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An abdominal aortic aneurysm (AAA) is a gradual enlargement of the aorta that can cause

a life-threatening event when a rupture occurs. Aneurysmal geometry has been proved

to be a critical factor in determining when to surgically treat AAAs, but, it is challenging

to predict the patient-specific evolution of an AAA with biomechanical or statistical

models. The recent success of deep learning in biomedical engineering shows promise

for predictive medicine. However, a deep learning model requires a large dataset, which

limits its application to the prediction of the patient-specific AAA expansion. In order to

cope with the limited medical follow-up dataset of AAAs, a novel technique combining

a physical computational model with a deep learning model is introduced to predict the

evolution of AAAs. First, a vascular Growth and Remodeling (G&R) computational model,

which is able to capture the variations of actual patient AAA geometries, is employed to

generate a limited in silico dataset. Second, the Probabilistic Collocation Method (PCM)

is employed to reproduce a large in silico dataset by approximating the G&R simulation

outputs. A Deep Belief Network (DBN) is then trained to provide fast predictions of

patient-specific AAA expansion, using both in silico data and patients’ follow-up data.

Follow-up Computer Tomography (CT) scan images from 20 patients are employed to

demonstrate the effectiveness and the feasibility of the proposed model. The test results

show that the DBN is able to predict the enlargements of AAAs with an average relative

error of 3.1%, which outperforms the classical mixed-effect model by 65%.

Keywords: abdominal aortic aneurysm, growth and remodeling, physics-based machine learning, deep belief

network, probabilistic collocation method

1. INTRODUCTION

The aorta is a major artery in which blood flows through the circulatory system. To consider
an enlargement of an aorta as an aneurysm, a relative criterion can be used such as that the
enlargement of the aorta is greater than 50% of the normal diameter. On the other hand, an
absolute criterion can also be used. For example, in the region of the infrarenal aorta, which lies
between the renal branches and the iliac bifurcation, an aorta with maximum diameter greater than
3 cm is considered an Abdominal Aortic Aneurysm (AAA). Because the risk from open surgery or
endovascular repair outweighs the risk of AAA rupture, surgical treatments are not recommended
with AAAs less than 5.5 cm in diameter [1].
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Traditionally, the maximum diameter has been considered
a significant risk factor of AAA rupture and has been
commonly used as the criterion for screening, surveillance,
and intervention decision making. Current clinical practices for
diameter measurement methods, however, vary depending on
parameters such as plane of acquisition, axis of measurement,
position of callipers, and selected diameter [2]. A consensus on
the best diameter measurement method has not yet been reached.
Recently, a new diameter measurement method, which is called
the inscribed sphere method, has been proposed to enhance
growth prediction capability by the automatic selection of the
maximum diameter using three-dimensional imaging [3]. In this
study, the inscribed sphere method is employed to provide a solid
foundation for the patient-specific predictions of AAAs.

In recent years, notable advances in statistical tools have
been implemented to predict the maximum diameter with
longitudinal AAA scanning data. Sweeting and Thompson [4]
developed a hierarchical linear growth model utilizing a zero-
mean Gaussian distributed random-effects term to simulate
the growth effects of aneurysms. Others have used linear and
quadratic hierarchical growth models to make predictions of the
evolution of aneurysms [5, 6]. Do et al. [7] tested a method
of dynamic Gaussian process to predict three-dimensional
surface evolution and its uncertainty using patient follow-up
images. Nevertheless, due to the limited sample size and large
measurement error of longitudinal data from patients, all these
statistical predictive tools are not accurate enough to aid in
clinical treatment. To cope with this problem, in this paper, a
novel predictive tool is designed using a deep learning algorithm,
which holds promise for clinical treatment and recommendation.

Deep learning and deep architectures in general have been
applied in an enormous number of research areas, with the
majority being in computer vision [8] and natural language
processing [9]. Deep learning has also been widely applied in
risk prediction based on electronic health records [10], image
labeling [11], traffic flow prediction [12], image segmentation
[13], medical image segmentation [14], stress estimation [15],
and many other fields. Deep architecture has been investigated
since 1980 [16] and proved to be more effective and requires
fewer resources than a shallow structure of the same size, i.e.,
same number of nodes. The merits of deep structure come from
its ability to improve efficiency by distributing different kinds
of tasks through different layers [14]. For instance, the low
layers can perform low level tasks like gradients computation or
edge detection while the higher layers can perform classification
or regression. However, as the networks are constructed in
deeper layers, the training becomes prohibitively slow due to the
problem of “vanishing gradients” [17]. In particular, when the
error is back-propagated from the output layer, it is multiplied
by the derivatives of the activation function, which is near zero
for those saturation nodes. Consequently, the error, as the driving
force for the gradient decent algorithm, is dramatically dissipated
which results in an extremely slow training rate for those nodes
behind the saturated node.

