orientational ordering of nematogens (molecules or suspended
anisotropic particles) along a director, n̂, which is a unit vector
with the identification n̂ = -n̂. To respect that symmetry
consistently, which is important at disclinations of half-integer
winding number, we take as order parameter not a director but a
second-rank tensor. This is the traceless, symmetric tensor field
Q(x), whose lattice discretization is the fundamental object of

the LdG modeling approach.Q is related to n̂ by [70]

Qαβ = 3

2
S

(

nαnβ − 1

3
δαβ

)

+ 1

2
SB(mαmβ − lα lβ ). (2)

Here, S is the degree of uniaxial nematic order, and SB is the
degree of biaxial order distinguishing a preferred direction m̂ ≡
−m̂, perpendicular to n̂, from l̂ ≡ n̂ × m̂. The nematic director
can be recovered as the eigenvector corresponding to the largest
eigenvalue of Q, which equals S. Most nematics are unaxial,
so the equality SB = 0 is true in the absence of distortions
and represents a good approximation away from defects. In this
uniaxial limit, Equation (2) reduces to

Qαβ = 3

2
S

(

nαnβ − 1

3
δαβ

)

. (3)

2.1. Phenomenological Free Energy
Density
The LdG theory constructs a phenomenological free energy F as
a functional of Q(x). We can write this functional schematically
as [47, 70]:

F[Q] =
∫

V

(

fbulk + fdistortion + fexternal
)

dv+
∑

α

∫

Sα

(

f αboundary

)

ds

(4)
The first integral, over the volume of the nematic, has three
free energy density terms incorporating respectively the energetic
costs arising from deviations away from the thermodynamically
preferred degree of nematic order S = S0, from elastic
distortions, and from external fields. The second integral,
summing over all boundary surfaces Sα in contact with the
nematic, incorporates the anchoring energy associated with
each interface, including the surfaces of colloidal particles; its
form may be different for different surfaces. We address each
component in turn.

2.1.1. Bulk Free Energy

The first free energy density term in Equation (4) gives a Landau
free energy for the isotropic-nematic phase transition, written in
terms of rotational invariants of Q in a Taylor expansion about
the isotropic, Q = 0 state [71]:

fbulk =
A

2
tr

(

Q2) + B

3
tr

(

Q3) + C

4

(

tr
(

Q2))2 . (5)

The parameter A ∝ (T − T∗
NI), where T

∗
NI is the temperature at

which the isotropic phase is destabilized. In the uniaxial limit fbulk
becomes a polynomial in the degree of order,

fbulk =
3

4
AS2 + 1

4
BS3 + 9

16
CS4, (6)

which is minimized either by S = 0 or by

S = S0 ≡
−B+

√
B2 − 24AC

6C
. (7)
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In the nematic phase, the absolute value of

f0 ≡ fbulk(S = S0) (8)

provides a free energy penalty per unit volume to themelted cores
of defects, where S → 0.

2.1.2. Distortion Free Energy

The distortion free energy density models the elasticity of the
nematic phase, and represents the LdG counterpart to the Frank-
Oseen free energy density. The latter, in full generality up to
second derivatives of n̂, is

fFO = 1

2

{

K1(∇ · n̂)2 + K2(n̂ · (∇ × n̂)+ q0)
2 + K3|(n̂ · ∇)n̂|2

+K24∇ · [(n̂ · ∇)n̂− n̂(∇ · n̂)]
}

. (9)

The parameters in this expression are the splay (K1), twist (K2),
bend (K3), and saddle-splay (K24) elastic constants, and the
spontaneous chiral wavenumber q0 which is non-zero in the
cholesteric and blue phases. Other common conventions for the
saddle-splay energy density replace K24 in Equation (9) by either
2K24 or 2(K2 + K24). Equation (9) reduces to Equation (1) under
the “one-constant approximation” K1 = K2 = K3 = K24 ≡ K
and q0 = 0. The one-constant approximation is a reasonable
simplification for many molecular liquid crystals, where K1, K2,
and K3 typically differ by less than a factor of 5 [72, 73].

The most general form of fdistortion that we employ, following
Poniewierski and Sluckin [74], Mori et al. [48], and Mottram and
Newton [70], includes all gradient terms of quadratic order in Q

allowed by symmetry, plus one term at cubic order:

fdistortion = L1

2

∂Qij

∂xk

∂Qij

∂xk
+ L2

2

∂Qij

∂xj

∂Qik

∂xk
+ L3

2

∂Qik

∂xj

∂Qij

∂xk

+ L4

2
ǫlikQlj

∂Qij

∂xk
+ L6

2
Qlk

∂Qij

∂xl

∂Qij

∂xk
, (10)

where Einstein summation over repeated indices is implied, and
ǫ is the Levi-Civita tensor. Equation (10) corresponds in the
uniaxial limit to Equation (9) with the identifications [48]

L1 = 2

27S2
(K3 − K1 + 3K2) ,

L2 = 4

9S2
(K1 − K24) ,

L3 = 4

9S2
(K24 − K2) ,

L4 = − 8

9S2
q0K2,

L6 = 4

27S3
(K3 − K1).

The one-constant approximation in the absence of spontaneous
chiral ordering sets L2 = L3 = L4 = L6 = 0, leaving the much
simpler and more computationally efficient form

f
(1)
distortion = L1

2

∂Qij

∂xk

∂Qij

∂xk
, (11)

which corresponds in the uniaxial limit to Equation (1) with
L1 = 2/(9S2)K.