The training problem remained until 2007 when Hinton
proposed a two-stage learning scheme based on the Restricted
Boltzmann Machine (RBM) [18]. After that, other methods,

FIGURE 1 | Diagram of overall methodology. A massive number of in silico

data and a small number of patient data are generated and processed,

respectively, which is followed by a two-stage model training and a

model testing.

such as Rectifier Networks [19], drop out technique [20], and
Convolutional Neural Network [21] have been further developed
and improved to solve the training problem. Research has shown
that deep structure yields a high level of generalization and
a low test error only when it is trained on a large training
set. For instance, LeCun et al. [22] utilized a MNIST [23]
dataset of hand-written numbers with 60,000 samples to train
a 3-layer deep network. Unfortunately, such a large dataset
of longitudinal AAA images is unavailable. Therefore, the
applications of deep structure in medical data are limited to
medical image segmentation.

The two main contributions of this work are as follows. First,
to address the fundamental problem of the limited longitudinal
data size, a massive in silico dataset is generated using a
physics-based computational model and an approximation
algorithm. Second, a novel predictive tool using a deep learning
algorithm is established to combine both in silico and measured
longitudinal data.

To achieve these contributions, we employ a Deep Belief
Network (DBN) to predict the AAA shape in a regression
framework. In section 2 of this study, the inscribed sphere
method [3] is employed to translate the 3D spatial images of
patient AAAs into 2D curves. To cope with the limited dataset,
a small in silico dataset is generated by a computational Growth
and Remodeling (G&R)model that can simulate the evolutionary
process of AAAs. In section 3, the Probability Collocation
Method (PCM) is introduced as an approximation method to
reproduce a large amount of in silico data based on the G&R
simulation outputs, which enables a computationally efficient
data generation process. In section 4, inspired by Hinton [18], a
two-stage learning scheme is employed to train the DBN. Briefly,
the network is first pre-trained with the in silico data by the RBM
in an unsupervised manner. The network is then fine-tuned with
the labeled patient data. The data processing and model testing
results are shown in section 5, which is followed by the discussion
and conclusion in section 6. A basic schematic drawing of the
overall flow is shown in Figure 1. To the best of our knowledge,
this is the first effort to adapt a deep structure coupled with a G&R
computational model to predict AAA enlargement.

2. DATA

Two kinds of data, including patient data and in silico data, are
produced as training data for the predictive model. In particular,
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we combine a G&R code of AAA and a PCM approximation code
to generate massive in silico data to pre-train the deep structure,
and compute IMDCs from follow-up CT images of AAAs to
fine-tune the deep structure.

2.1. Patient Data
The longitudinal patient dataset is collected from multiple CT
images taken from 20 patients at the Seoul National University
Hospital. The demography is shown in Table 1. However, patient
data cannot be fed into the deep structure directly. We need to
transfer the 3D AAA images to shape curves that represent the
diameters at different locations on AAAs.

There are various ways of measuring the maximum diameter
of an AAA [24]. In this study, we calculate shape curves of aortas,
i.e., Inscribed Maximal Diameter Curves (IMDCs), utilizing an

TABLE 1 | Demographic data of patients.

Patient ID # Scans Gender Age Time of scans (days)

P01 3 Male 71 [0, 203, 733]

P02 3 Female 64 [0, 494, 1357]

P03 5 Male 65 [0, 182, 361, 538, 728]

P04 5 Male 74 [0, 347, 702, 1054, 1223]

P05 5 Male 66 [0, 374, 1074, 1438, 2136]

P06 5 Male 54 [0, 386, 757, 1121, 1290]

P07 5 Male 62 [0, 227, 674, 1049, 1403]

P08 3 Male 73 [0, 97, 564]

P09 4 Male 59 [0, 522, 922, 1344]

P10 4 Male 54 [0, 399, 774, 1152]

P11 3 Male 78 [0, 523, 873]

P12 4 Male 68 [0, 543, 691, 874]

P13 3 Male 71 [0, 349, 714]

P14 5 Male 67 [0, 183, 366, 534, 709]

P15 3 Male 72 [0, 189, 526]

P16 5 Male 72 [0, 246, 421, 587, 783]

P17 4 Female 65 [0, 613, 1048, 1515]

P18 4 Male 78 [0, 309, 1976, 2310]

P19 4 Male 64 [0, 729, 922, 2359]

P20 3 Male 57 [0, 440, 999]

inscribed sphere method from the work of Gharahi et al. [3].
Specifically, the calculation using the inscribed sphere method
is initialized with a 3D point cloud of the AAA wall, and
a maximally inscribed sphere is defined as the largest sphere
within the outer arterial surface. Next, by moving the maximally
inscribed sphere from the iliac bifurcation point to the end point
at the lowest renal artery, we obtain the centerline of a AAA
formed by the spheres’ center points.

As a result, the IMDC of an AAA image is obtained.
The IMDC incorporates the maximum diameters (d) of the
maximally inscribed spheres and the associated centerline (s).
Figure 2A provides an example that illustrates five IMDCs from
a patient’s follow-up CT images. By applying the inscribed sphere
method on all patients’ longitudinal data of AAAs, we obtain the
proper patient data to train the deep structure.

2.2. In silico Data
2.2.1. Growth and Remodeling Computational Model
We utilize a G&R computational model, which is based on
the Finite Element Method (FEM), to generate in silico data
to pre-train the deep framework. The G&R model integrates
the advanced understanding of the mechanical properties and
the stress-mediated adaptation of vascular tissues to capture the
long-term changes of geometrical features in AAAs [25–27]. In
our G&R simulations, the aortic tissue is considered a mixture
of multiple structural constituents, such as elastin and collagen
fibers, with different microstructural properties at the reference
configuration.Moreover, a ConstrainedMixtureMethod (CMM)
is utilized to homogenize multiple constituents in the G&R
model to enable FEM simulations. Additionally, in order to
capture the long-term adaptation of blood vessels, we assume
that constituents continuously generate and degrade in response
to the changes of aortic wall stress. Along with the assumption
that the elastin degradation initially induces the local dilation of
AAA, our G&R code is capable of simulating long term changes
of the geometrical features of AAA. The energy form of aortic
wall materials and FEM implementation are briefly summarized
in Appendix A. The readers refer to Baek et al. [25], Zeinali-
Davarani et al. [28], and Farsad et al. [29] for details of the G&R
model framework.

FIGURE 2 | Examples of 2D profile curves of maximal diameters over the centerline obtained from (A) a patient, (B) the G&R computational model, and (C) the PCM

approximation. s (cm) defines the length along the centerline of AAA and d (cm) stands for the associated maximal diameter measured by the maximally inscribed

sphere method [3].
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Elastin contributes resilience and elasticity to the aortic
tissue, but it degenerates over time and is irreplaceable. The
degeneration in elastin causes a localized dilation of the aorta,
leading to the weakening of the aortic wall as well as the
increase of aortic diameter and wall stress. This study utilizes
an axisymmetric FEM model to generate in silico data, i.e., a
two-dimensional profile curve represented by a set of diameters
against the centerline of an AAA [30, 31]. As a result, the damage
function can be expressed as the amount of elastin degradation
at different spatial locations on the centerline (s), which can be
specified by a Gaussian form function:

dmg(s) = exp

[

−
(s− µd)

2

2σ 2
d

]

, (1)

whereµd represents themean of the Gaussian function estimated
from image data of each patient; σd defines the standard deviation
of the Gaussian function, which controls the area of degraded
elastin. In particular, σd determines the initial loss of elastin,
which further affects the stress-stretch and the geometrical state
of the AAA, causing various geometrical features of the AAA.

The collagen fiber family is suggested to be an important
material in supporting the main aortic wall [32]. It is
continuously removed and produced throughout human life,
thus changing the mechanical properties of the aorta. Moreover,
given the initial degradation of elatin, the aortic wall stress
increases, causing a faster accumulation rate of collagen fiber,
which plays a compensation role for the loss of elastin. In our
G&R computational model, it assumes that the generation rate
of collagen fiber changes from its basal value in response to the
stress, which is given by

mk(t) =
Mc(t)

Mc(0)
(Kg(σ

k(t)− σ c
h)+mk

basal), (2)

where Mc(t) is mass density at time t;Mc(0) represents the mass
density of collagen fiber in a healthy aorta at reference time
0; σ k(t) is stress on fiber family k at time t; σ c

h
is the basal

value of fiber stress;mk(t) is the stress-mediated mass production
rate; mk

basal
is a basal production rate of fiber family k. Here,

the parameter Kg controls the magnitude of the stress-mediated
mass production rate, so a larger Kg implies that the aorta is
able to produce more collagen fiber to maintain the stability
of mechanical properties under elastin degeneration. Therefore,
Kg plays a decisive role in controlling the self-repairing and
evolutionary process of an aneurysm.

Those three parameters {Kg , σd,µd} directly affect the large
time-scale enlargement of the aneurysm; thus, each unique
group of the three parameters yields a unique outcome of the
axisymmetric G&R code. One example is shown in Figure 2B.
All the other parameters used in the G&R code are given by
Seyedsalehi et al. [33].

2.2.2. PCM Approximation Model
One common disadvantage of the G&R model is that it is time-
consuming. Therefore, it is not the optimal option for generating
a massive dataset for the deep structure. In this study, we utilize a

PCM method to reproduce a massive dataset by approximating
a small dataset from the G&R simulation outputs. The details
of the PCM are discussed in section 3 and an example is shown
in Figure 2C.

3. PROBABILISTIC COLLOCATION
METHOD

3.1. Deterministic Input
The G&R model takes a group of parameters γ = {Kg , σd,µd}

1

as input and generates the 2D profile curve y as output.

y = η(γ ), (3)

where η(.) represents the G&R computational code. Due to the
high demand of computational resource and time during the
simulation, we shall approximate η(.) by utilizing a set of N basis
functions {gi(γ )}, with i = 1, · · · ,N, such that

ŷ =

N
∑

i=0

βigi(γ ), (4)

where N is the order of approximation and βi are the regression
coefficients. Given a set of functions {gi(γ )}, the regression
coefficients {βi} can be solved as follow.