Taking this simpler form of the distortion energy density,
we estimate the defect core size by considering a distorted
uniaxial nematic configuration at S = S0 with n̂ varying with
typical gradient 1/ℓ. Roughly speaking, the energy well depth
f0 (Equation 8) gives the threshold value for fdistortion at which
distortions become so energetically costly that a local melting of
nematic order occurs instead. This length ℓ = ξN , the nematic
correlation length (or coherence length), sets the size of the
defect core:

ξN ∼
√

L1/|f0|. (12)

2.1.3. External Fields Free Energy

The response of the nematic to an external magnetic fieldH or an
external electric field E is modeled by the free energy density term

fexternal = − 1
3µ0Hi1χQijHj − 1

3ε0Ei1εQijEj (13)

where 1χ and 1ε are the anisotropic parts (difference in
principal values corresponding to n̂ and its perpendicular
directions) of the magnetic susceptibility tensor and dielectric
tensor, respectively [34], and µ0 and ε0 are respectively the
magnetic permeability and electric permittivity of free space. (We
omit here the terms for the isotropic parts of these tensors, as they
do not couple to Q). In the uniaxial limit, the right-hand side
becomes − 1

2Sµ01χ(H · n̂)2 − 1
2Sε01ε(E · n̂)2 (again dropping

isotropic terms with no coupling to n̂). Positive 1χ or 1ε will
favor alignment of n̂ withH or E.

2.1.4. Boundary Free Energy

Boundary surfaces, including the surfaces of embedded colloidal
particles, generally impose an anchoring surface energy density
fboundary representing the surface tension’s dependence on the
director at the surface. In terms of the director, a common
modeling choice for the anchoring energy is the Rapini-Papoular
form− 1

2W
α
RP(ν̂

α · n)2 where ν̂α is the surface normal vector and
|Wα| is the anchoring strength of surface α [75]. Homeotropic
(normal) anchoring follows from WRP > 0, whereas WRP < 0
creates degenerate planar anchoring, which equally favors every
direction perpendicular to ν̂α . The same anchoring functional
can favor a different anchoring direction, for example an in-
plane direction in the case of oriented planar anchoring, using
WRP > 0 with the replacement of ν̂α by the favored direction.

In LdG theory, for homeotropic or other oriented anchoring,
the Rapini-Papoular form is generalized as the Nobili-Durand
surface anchoring form [76],

f αboundary = Wα
NDtr

(

(Q−Q0)2
)

= Wα
ND(Qij − Qα

ij )(Qij − Qα
ij ),

(14)
where Wα

ND > 0 is the anchoring strength of surface α and
the surface-preferred Q-tensor, Qα , is usually taken to be Qα

ij =
3
2S0(n

α
i n

α
j − 1

3δij), with n̂α = ν̂α or some other surface-
preferred director.
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For degenerate planar anchoring, the Nobili-Durand form is
not suitable, and we use instead the following free energy due to
Fournier and Galatola [77]:

f αboundary = Wα
FG(Q̃ij − Q̃⊥

ij )(Q̃ij − Q̃⊥
ij ), (15)

where Q̃ij = Qij + S0δij/2 and Q̃⊥ is the projection onto ν̂α via
Q̃⊥
ij = PikQ̃kℓPℓj for Pij = δij − να

i να
j . Assuming Q is uniaxial

with S = S0, the Rapini-Papoular anchoring is recovered with
Wα

RP = 9S20W
α
ND,FG.

3. NUMERICAL APPROACH

3.1. Overview
The primary contribution of this work is the presentation of
an open-source numerical implementation that exploits the
embarrassingly parallel structure of the lattice discretization
of the above phenomenological theory. Our implementation,
combining CUDA/C++ [78] and OpenMPI [68], was written
with extreme flexibility in mind to allow users to accelerate
simulations large and small using combinations of available
CPU and GPU resources in either single- or multiple-
core configurations.

The foundation of the software package,
“dDimensionalSimulation,” is a set of generic classes meant
to execute simulations of N interacting units, each consisting of
d scalar degrees of freedom, using data structures appropriate
for efficient execution on either CPU or GPU resources.
These generic classes serve as the template for models which
instantiate the dN total degrees of freedom, forceswhich compute
interactions between degrees of freedom, updaters which can
change the degrees of freedom (e.g., by implementing equations
of motion), and simulations which tie objects of these various
types together. The present work focuses on implementing the
details of these classes to carry out lattice-based LdGmodeling to
find energy-minimized configurations of equilibrium nematics
in the presence of various boundary conditions. The general
structure we have employed was chosen to allow flexibility in
future development, for example to derive new model classes
which include not only theQ-tensor but also density and velocity
degrees of freedom, as would be appropriate for modeling active
nematic systems [53–55, 60].

In addition to writing efficient code to carry out the required
lattice-based minimizations of the Q-tensor field in a domain,
we also advocate the use of the graphical user interface (GUI)
we developed to rapidly prototype and explore the effects of
particular boundaries, colloidal inclusions, and external fields
that may be of experimental interest. The GUI allows a wide
variety of user operations—adding boundary objects at any stage
of the simulation, starting and stopping minimization, adding
or removing external fields at will—all while visualizing the
resulting defect structure and recording configurational details.
A snapshot of the GUI is shown in Figure 1, and more details
of the available features are given in section 5. We envision that
this capability will allow for rapid prototyping of experimental
geometries in the search for particular controllable defect states;
running on a single GPU allows real-time visualization of lattices

in the low-millions of total sites. We have also included several
example files that use the code in a non-GUImode; these can then
use OpenMPI to parallelize across either CPU or GPU resources
to scale up to lattices that represent supra-micron-scale liquid
crystal systems.

3.2. Lattice Discretization and Energy
Minimization
The finite difference lattice calculations employed in this work
use a regular cubic lattice discretization of space, with a Q-
tensor defined at each site Ex = {x, y, z}. The lattice spacing
1x can be related to physical quantities through a natural non-
dimensionalization of the free energy density, f̃ ≡ f /|A|, which
implies a non-dimensionalization of the elastic constants L̃i ≡
Li/(|A|1x2). In the one-constant approximation, we thus have
1x2 = L1/(L̃1|A|). In this work we set L̃1 = 2.32. To model
5CB, following Ravnik and Žumer [47] we take A = −0.172 ×
106 J/m3, B = −2.12 × 106 J/m3, C = 1.73 × 106 J/m3, and
K = L1 · 9S20/2 = 1 × 10−11N where S0 ≈ 0.53. These give a
lattice spacing of 1x ≈ 4.5 nm, which is at the few-nm scale of
the defect core in 5CB. Note that the non-dimensionalization of
all constants by an energy scale |A| and a length 1x is implicitly
made for all values in openQmin, including in the GUI.

The symmetry and tracelessness of Q leaves five
independent degrees of freedom, which we take to be
Eq ≡ {Qxx,Qxy,Qxz ,Qyy,Qyz} at each of the N lattice sites
in the simulation domain. We write the local free energy density
f (Ex) in terms of these five independent variables, so that the
symmetry and tracelessness of Q are automatic (rather than
being maintained by projection operations following update
steps [47]). We also label each site with an integer “type,”
indicating whether it is a bulk site, a boundary site, or a site
inside an object (for instance, the interior of a colloidal inclusion,
or part of a bounding surface), depending on the geometry of
the problem. Only bulk and boundary sites are “simulated sites,”
meaningQ is defined there.

We discretize the total free energy, F = ∑N
i=1 f (Exi), using a

finite-difference approach over the 5N independent variables. For
the distortion terms we allow the user to select either the more
general expression, Equation (10), or the more computationally
efficient expression of Equation (11). For the terms in fdistortion
which contain spatial first derivatives of Q, we consider first-
order forward and backward finite difference approximations,

(

∂Qij

∂xk

)

(Ex) ≈
{

Qij(Ex+ x̂k)− Qij(Ex) (forward)

Qij(Ex)− Qij(Ex− x̂k) (backward).
(16)

Here x̂k is the unit vector in the xk direction, and Ex is the site
where the calculation is taking place. The choice of a regular cubic
lattice makes these derivative approximations straightforward to
calculate. The forward and backward finite differences are each
compatible with the simulation domain only if (Ex+ x̂k), (Ex− x̂k),
respectively, are simulated (bulk or boundary) sites. We then
take, as the discretized expression of f , Equation (4) averaged over
all forward and backward finite difference expressions for each of
k = 1, 2, 3 that are allowed by the geometry of the simulation
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FIGURE 1 | Snapshot of the graphical user interface provided by openQmin, here shown simulating the defect structure near a pyramidal colloid above a

topographically non-trivial boundary, all with oriented anchoring along user-specified directions to approximately model homeotropic surfaces.

domain. A bulk site, therefore, has a local free energy averaged
over 23 such combinations, while a boundary site has fewer.
We use these averages over different expressions for the finite
differences, rather than using a single centered finite difference
formula (∂Qij/∂x)(Ex) ≈ 1

2 [Qij(Ex+x̂k)−Qij(Ex−x̂k)], because using
the latter form in Equation (11) produces no terms coupling
Qij(Ex) to its nearest neighbors, of the form Qij(Ex)Qij(Ex± x̂k). This
use of the centered first derivative expression would therefore
create an artificial (and undesirable) lattice doubling effect in our
approach, with even sites and odd sites evolving independently.
For curved boundaries such as on spherical colloidal particles,
well-known inaccuracies are introduced in the finite difference
calculations by the discretization of boundaries as sites in the
cubic lattice [79]. Specifically, errors of order O(1x) in Qij(Ex)
are introduced, leading to truncation errors of O(1) (which do
not diverge as the lattice spacing is refined) in the first derivative
approximations of Equation (16).

Finally, we minimize F as a cost function over the 5N
independent variables qi(Exj), i = 1, . . . , 5, j = 1, . . . ,N. The
gradient of F in this 5N-dimensional space is calculated by
explicitly differentiating the expression for F with respect to
each qi(Exj) degree of freedom. This explicit differentiation of a
cost function is an alternative to the approach of analytically
deriving local forces (molecular fields) from the Euler-Lagrange
equations, projecting to recover symmetry and tracelessness, and
then discretizing those expressions. While the Euler-Lagrange
equations have separate forms for the bulk and the boundaries, in
the approach used here forces are derived from the cost function
in formally the same way for bulk and boundary sites.

We emphasize that by discretizing space, we can directly map
the problem of solving the LdG partial differential equations
to finding the minima of a complex energy landscape (where

the Q-tensors on each lattice site are the degrees of freedom).
For instance, many PDE solvers implement steepest descent
relaxation, which can be directly interpreted as overdamped
molecular dynamics at zero temperature. This allows us to
turn to the wealth of existing algorithmic approaches from
the field of non-linear optimization, including minimization
techniques such as quasi-Newton methods (conjugate), gradient
descent, and momentum-based techniques such as Nesterov’s
accelerated gradient [80]. Since our aim is to be able to scale up
to large systems, we ignore minimizers which require second-
order derivatives of the cost function, and we find that even
limited-memory quasi-Newton methods such as L-BFGS impose
too-strong a memory requirement for many of our purposes.
Additionally, while conjugate gradient is appealing in having only
marginal extra memory requirements and beingmuch faster than
simple gradient descent, it involves frequent line searches that
require expensive repeated evaluations of the free energy density
and imposes additional parallelization costs.

Thus, although we have implemented many of the above-
named minimizers in openQmin, we focus our attention
on the use of the Fast Inertial Relaxation Engine (FIRE)
method of energy minimization [81]. FIRE falls into the class
of “gradient plus momentum”-style minimization algorithms,
and it additionally rescales the “velocity” (fictitious additional
variables introduced to make the analogy with molecular
dynamics even more complete and corresponding to the
velocities at which the Q-tensor components change) of the
degrees of freedom and adaptively changes the size of the
time step itself based on the behavior of the force and
velocity during the most recent update. For convex optimization
problems the addition of inertia can be proven to enhance
convergence [82], although for more complex energy landscapes
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Algorithm 1: Pseudocode for FIRE minimization [81].