The residual between the truth and the approximation is
defined as

R({βi}, γ ) = ŷ(γ )− y(γ ). (5)

By applying the ordinary least squares estimation to (4), the
optimal set of coefficients βi is formulated in

〈gi(γ ),R({βi}, γ )〉 =

∫

γ

gi(γ )R({βi}, γ )dγ = 0, (6)

where i = 1, · · · ,N and 〈., .〉 represents the dot product between
two deterministic functions. (6) can be solved by the idea of
Gaussian quadrature [34], which approximates the integral as

∫

γ

R({βi}, γ )gi(γ )dγ ≃

N
∑

j=1

vjR({βi}, γ̃j)gi(γ̃j) = 0, (7)

where vj are weights and γ̃j are abscissas, respectively. If
the weights and the basis functions are chosen such that
∏

i,j vjgi(γ̃j) > 0 for all i and j, the summation in (7) can be further
approximated as

R({βi}, γ̃j) = 0, j = 0, · · · ,N. (8)

Note that the quadrature points γ̃j are also the collocation points.
Equation (8) can be used to find the coefficients {βi} by running
the model at N + 1 different collocation points and solving a
system of N + 1 equations.

1For the sake of notational simplicity, we also denote {Kg , σd ,µd} as
{γ [1], γ [2], γ [3]}.
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3.2. Stochastic Input
Suppose that the input γ is a random vector with a known
probability density function (PDF) π(γ ), (6) can be transformed
into the probability space as

∫

γ

π(γ )R({βi}, γ )gi(γ )dγ = 0. (9)

Similarly, with the proper choice of vj and gi(γ ), (8) becomes

π(γ )R({βi}, γ̃j) = 0, (10)

where j = 0, · · · ,N. Since the PDF function π(γ ) is always
positive, (8) can be used to find the coefficients in the
stochastic case.

3.3. Selection of Base Functions and
Collocation Points
Theorem 3.1. Consider a quadrature formula:

∫

γ

W(γ )F(γ )dγ ≃

N
∑

j=1

wjF(γj), (11)

where wj are weights and γj are abscissas. Given a weight function
W(γ ) = γ α(1 − γ )β , an optimal choice of N quadrature
points can be found based on the correct integration using the
highest order of the polynomial expansion of F(γ ). The optimal
quadrature points are the zeros of the polynomial of degree (N+1),
i.e., PN+1(γ ), that satisfy the orthogonality condition

∫

γ

W(γ )γ jPN+1(γ )dγ = 0, for j = 0, · · · ,N. (12)

The detailed proof of Theorem 3.1 is provided in Chap 3 of
Villadsen and Michelsen [35]. In short, the choice of collocation
points as the roots of the next order orthogonal polynomial
lets the collocation method approximation close to Galerkin’s
method. As a result, it outperforms other methods of weighted
residual (MWR) [35].

Corollary 3.2. Consider the same quadrature formula in
Theorem 3.1, and a set of N + 1 orthogonal polynomial functions
{gi(γ )}, if the set of functions satisfy the condition

∫

γ

π(γ )gi(γ )gN+1(γ )dγ = 0, i = 1, · · · ,N, (13)

they also satisfy condition (12), and the zeros of gN+1(γ ) are the
optimal quadrature points.

The proof of Corollary 3.2 is provided in Appendix B. If we
choose the weight function to be the PDF of γ , i.e., W(γ ) =

π(γ ), (13) can be used to generate the set {gi(γ )} in a recursive
manner as follows.

In practice, we define the initial conditions

g−1 = 0,

g0 = 1,

and the orthogonal polynomials can be obtained recursively by
solving the equations

∫

γ

π(γ )gi(γ )gi+1(γ )dγ = 0, i = 1, · · · ,N. (14)

However, solving for high order polynomials (13) is time-
consuming and error-prone. Thus, we use Favard theorem to
compute the set of basis functions more efficiently.

Theorem 3.3. (Favard Theorem) If a sequence of polynomials
{Pi(γ )}, where i = 1, · · · ,N, satisfies the recurrence relation

Pi(γ ) = (γ − ci)Pi−1(γ )− diPi−2(γ ),

P−1 = 0, P0 = 1, (15)

where ci and di are real numbers, then {Pi(γ )} are
orthogonal polynomials.

In this study, we utilized ci = 〈γ gi−1, gi−1〉 and di =
√

〈gi−1, gi−1〉 by referring the work of [36]. The overall PCM
algorithm is shown in Figure 3. Furthermore, though the PCM
has been widely used for approximation of univariate prediction
target, i.e., y is scalar, in our approach we extend it to be a
multivariate approximation.

4. DEEP LEARNING

In this section, we introduce the constructing and training of
DBN. A standard structure of the DBN [37] with two layers of
RBM [38] is utilized as shown in Figure 4.

Assume that we have two types of variables: the visible unit (x)
and the hidden unit (h). The two variables are governed by an
energy function E(x, h). Given that both visible and hidden units
follow binomial distribution, a Boltzmann Machine is defined as
an energy-based model using a second-order polynomial [39]

E(x, h|θ) = −bTx− cTh− hTWx− xTUx− hTVh,

where θ is the collection of b, c, W, U, and V . Thus, any
probability density function (PDF) of visible layer P(x), as well
as joint and conditional PDFs, can be easily represented by a
normalized form of the energy function. For instance, the PDF
of x can be computed as

P(x) =
∑

h

e−E(x,h)

Z
, (16)

where Z =
∑

x̃

∑

h e
−E(x̃,h) is the normalization factor and x̃ can

be all possible values of the visible vector x. The realization of x̃
can be considered as reconstructed visible units.
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FIGURE 3 | The algorithm of the PCM, which consisting of the computation of collation points (part 1), the realizations of physical-based model at collocation points

(part 2), the computation of coefficients (part 3), and the generalization of approximated outputs (part 4).