InitializeQ-tensors at each lattice site, set velocities vi to
zero;
whileMinimization criteria not satisfied do

Update qi(Exj), force= −∇F , and vi using a velocity
Verlet step;
Calculate power, P, as the dot product of the force and
velocity vectors;
Rescale velocity by a parameter α which sets the inertia
of the degrees of freedom;
if P > 0 then

if P has been positive for more steps than a threshold,
Nmin then

Increase the time step size and increase α.
end

else
Decrease the time step size, reset velocities to zero,
reset α to initial value;

end

end

in general little can be proven. Thus, while it is a heuristic
approach, FIRE has been shown to be competitive with
(or even faster than) conjugate gradient minimization [81,
83, 84], all while maintaining an extremely light additional
memory footprint and being highly amenable to parallelization
across multiple cores or multiple GPU units. Note that FIRE
was originally developed with atomistic simulations in mind,
but it is increasingly being used more generally, including
in the solution of PDEs [85] and in machine learning
applications [86]. By the straightforward mapping mentioned
above we are able to directly apply the pseudocode presented
in Algorithm 1.

We first demonstrate this efficient minimization in Figure 2,
where we compare the system energy and average norm of
the force on the degrees of freedom during the minimization
of a lattice of N = 2503 sites in a cubic geometry with
periodic boundary conditions. To make a fair comparison,
we have performed both a FIRE and a gradient descent
(GD) minimization on the same system using separately
tuned minimization parameters for each algorithm. We use
the same hardware for each simulation, and report the
minimization progress in terms of the wall-clock time taken.
Although it is sometimes common to report efficiency in
such comparisons in units of function calls, for algorithms
with very different numbers of arithmetic operations (each
FIRE iteration requires more than twice the number of
arithmetic operations compared to GD) such comparisons are
often misleading.

As Figure 2 makes clear, even in the trivial case of finding
the uniform nematic ground state for a system with no
boundary terms from a system initialized with random Q-
tensors at each lattice site, FIRE provides orders of magnitude
improvement in the time taken to findminima. This performance
of our default minimizer is not restricted to simple, bulk
states of the liquid crystals. As we demonstrate in Figure 3

FIGURE 2 | (Red) Energy relative to the uniform texture with preferred nematic

order, F −Fmin, and (blue) the norm of the residual force vector,

|F| =
√
∇F · ∇F/N, for bulk nematic (lattice size is N = 2503), starting from a

randomly initialized configuration, as a function of wall-clock time. Solid lines

are minimizations using FIRE and dashed lines are those using gradient

descent. As described in the text, we have tuned the minimization parameters

(step size, etc.) for each algorithm separately and use identical hardware to

make a one-to-one comparison.

for a handful of simple (and well-studied) arrangements of
colloidal inclusions and boundaries, FIRE is very rapidly able
to find these more complex minima, too. As with any non-
convex optimization solver, though, no guarantees are made
by FIRE about avoiding particular local minima in favor
of a true global minimum. Where this is a concern, we
adopt the standard approach of minimizing from multiple
different random initializations. Particularly when coupled with
a GPU, the substantial acceleration of FIRE-based minimizations
enables the usefulness of the GUI, as the evolution of defect
structures in response to user-instigated changes can be seen in
real time.

Although numerical simulations of this size have been
commonly used to make contact with experiments, in single-
core operation it is impractical to simulate lattices much larger
than N ∼ 3003, with the limiting factor being the wall-
clock time required for CPUs and memory constraints for
GPUs. Given a simulation with N degrees of freedom and
spreading the work across P processing units (either GPUs or
CPUs), achieving ideal N/P scaling requires both low-latency
communication between processors and algorithms that are
themselves linear inN/P. Fortunately, lattice-based models with
only nearest- and next-nearest-neighbor interactions are trivial
to parallelize using a pattern common to, e.g., spin glasses
[87]. We use a standard spatial decomposition of the total
number of lattice sites into rectilinear sub-regions (typically
cubes, although other spatial partitions are easily implemented
and may be preferable for some simulation geometries). Each
processing unit is assigned to one of these subregions, and
is responsible for controlling and updating the lattice sites
in that subregion. It also maintains information about the
state of the “halo” of lattice sites that are neighbors, nearest-
neighbors, and next-nearest neighbors of lattice sites at the
boundary of the subregion it controls. Standard OpenMPI
protocols [68] are used during each simulation step to
communicate information about the state of these halo sites
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FIGURE 3 | (A) Energy relative to the minimized energy for three different geometries as a function of wall-clock time, in a lattice of size N = 2503 and starting from a

randomly initialized configuration. As in Figure 2, solid lines are minimizations using FIRE and dashed lines are those using gradient descent. As depicted in (B)

showing the minimized configurations, the three sets of lines correspond to (Blue) two spherical colloids between parallel plates, all with homeotropic anchoring, (Red)

the interior of a spherical droplet with homeotropic anchoring, and (Purple) a spherocylinder with homeotropic anchoring between parallel plates with degenerate

planar anchoring. These images were created using the “multirankImages.nb” Mathematica file included in the repository for making simple visualizations.

to and from each processing unit in optimized sequences of
uni-directional transfers.

We now assess how our method’s efficiency scales as the
problem size is increased. Although strong scaling (Amdahl’s
law)—in which the total problem size is kept fixed and P is
increased—is often important, it is well-established that the
structure of the near-neighbor lattice interactions we simulate is
embarrassingly parallel. Our real aim is to scale up the problem
size itself and use many processors to simulate lattices that
approach experimental scales. As such, weak scaling (Gustafson’s
law)—in which the amount of work per processing unit is kept
constant—is the relevant test.