The parameter θ is estimated using the maximum likelihood
estimation. However, the energy-based PDF in this study requires
sampling of two conditional probabilities: P(h|x) and P(x, h).
Although this can be done via the Markov chain Monte Carlo
(MCMC) sampling [40], it is highly computationally expensive.
Therefore, contrastive divergence (CD), an alternative way
of finding the log-likelihood, is utilized to provide a more
efficient solution.

The RBM is introduced by posting an additional restriction:
U = 0 and V = 0. In other words, there is no connection
between the units in the same layer, either visible or hidden.
Note that there is no link among units in the same layer in
Figure 4. Furthermore, to incorporate the real-valued values,
we specifically assume that the visible units follow Gaussian
distribution, i.e., xi ∼ N (ai, σi), and the hidden units follow

binomial distribution, i.e., hj ∈ {0, 1}. Thus, the modified energy
function is defined as [38]

E(x, h|θ) = −

V
∑

i=1

(xi − ai)2

2σ 2
i

−

H
∑

j=1

cjhj −

V
∑

i=1

H
∑

j=1

wij
xi

σi
hj. (17)

The conditional PDF of the visible units given the hidden units
can be computed as

P(x|h, θ) =
e−E(x,h|θ)

∑

x e
−E(x,h|θ)

.
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FIGURE 4 | The deep architecture of the DBN. Two layers of RBM are trained

in an unsupervised manner (pre-trained) using CD-1 algorithm. The top layer

utilizes a neural network sigmoid regression for the prediction.

Note that P(h|x, θ) can be computed in the same manner. Using
E(x, h|θ) in (17), we have

P(hj = 1|x, θ) = sigm

(

V
∑

i=1

wijxi + cj

)

,

P(xi = x|h, θ) = N



ai + σi

H
∑

j=1

hjwij, σ
2
i



 ,

(18)

where sigm(x) = 1
1+exp(−x) is the sigmoid function.

The likelihood gradient can be computed by taking the
derivative of P(x) in (16) with respect to θ , and we have

log P(x)

∂θ

= −
1

∑

h e
−E(x,h)

∑

h

e−E(x,h) ∂E(x, h)

∂θ

+
1

Z

∑

x̃

∑

h

e−E(x̃,h) ∂E(x̃, h)

∂θ

= −
∑

h

P(h|x)
∂E(x, h)

∂θ
+
∑

x̃

∑

h

P(x̃, h)
∂E(x̃, h)

∂θ

= −EP(h|x)

[

∂E(x, h)

∂θ

]

+ EP(x̃,h)

[

∂E(x̃, h)

∂θ

]

.

(19)

The expectationEP(h|x)[.] is also called positive phase distribution
or data distribution while the other expectationEP(x̃,h)[.] is called
negative phase or model distribution [39].

Optimization of (19) involves sampling from P(x̃, h) and it
can be realized by running a Gibbs sampling until it reaches
equilibrium, which is extremely time consuming. Alternatively,
Hinton [41] suggested the CD learning which minimizes the
difference between the data distribution and the one-step
reconstructed distribution rather than directly minimizing the
difference between the data and the model distribution. The

approximation of (19) and its derivation using CD are provided
in Appendix C. Empirical studies have shown that the CD
method is efficient and effective enough to make the DBN
unsupervised learning practical.

Given the approximation to the derivative of P(x), we can
pre-train the DBN by updating the weights iteratively using
the in silico data in an unsupervised manner. The training is
performed throughout the DBN structure shown in Figure 4.
We consider this step, i.e., the pre-training of the DBN, as the
first step of the two-stage learning scheme, enabling the DBN
to capture the changes of geometrical features simulated by the
G&R of AAA expansion.

After the pre-training, the DBN is unfolded into a Neural
Network (NN), which is further trained in a supervised manner.
This supervised learning, i.e., fine-tuning, is considered the
second step of the two-stage learning scheme. Specifically, during
the fine-tuning, the pre-trained weights of the unfolded DBN are
properly adjusted for a better ability in capturing patient-specific
features of aortic enlargement from the patient data.

Our proposed two-step training model could be interpreted
as a deep learning version of the Bayesian approach, where
computer-generated data act as a prior distribution and the
patient data for fine-tuning can be viewed as new measurements
to compute the posteriori distribution for prediction [42–44].We
also would like to remind that the Bayesian approach is normally
used for prediction with the limited sized data (by leveraging the
prior distribution), which is well suited for our case.

5. DATA PROCESSING AND RESULTS

In this section, we introduce the data processing step and
demonstrate the effectiveness of our proposed predictive model
using observations of patient-specific CT images.

5.1. Data Processing
Given CT images of AAAs taken from a patient, we can obtain
IMDCs with regular time intervals. Let ft,i be an IMDC of the
ith AAA obtained at certain scan time noted as t. A collection
of f generated at different times, i.e., t − 2, t − 1, t, and t + 1,
provides us a timeline growth of the AAA. Note that the time
intervals between IMDCs are fixed as the same constant. For each
data point, we choose the feature vector xi as the collection of the
three adjacent IMDCs, and the prediction target yi as the IMDC
at the next time step in the future,

xi =
[

ft−2,i, ft−1,i, ft,i
]

,

yi = ft+1,i.

Following Table 1, however, we realize that the time intervals
between patient follow-up CT scans are not constants. To address
this problem, a fixed-time interval of 270 days is chosen and all
patient data are linearly interpolated by this fixed-time interval.
Generally, we obtain 55 sets of interpolated patient data as
collections of {xi, yi} from 20 patients. Specifically, 6 sets of the
patient data from 6 different patients are randomly selected as
testing data while the others are employed for pre-training.
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Given the multiple sets of G&R input parameters
γ =

[

Kg , σd,µd

]

, the G&R model associated with the PCM
approximation can produce a large number of longitudinal 2D
profile curves to capture the enlargement of AAAs during a
time span, which can be transformed into the in silico data, i.e.,
artificially generated collections of {xi, yi}. In this study, we focus
on predicting the aneurysm growth; hence, only those in silico
data with maximum diameters ranging from 3 to 8.5 cm are
accepted into the training dataset. After random samplings and
rejections, 32,900 sets of in silico data {xi, yi} are collected in the
training dataset.

In order to assimilate patient data and in silico data together
with the same dimensionality of data, we trim all both patient
data and in silico data into regions where the coordinate along the
centerline ranges 0 to 8 cm. Next, each shape curve is discretized
by a grid size of 81, meaning that the dimension of xi and yi are
243 and 81, respectively. Additionally, it has been shown that it is
much simpler to train the RBM by the data with a zero mean and
unit variance [38]. Thus, we normalize the training data before
training the deep learning model. Specifically, a scale factor of 8.5
cm is selected for the normalization, based on the fact that the
largest diameters of all our patient data are significantly smaller
than 8.5 cm (also immediately recommended for surgical options
[5]). As a result, all diameters obtained from both the patient data
and the simulated results are normalized into the range [0, 1]
before the training.

As described in section 4, the 32,900 sets of normalized
in silico data are utilized to pre-train the DBN in an unsupervised
manner. Next, the selected patient data are employed to further
update the deep structure in a supervised manner. Finally, during
the model testing, we can collect the predicted IMDCs, which are
then transformed back to the normal scale as the final prediction
results. The overall method is depicted in Figure 5.

5.2. Test Set-Up
For a deep structure, parameters, such as the number of hidden
units and the number of epochs2, are important factors in
determining the model performance. To avoid over-fitting, as
a rule of thumb for the generative models using the high-
dimensional data, the number of parameters is constrained
[38]. In our case, the data dimensionality (243) is significantly
lower than the size of training samples (32,900). In order to
test the effect of the number of nodes within each layer, we
construct a number of 2-layer DBNs with different sets of hidden
nodes in each layer. In particular, since there is a remarkable
difference in the dimensions of the data and the label, i.e.,
243 vs. 81, we test the DBNs of three structures: increasing
width, decreasing width and equal width. As shown in Table 2,
as the number of input or output layer nodes decreases, it
becomes harder for the model to capture the representative
features in the data. Note that in Table 2, the prediction error
is quantified by the discrepancy between the predicted IMDC
and the patient IMDC using the standard root mean squared
error (RMSE), and the average RMSE is calculated from of 6 test

2Epochs are the number of times that the model is trained through the whole
training set.

FIGURE 5 | Diagram of the model training. The DBN is pre-trained by in silico

data in an unsupervised manner, and is unfolded into a neural network. Next,

the neural network is fine-tuned with the patient data in a supervised manner

to predict the AAA expansion.

TABLE 2 | Effect of the number of nodes in a 2-layer DBN on the model testing.

Number of nodes Training time Average

RBM-1 RBM-2 (seconds) RMSE (cm)

1,000 50 31 0.264

500 100 21 0.186

300 300 24 0.180

100 500 18 0.192

50 1,000 23 0.2

samples. We then conclude from the test set-up that 300 nodes
in each layer leads to the smallest prediction error among all
tested configurations.

As aforementioned, one of the problems in the DBN approach
is that the pre-training generates a large in silico dataset (32,900
samples), while the patient data for fine-tuning are limited (49
samples). To better employ both datasets, we fix the epoch of
the pre-training process to be 1 while changing the number
of epochs of the fine-tuning process. The RMSE and training
time for different epochs (ranged from 1 to 1,000) is shown in
Figure 6. As the number of epochs reaches 400, the error is not
reduced any more as the model-fitting shows the over-fitting of
the fine-tuning data and eventually the generalization capacity
is reduced.
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FIGURE 6 | Effect of the number of epochs on the prediction error. The RMSE

and the fine-tuning training time are plotted in solid blue and dashed red lines,

respectively. The training time increases linearly with the number of epochs,

while the RMSE rapidly decreases at the beginning but converges at around

400 epochs.