One challenge to mention here is that when targeting
energy minima—as opposed to simply advancing a molecular
dynamics simulation for a fixed number of time steps—
the number of minimization steps itself grows with the
total system size. In general the convergence properties of
different minimizers in non-convex settings are highly non-
trivial. For simple geometries we are able to numerically
probe this scaling—for instance, we find that in the absence
of any boundary the number of minimization steps to
achieve a target small force tolerance scales with the linear
size of the system, whereas in the presence of a spherical
colloid it scales roughly with L3/2. In general, though, the
approximate scaling may be hard to ascertain (and may depend
on the target threshold for declaring a configuration to be
in a minimum).

Turning instead, then, to the per-minimization-step timings,
we present the weak scaling performance of openQmin in
Figure 4, where we compute the total number of lattice-site
updates (i.e.,N times the number of simulated time steps) during
a minimization in which we fix Np, the number of lattice sites
per processing unit, at several values and vary P. Consistent
with a globally cubic simulation, we parallelized across P =

FIGURE 4 | Weak scaling performance of openQmin on Comet, in total

number of lattice site updates [i.e., (time steps)×(ranks)×(Np)] per second vs.

the number of CPU processes, P, for a constant number of lattice sites per

process. The points from dark red to light blue correspond to

Np = 753, 1003, 1253, 1503, 2503 lattice sites per rank. The dashed gray

line corresponds to ideal ∝ P scaling.

13, 23, 33, 43, 53, 63, 73, 83, 93, 103 processors on the
Comet XSEDE cluster, and studied computational performance
for Np = 753, 1003, 1253, 1503, 2503. As expected, there
are systematic drops due to increased communication costs as
one goes from 1 core to multiple cores to multiple nodes, but
openQmin recovers ideal linear scaling of lattice updates with
P as P grows very large. Additionally, there is a systematic
degradation of performance for small Np, since in that case there
is a more unfavorable ratio of halo sites to controlled sites for
each processor.

Note that when we set the characteristic lattice spacing to
correspond to 4.5 nm, the largest system simulated in this study,

Frontiers in Physics | www.frontiersin.org 8 December 2019 | Volume 7 | Article 204

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Sussman and Beller Fast, Scalable, and Interactive Nematic Modeling

Np × P = (2503) × 103, corresponds to a simulation domain of
volume 1,424 µm3.

4. SAMPLE STUDIES

4.1. Companion Defects to Homeotropic
Spherical Colloids
In this section we apply openQmin to the question of
whether a hyperbolic hedgehog or a Saturn ring disclination
loop provides the minimum-energy form of the topological
companion defect to a homeotropic spherical colloid. As
mentioned above, a larger colloid radius a favors the dipolar
configuration with a hedgehog, whereas smaller a favors the
quadrupolar configuration with a Saturn ring. As a result,
the common rescaling of experimental dimensions to smaller
a/ξN in numerical modeling risks obtaining qualitatively
different topological defect configurations. Besides increasing the
simulation box size, altering the modeled material constants
can restore qualitative agreement between experiment and
simulation. Here we explore the issue in detail, using openQmin
to systematically investigate the stability of hedgehogs relative to
Saturn rings over a range of sizes and material parameters.

The dipolar configuration with a hyperbolic hedgehog is the
ground state for homeotropic colloidal particles near or above
the micron scale [2]. Terentjev’s prediction of the alternative
quadrupolar director field configuration with a Saturn ring
disclination loop [62] can be stabilized for large particles by
confinement or external fields [88, 89]. Stark [63] demonstrated
numerically using the Frank-Oseen free energy that the Saturn
ring becomes metastable relative to the dipole for a . 720 nm,
with a defect core size rc = 10 nm. For a . 270 nm, the Saturn
ring becomes the global ground state.

While the elastic energies of the two configurations are
complicated to express, the Saturn ring is additionally penalized
by a simple core energy per unit length, or line tension, γ =
πK/8 [63, 69]. Because the Saturn ring maintains a radius rd just
slightly larger than that of the colloidal particle, rd ≈ 1.1a [63],
the total defect core energy penalty Ec = 2πrdγ ∝ Krd of the
Saturn ring grows linearly with the colloid radius. In contrast,
the hyperbolic hedgehog has no defect core dimension growing
in size with the colloidal particle, helping to stabilize the dipole
over the Saturn ring at larger colloid sizes.

In order to numerically model multi-particle configurations in
the dipolar size regime—if we cannot exploit crystal symmetries
to obtain a small unit cell [10, 45]—we must either scale up the
simulation volume to larger lattices, or stabilize the dipole at
smaller particle sizes. We can achieve the latter by altering the
materials-constant ratios B̃ ≡ B/A, C̃ ≡ C/A in Equation (5).
Together, these two ratios determine S0 via Equation (7), as well
as the non-dimensionalized free energy density of the nematic
ground state f̃0 ≡ f0/A with the energy well depth f0 defined as in
Equation (8).

By varying B̃ and C̃ such that S0 remains fixed, we alter
the energetic cost per unit volume of melted nematic order
in defect cores, |f0|. The defect core size rc varies with the
nematic correlation length ξN , which, from Equation (12), scales

as ∼
√

L1/|f0|. Thus, an increase in |f0| implies a decrease in the
defect core size, which means effectively that the ratio a/rc of the
particle size to the defect core size is increased without changing
the size of the simulation lattice. The dipolar configuration is
therefore expected to remain stable at smaller particle sizes. This
technique was used in Luo et al. [37] to model a dynamical
transition from Saturn ring to dipole as a colloidal particle
approaches an undulated boundary, at simulation box sizes up
to 50 times smaller than the experimental dimensions.

The results of this study are shown in Figure 5, which we
parameterize by varying B̃ at fixed S0 = 0.53 [i.e., setting
C̃ = (−2 − B̃S0)/(3S20)], along with the size of the spherical
colloid and the lattice size. We test the stability of hyperbolic
hedgehogs by initializing the surrounding lattice sites in the
dipolar defect configuration suggested by Lubensky et al. [90],
performing an energy minimization, and testing whether the
resulting configuration has remained in the hedgehog state or
transitioned to a Saturn ring configuration (thus, testing the
meta-stability of the dipolar defect state as a function of system
parameterization). At the values B̃ ≈ 12, C̃ ≈ −10 commonly
used in modeling of 5CB [47], we find that the lower limit of
hedgehog meta-stability is a ≈ 74 lattice spacings, or about 330
nm. In this sample study we have imposed a large but finite
anchoring strength at the colloid’s surface. Weaker anchoring
strength will affect the results, with a “surface ring” configuration
replacing the dipole at low anchoring strength [63].

We have also tested the meta-stability of the quadrupolar
defect configuration by initializing the system in a Saturn
ring configuration and minimizing, but we have not observed
the spontaneous appearance of hedgehog defects from such
simulations, indicating at least the meta-stability (if not absolute
stability) of Saturn rings over the entire parameter range studied
here. In addition to the effect of defect core size mentioned
above, slight deviations in hedgehog meta-stability as a function
of lattice size at fixed B̃ and a seen in Figure 5 indicate the
importance of far-field distortion terms on the (meta-) stability
of defect configurations.

4.2. Patterned Boundary Conditions
To demonstrate the modeling of patterned boundaries in
openQmin, we examine a square array of alternating ±1
disclinations imprinted as a spatially varying anchoring direction
on a planar substrate. Such an array was created experimentally
by the authors of Murray et al. [26], by scribing lines into a
polyimide surface with an atomic force microscope. As in that
experiment, we give the opposing surface degenerate planar
anchoring. In openQmin, these boundary conditions are specified
at each boundary lattice site through a user-prepared text file (see
section 5 below). We employ periodic boundary conditions in
the horizontal directions, and the anchoring strength W at both
surfaces is set to make the extrapolation length K/W roughly
equal to the lattice spacing.

Figure 6A shows the result of minimizing a cell of thickness
h = 224 lattice spacings, corresponding to≈ 1 µm for 5CB, and
a spacing d between defects equal to h. We create an 8× 8 array
of defects, so the total volume modeled is 64 µm3, larger than
the maximum size achievable with single core minimizations
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FIGURE 5 | Stability of dipolar defects around a spherical colloidal inclusion at fixed S0 = 0.53 as a function of dimensionless bulk free energy density constant B̃,

colloid size a, and linear system size L, with a and L in units of the lattice spacing. Regions of parameter space with (meta-)stable dipolar configurations are shown

with blue diamonds, stable quadrupolar configurations are shown with red circles. (Left) For fixed lattice size of N = 2753, we vary the dimensionless bulk free energy

density constant B̃ and the colloidal radius a. (Right) For fixed ratio of colloidal radius to linear system size, a = 0.22× L = 0.22× N1/3, we vary B̃ and L. Particularly

for the larger values of a, one can see dependence of hedgehog meta-stability on L, indicating the importance of far-field distortions and boundary conditions (here,

periodic).

on a typical CPU (≈ 10 − 20 µm3). Simulating several unit
cells of the substrate patterning in this way allows us to observe
a labyrinthine configuration of half-integer disclination lines
near the plane of the substrate, connecting neighboring surface-
defects. Meanwhile, some disclination lines are vertical, traveling
between the two surfaces and imprinting a + 1

2 or − 1
2 defect

profile on the top surface. The stopping condition for the
minimization here was a somewhat modest force tolerance,
allowing these large-system-size studies to be completed in less
than 24 hours. While clearly not completely equilibrated, the
horizontal disclination labyrinth is similar to a domain wall
texture observed experimentally in Murray et al. [26], which may
also be kinetically trapped. Absent from the texture in Figure 6A

is the ±1 non-singular escaped configuration, which did appear
in the experiments.

The energetic cost per unit length of disclination lines implies
that the vertical configuration is favored by smaller cell thickness
h. Indeed, as shown in Figure 6B, when we decrease h/d from
1 to 1

6 , only vertical disclinations appear, in pairs of + 1
2 or

− 1
2 disclinations from the “splitting” of the ±1 surface defects.

This defect splitting was sometimes observed in Murray et al.
[26] in place of the escaped configuration. Conversely, as shown
in Figure 6C, only horizontal disclinations appear when h/d is
increased to 2. Extensions to even larger defect arrays, to curved
boundaries, and to spatially non-uniform anchoring types can be
explored in the same manner in openQmin.

5. RAPID PROTOTYPING WITH GUI
INTERFACE

Figure 1 shows a screenshot of the graphical user interface in
action; the Supplemental Video and accompanying narrative
transcript of the video in Supplementary Data Sheet 1 shows
a representative demonstration of its use. Here we discuss

some of its current functionality. Initialization dialog boxes
allow the user to set the simulation size, the computational
resource to use (CPU or GPU, auto-detecting whether CUDA-
capable resources are available for use), and parameters for
the bulk and distortion free energy density. This generates
a random bulk configuration of Q-tensor lattice sites with
periodic boundary conditions. For the visualization pane the
user can specify the density and magnitude of directors to
draw (taken to be the direction of the largest eigenvector
of Q at each site), and can freely rotate and zoom in on
the configuration, as well as highlight in blue defects defined
locally by regions where the largest eigenvalue of Q falls below
some threshold.

In the top left are buttons allowing the user to specify
parameters from one of two energy minimization techniques
to use (FIRE and Nesterov’s Accelerated Gradient Descent);
the resulting dialog boxes are populated with values that we
typically find to be efficient for default parameter choices in
the bulk and distortion energies, although some amount of
tuning may be quite beneficial (particularly when changing
the distortion terms L2 through L6). The “Minimize”
button performs the requested energy minimization (either
until a target force tolerance is attained or the maximum
number of iterations is reached), with the option to visualize
the results only at the end or to watch the minimization
proceed. The “File” dialog box allows the currently visualized
state of the system to be saved for separate analysis
or processing.