5.2.1. Mixed-Effect Model
The performance of our proposed method is compared to the
nonlinear mixed-effects model, which has been used extensively
as a powerful growth hierarchical model over the decades [4–6].
For the mixed-effects model, a basic form of the growth function
is selected as:

yi,j = α0 + (α1 + b1)ti,j + (α2 + b2)t
2
i,j + ǫi,j,

where yi,j and ti,j are the diameter and the associated time at the
jth measurement of ith patient, b =

[

b1, b2
]

is the random-effects
terms and b ∼ N (0,6b), α = [α0, · · · ,α2] is the parameters
vector, and ǫi,j is the independent error term, i.e., ǫi,j ∼ N (0, σ 2

w).
b and α are fitted to the data via the fminsearch function
in MATLAB.

5.3. Test Prediction Results
As it is shown in Table 2, a DBN with 300 nodes in both
layers is selected for model testing. The absolute prediction error
and relative prediction error for selected samples are shown
in Table 3, and are compared with those from a mixed-effect
model. A comparison of prediction results is shown in Figure 7.
The proposed method outperforms the mix-effects method with
a 65% reduction in RMSE. The overall prediction is relatively
accurate because the relative error of each prediction only ranges
from 2.3% to 4.3%, which is negligible.

The deep learning model, which is implemented on the
MATLAB, can be trained within 30 s on a PC with a 3.3 GHz
10-core CPU and a 64 GB RAM (Table 2). This period of time
is short enough to provide insight in aiding clinicians to make
surgical decision of AAAs.

TABLE 3 | The absolute and relative prediction errors of 6 testing samples under

DBN and Mix-effects model.

Sample ID RMSE (cm) Relative error*

DBN Mix-effects DBN (%) Mix-effects (%)

P1 0.224 0.393 4.3 7.6

P2 0.181 0.645 3.1 11.2

P3 0.168 0.535 2.8 8.8

P4 0.147 0.655 2.3 10.2

P5 0.197 0.406 2.9 6.2

P6 0.165 0.494 3.1 7.3

Mean value 0.180 0.521 3.1% 8.6%

*The relative error is defined by the ratio between the absolute RMSE and the largest

diameter in the objective IMDC, e.g., if the RMSE is 0.18 cm and the largest diameter is

5.8 cm, the relative error should be 0.18/5.8 = 3.1%.

5.4. Monte-Carlo Cross-Validation
A Monte-Carlo cross-validation method is performed to show
the robustness of the proposed deep learning model. As the first
step, 13 sets of eligible testing data, i.e., {xi, yi}, are collected
from 20 patients’ CT images. There are two criteria for choosing
eligible data from a patient. The first criterion is that the eligible
{xi, yi} should be the last set of data of the patient. The second
criterion is that the number of raw CT images of the patient is
at least four. As the second step, the cross-validation trials are
independently performed 100 times under the deep structure of
2-layers DBN with 300 nodes on each layer. In each trial, we
randomly choose 3 sets of test data out of the whole eligible
dataset and leave the other sets of eligible data as training
data to be used in the fine-tuning step. As a result of the
Monte-Carlo cross-validation, 100 prediction errors (RMSEs) are
independently collected, of which the mean and the standard
deviation are 0.196 cm and 0.051 cm. The standard deviation is so
small relative to the mean that it guarantees the robustness of the
proposedmethod.Moreover, as a comparison, the average testing
RMSE (0.18 cm) falls into the range of the standard deviation of
the cross-validation result, thus supporting the test results shown
in Table 3.

6. DISCUSSION AND CONCLUSION

This study utilized a physical G&R computational model
combined with follow-up image data from 20 patients to predict
the shape evolution of AAAs represented by IMDCs. To our
knowledge, this is the first study that utilizes the deep learning
technique to predict the shapes of AAAs in an evolutionary
scheme based on a small dataset of follow-up images. The main
difficulty in applying deep learning to predict AAA enlargement
is the limited size of the training dataset, i.e., follow-up images of
AAAs. In this study, we overcame this difficulty by proposing a
work-flow, in which the DBN is pre-trained by massive in silico
data. The accurate predictions demonstrate that deep learning
holds promise for capturing evolutionary features of individual
soft tissue with numerical simulations. It gives deep learning
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FIGURE 7 | The true value, the DBN model prediction and mixed-effects model prediction of IMDCs are shown in dotted dashed black (“true”), solid red(“DL

prediction”), and dashed green lines(“ME prediction”), respectively. s denotes the coordinate of location along the centerline of AAA and d represents the associated

maximum diameter measured by inscribed sphere method.

techniques a new application in biomedical engineering, other
than surrogates [15], image segmentation [14], etc.

Besides combining deep learning and AAA prediction, the
proposed study also contributes by making fast and accurate
predictions of AAA enlargement. Following Table 2, the model
training time takes approximately 24 s, which is significantly
faster than other statistical models [7, 30]. Additionally, the
efficiency of data generation is significantly improved by the
PCM approximation, which generates tens of thousands of
IMDCs in 20 s. As a comparison, the G&R computational
model takes 30 min to generate one set of data, meaning that
it would take more than 1 year to provide the same amount of
training data.

Additionally, due to the high complexity of physics in patient-
specific predictions of AAA, even high-fidelity physical models
cannot promise to make accurate predictions. To enable accurate
predictions, in this paper, we proposed a two-stage training
approach: first, we pre-train our deep learning model with a
computationally generated sizable dataset; second, we fine-tune
the deep structure with the patient data for patient-specific
predictions. In this study, the average prediction error is 0.180
cm, which is significantly small compared to the AAA diameters
(3–8.5 cm). The results shown in Figure 7 and Table 3 also
indicate that the proposed method indeed provides effective
predictions, which outperform the classical mixed-effect model
[4–6] by 65% in terms of the average relative error. Also, aMonte-
Carlo cross-validation, which is a standard and widely recognized
validating approach commonly used in machine learning studies,

also provides similar prediction results compared with the test
results, thus showing the effectiveness and robustness of the
proposed study. Therefore, although the in silico data are limited
by the G&R which cannot capture all marginal situations, the
two-stage DBN method still shows its promise in predicting
patient-specific geometries.

In our previous paper [7], we proposed a patient-specific
prediction method using Kalman filter, which has been widely
used for time series analysis. However, Do et al. was not capable
of capturing the patient-specific characteristics since it is only
based on individual shape of AAAs. As a time-series approach,
the prediction cannot be improved by adding more datasets
as a prior for pre-training. To cope with these problems, in
this study, we proposed the DBN-based framework for patient-
specific predictions that successfully tackled these limitations.
In Zhang et al. [30], a Bayesian model are employed to predict
AAA enlargement. This model, however, did not use massive
in silico data and multiple patient data together for training, so
restricting their predictive effects. In contrast, our proposed DBN
is efficiently trained by a large amount of data, meaning that it can
generate more effective predictions.

The maximum diameter, the largest value in an IMDC, is
one of the most important factors to help decide whether to
perform surgery or not in clinical practice, e.g., performing
surgery if the maximum diameter is larger than 5.5 cm [45].
Figure 7 shows that the deep learning algorithm is able to
predict the maximum diameter with negligible error. Moreover,
the predicted IMDCs, which represent the 2D profile shapes of
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AAAs, are close to those of real cases. The DBN code successfully
captured different patient-specific AAA shapes with negligible
error on the boundary sections. Therefore, our study shows
strong evidence that the proposed algorithm is feasible to be
applied in clinical practice.

Additionally, we also utilized another method, i.e., the drop
out technique from Hinton et al. [20], to further improve
the prediction of the DBN code. However, it did not show a
significant increase of the accuracy for the prediction outputs,
partly because of the simple 2-layer network, which was
employed to avoid over-fitting.

There are also limitations in this study. The first limitation is
that because the patient-specific IMDCs are 2D profile curves,
we choose to generate the simulation data using a simple
axisymmetric G&R model which also gives 2D profile curves.
The use of an the axisymmetric G&R model is acceptable
because it can predict reasonable patient-specific growth of AAAs
under normal conditions, but it cannot capture the special
features caused by aortic bending, such as proximal neck bend.
Fortunately, the bending has little effect on the center parts of
AAA and the simulation of maximum diameter, so it does not
affect the key prediction results. In the future, 2D profile curves
can be replaced with 3D patient-specific geometries in order to
provide more accurate patient-specific predictions.

The second limitation is that the G&R code does not take
other factors into account, such as hemodynamics, thrombus
and surrounding tissues [46–51], which may also contribute to
the patient-specific AAA expansion. For example, Zambrano
et al. [50] has illustrated that there exist mutual effects among
hemodynamics forces, intraluminal thrombus and the expansion
rate of AAA. However, in this study, the G&R was only
responsible for providing in silico data for the pre-training.
And the G&R is fully competent in capturing those geometrical
features by simulating stress-mediated expansions [25–28].
Meanwhile, other confounding factors, such as aortic flow,
thrombus, and surrounding tissues, are probably considered as
patient-specific features that are captured during the second step
of the learning, i.e., fine-tuning, using patient data. Additionally,
due to the relatively simple structure of the G&R code, it is highly
efficient to provide a large number of in silico training data,
which is essential for training a deep structure. Otherwise, it may
take days or even weeks to perform one simulation with more
biomechanical factors included; thus inhibiting its integration to
deep learning.

The third limitation is that we have to interpolate patient
CT images into the in silico training data with constant time
intervals to train and test the model, which may restrict the
applications of the proposed method. We plan to solve this
problem by introducing additional data points or more complex
data structure to represent the patient-specific time gap between
CT scans.

In the future, we expect to further enrich the variability of
the training data by improving the physical models or collecting
more patient data to incorporate the marginal situations.
Specifically, we generate a large amount of data by varying three
parameters in the computational G&R simulations, which may
not be enough to capture all the different features in actual

AAA evolution, e.g., intraluminal thrombus [50, 52, 53], other
morphological parameters [54, 55], and influence of surrounding
tissues [56, 57]. Hence, more parameters and more complex
models will be carefully selected in the future to provide better
simulation-based training data. Furthermore, considering the
importance of hemodynamics, we would like to replace our
G&R model by a Fluid-Solid-Growth model which is capable
of capturing the geometrical change of AAAs caused by both
wall stress and hemodynamics [58]. Based on that, the in silicon
data can incorporate information of AAA expansion caused
by hemodynamics, thus increasing the effectiveness of pre-
training. Additionally, given a larger set of training data, we can
further increase the number of layers in the DBN and test for
better predictions.
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