Note that menu items allow any of the terms in the energy
functional governing the simulation, Equation (4), to be changed
on the fly. This allows, for example, the user to first minimize
a system with some values of the distortion constants and then
perform repeated minimizations as those values are changed,
observing the stability ormeta-stability of defect structures as this
is done.
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FIGURE 6 | Numerically computed disclination configurations near planar substrates patterned with square arrays of alternating ±1 surface disclinations. The

opposite planar boundary (transparent square) has degenerate planar anchoring. (A) An 8 × 8 array of surface disclinations with spacing equal to the cell thickness.

(B) A 2 × 2 array of surface disclinations with spacing equal to six times the cell thickness. (C) A 4 × 4 array of surface disclinations with spacing equal to half the cell

thickness. Configurations in (A–C) are partially energy-minimized. Disclinations are colored blue. Axes values are given in units of the lattice spacing. In each row, the

second panel shows a top view of the disclinations in bulk and the director field in the plane of the patterned substrate; the third panel shows a top view of the director

field on the opposite surface, along with the half-integer disclination points (if any) in that surface. These images were made using the “visualize.py” Python script

included in the repository for taking saved configurations and making simple visualizations from the command line.

Two buttons allow the user to introduce boundaries and
colloidal inclusions into the system. “Simple” objects are spheres
and flat walls with either normal homeotropic or degenerate

planar anchoring conditions. Arbitrarily complex boundary
conditions (taking any shape, with degenerate planar and
homeotropic anchoring conditions not restricted by the direction
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of the surface normal) can be added by preparing a simple text file
that the program can read in – an example script that generates
the custom boundary file used in Figure 1 is included in the
“/tools” directory of the project’s GitHub repository [67].

With boundaries and colloids (“objects”) in place, some
manipulations of these objects are accessible via drop-down
menus. The positions of these objects within the simulation
can be directly modified, so the user could place an ellipsoidal
particle, perform a minimization, change the position, re-
minimize the system, and record the different energy minima
attained. We include an option to automate this type of
operation (which can be used to build up the potential of
mean force from the liquid crystal and colloid interactions)
for convenience. A near-term addition will be allowing objects
to move according to the integrated stresses at their surface
(or according to the energetic results of various trial moves);
the user will then be able to separately “Minimize” just
the liquid crystal sites or “Evolve [the] system” by allowing
both liquid crystalline and colloidal degrees of freedom to
change simultaneously.

Finally, to facilitate moving from GUI prototyping to larger-
scale MPI studies, we have included the ability to record
system initialization and sequences of commands entered in
the graphical user interface, and then save this sequence of
commands as a new file that can be separately compiled and
executed in non-GUI operation. This file has its own set of
command line options, primarily so that it can be made to work
as anMPI executable and so that the system size of the simulation
it represents can be rescaled to a larger value. We highlight
this GUI-prototyping approach as a visual alternative to the
scripting-language approaches of molecular-dynamics packages
like LAMMPS [91] or HOOMD-blue [92] for specifying complex
sequences of system initialization, energy minimizations, and
the introduction of objects, fields, and boundary conditions.
We believe that this seamless visual-prototyping-to-MPI-scalable
pipeline will be beneficial to researchers interested in accessing
experimental-scale simulations.

6. DISCUSSION

As demonstrated in our sample study, openQmin utilizes
MPI to enable LdG modeling at typical size scales of
experimental relevance, at the ∼ 10 µm range, with
fast convergence enabled by the FIRE algorithm. Besides
the colloidal defect configurations and patterned boundaries
discussed here, another immediate use is for the study
of cholesterics, where typically fewer than ten pitches can
fit inside a simulation box using a single processor, but
using openQmin tens of pitches can be modeled. While
it may not be realistic at present to frequently conduct
simulations with 103 processors, using openQmin on computer
clusters will facilitate demonstration of how numerical results
scale with system size, allowing reasonable extrapolations to
experimental scales.

For modeling at the ∼ 1 µm range or smaller, openQmin’s
combination of FIRE with GPU computing offers a substantial

speedup, enabling users to manipulate the simulated
conditions in a GUI environment and observe the change
in energy-minimized configurations. The GUI is useful for
running “real-time” tests of proposed configurations which can
then be modeled at larger scales with MPI.

Likewise, the GUI will also be useful to experimentalists
in quickly identifying more optimal properties of nematics,
colloidal particles, boundaries, etc. in order to achieve
targeted topological or self-assembled configurations.
In general, numerical modeling can aid experimental
studies not only in developing theoretical understanding
of nematic structures and energy landscapes, but also in
performing high-throughput searches through these design
spaces. For example, geometric compatibility conditions
favoring lock-and-key assembly of particles and patterned
walls [21, 37], or particle design promoting assembly into
photonic crystals, can be optimized more efficiently in
numerics, to help guide the increasingly sophisticated uses
of fabrication techniques such as photolithography and two-
photon polymerization [93]. An ambitious but important
direction for future development is therefore to efficiently
explore design parameter spaces in numerical modeling,
possibly employing genetic algorithms and techniques from
machine learning.

There are some near-term directions for future development
of openQmin that we anticipate will increase the usefulness of this
open-source software to the liquid crystals research community.
An expanded library of Q-initialization options will facilitate
investigations of chiral liquid crystals, topologically entangled
or knotted defect configurations [11–14], and periodic defect
arrays [26, 94], for example. A major advance would be adding
a flow field coupled to Q by Beris-Edwards nematodynamics, for
investigations of microfluidic geometries and active nematics.

Incorporating motion of colloidal particles into the modeling
is another area for useful developments. In the experimental
system, energy is minimized not only over Q but also over
the positions and (if applicable) orientations of colloidal
particles. At present, openQmin takes these latter degrees of
freedom as input parameters, and a free energy landscape
can be mapped either informally using the GUI or more
systematically on a computer cluster. Thus one desired future
improvement is to allow overdamped translation and rotation
of colloidal particles within the program, downhill in the energy
landscape, based on trial moves or on estimated nematic elastic
stresses felt by the particle [46]. The trial move approach,
requiring several re-minimizations of Q at each time step, is
made less cumbersome by improved convergence speed of the
FIRE algorithm.

Finally, we hope that openQmin’s GUI interface will be
useful in physics education. Interacting with a fast and
“hands-on” version of the numerical modeling, students
at the undergraduate or beginning graduate level can
quickly gain experience and intuition for liquid crystals.
This will help to capitalize on the position of liquid crystals
as one of the most accessible, and visualizable, physical
realizations of abstract topological ideas relevant to many areas
of physics.
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18. Muševič I. Interactions, topology and photonic properties of liquid crystal
colloids and dispersions. Eur Phys J Spec Top. (2019) 227:2455–85.
doi: 10.1140/epjst/e2019-800107-y

19. Serra F. Curvature and defects in nematic liquid crystals. Liq Cryst. (2016)
43:1920–36. doi: 10.1080/02678292.2016.1209698

20. Hung FR, Gettelfinger BT, Koenig GM Jr, Abbott NL, de Pablo JJ.
Nanoparticles in nematic liquid crystals: interactions with nanochannels. J
Chem Phys. (2007) 127:124702. doi: 10.1063/1.2770724

21. Eskandari Z, Silvestre N, da Gama MT, Ejtehadi M. Particle selection through
topographic templates in nematic colloids. Soft Matter. (2014) 10:9681–7.
doi: 10.1039/C4SM02231A

22. Luo Y, Serra F, Stebe KJ. Experimental realization of the “lock-and-
key” mechanism in liquid crystals. Soft Matter. (2016) 12:6027–32.
doi: 10.1039/C6SM00401F

23. Guillamat P, Sagués F, Ignés-Mullol J. Electric-field modulation of liquid
crystal structures in contact with structured surfactant monolayers. Phys Rev
E. (2014) 89:052510. doi: 10.1103/PhysRevE.89.052510

24. Kos Ž, Ravnik M. Relevance of saddle-splay elasticity in complex nematic
geometries. Soft Matter. (2016) 12:1313–23. doi: 10.1039/C5SM02417J

25. Peng C, Guo Y, Conklin C, Viñals J, Shiyanovskii SV, Wei QH, et al. Liquid
crystals with patternedmolecular orientation as an electrolytic active medium.
Phys Rev E. (2015) 92:052502. doi: 10.1103/PhysRevE.92.052502

26. Murray BS, Pelcovits RA, Rosenblatt C. Creating arbitrary arrays of
two-dimensional topological defects. Phys Rev E. (2014) 90:052501.
doi: 10.1103/PhysRevE.90.052501

27. Williams C, Cladis P, Kleman M. Screw disclinations in nematic samples
with cylindrical symmetry. Mol Cryst Liquid Cryst. (1973) 21:355–73.
doi: 10.1080/15421407308083329

28. Volovik G, Lavrentovich O. Topological dynamics of defects: boojums in
nematic drops. Zh Eksp Teor Fiz. (1983) 85:1997–2010.

29. Nelson DR. Toward a tetravalent chemistry of colloids. Nano Lett. (2002)
2:1125–9. doi: 10.1021/nl0202096

Frontiers in Physics | www.frontiersin.org 13 December 2019 | Volume 7 | Article 204

https://www.frontiersin.org/articles/10.3389/fphy.2019.00204/full#supplementary-material
https://doi.org/10.1051/anphys/192209180273
https://doi.org/10.1126/science.275.5307.1770
https://doi.org/10.1021/nl072613g
https://doi.org/10.1021/nl9042104
https://doi.org/10.1038/nmat4421
https://doi.org/10.1039/c3tc31043d
https://doi.org/10.3390/photonics2030855
https://doi.org/10.1126/science.1129660
https://doi.org/10.1126/science.aaf0801
https://doi.org/10.1038/ncomms2486
https://doi.org/10.1103/PhysRevLett.99.247801
https://doi.org/10.1126/science.1205705
https://doi.org/10.1073/pnas.1405928111
https://doi.org/10.1103/PhysRevLett.113.027801
https://doi.org/10.1073/pnas.1015831108
https://doi.org/10.1073/pnas.1102130108
https://doi.org/10.1364/OE.18.026995
https://doi.org/10.1140/epjst/e2019-800107-y
https://doi.org/10.1080/02678292.2016.1209698
https://doi.org/10.1063/1.2770724
https://doi.org/10.1039/C4SM02231A
https://doi.org/10.1039/C6SM00401F
https://doi.org/10.1103/PhysRevE.89.052510
https://doi.org/10.1039/C5SM02417J
https://doi.org/10.1103/PhysRevE.92.052502
https://doi.org/10.1103/PhysRevE.90.052501
https://doi.org/10.1080/15421407308083329
https://doi.org/10.1021/nl0202096
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Sussman and Beller Fast, Scalable, and Interactive Nematic Modeling

30. Lavrentovich O, Nastishin YA. Defects in degenerate hybrid aligned nematic
liquid crystals. Europhys Lett. (1990) 12:135. doi: 10.1209/0295-5075/12/2/008

31. Wright DC, Mermin ND. Crystalline liquids: the blue phases. Rev Modern

Phys. (1989) 61:385. doi: 10.1103/RevModPhys.61.385
32. Alama S, Bronsard L, Lamy X. Minimizers of the Landau–de Gennes energy

around a spherical colloid particle. Arch Ration Mech Anal. (2016) 222:427–
50. doi: 10.1007/s00205-016-1005-z

33. Alama S, Bronsard L, Lamy X. Analytical description of the Saturn-
ring defect in nematic colloids. Phys Rev E. (2016) 93:012705.
doi: 10.1103/PhysRevE.93.012705

34. Kralj S, Žumer S. Fréedericksz transitions in supra-um nematic droplets. Phys
Rev A. (1992) 45:2461–70. doi: 10.1103/PhysRevA.45.2461
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