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This article studies the propagation of rogue waves with a nonautonomous NLSE in

the presence of external potential. This model is considered to be an important model

for many physical phenomena in quantum mechanics and optical fiber. The obtained

waves are of first and second order and are investigated using similarity transformation.

The nonlinear dynamic behavior of these waves is also demonstrated with different

parameter values for the magnetic and gravity fields. The results show the influence of

these fields over density, width, and peak heights. Moreover, the modulation instability is

also discussed.

Keywords: rogue wave solutions, modulation instability, similarity transformation, NLSE, harmonic potential

1. INTRODUCTION

One of the interesting known models with a time-dependent coefficient is the nonautonomous
NLSE with a harmonic potential. This is expressed as:

iqt +
α(t)

2
qxx +

(

− iγ (t)+
ω(t)r2

2
+ β(t)|q|2

)

q = 0. (1)

The function q is a wave profile in a homogeneous nonlinear medium, α(t) is the dispersion
coefficient, β(t) is the measure of the Kerr nonlinearity, γ (t) is considered as the distributed
gain/loss coefficient, and the harmonic potential is given by ω(t)r2/2. This model describes many
physical phenomena in nonlinear sciences.

This article studies the first- and second-order rogue wave solutions. It is a single giant wave
whose amplitude is two to three times higher than those of the surrounding waves. The interesting
fact regarding this wave is that it appears from nowhere and disappears without a trace. The
similarity transformation (ST) is utilized to construct the solutions. These waves are also found
in deep and shallow water and, beyond oceanic expanses, in optical fibers [1–8], super fluids, and
so on [9–18]. In recent times, the theoretical study of these kinds of waves has become an interesting
part of the field of nonlinear sciences [19–34]. The following section deals with the extraction of
wave solutions with ST.

2. ROGUE WAVE SOLUTIONS

The envelope field q is considered in the following form [33]:

q = (qR + iqI)e
iφ , (2)
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where qR, qI , q, and φ are all dependent functions of x and t, while
the intensity is defined by:

|q|2 = |qR|2 + |qI |2. (3)

The use of Equations (2)–(3) in (1) yields an equation with
variable coefficients. After solving and simplification, we can split
this equation into its real and imaginary equations. For the real
functions qR, qI , and φ, which depend on x and t, the variables
ξ (x, t) and τ (t) are introduced. Thus, the new transformations
for qR, qI , and φ are constructed in this manner: qR = A(t) +
B(t)P(ξ (x, t), τ (t)), qI = C(t) + D(t)Q(ξ (x, t), τ (t)), and φ =
ζ (x, t) + λ τ (t), where λ is a constant. Substituting this new
transformation into the real and imaginary part equations, the
following equations are obtained:

−2(A+ BP)(ζt + λτt)− 2(Ct + DtQ+ DQξ ξt + DQτ τt)

−α(t)(C + DQ)ζxx − α(t)(A+ BP)ζ 2
x − 2α(t)DQξ ξxζx

+α(t)(BPξξ ξ
2
x + BPξ ξxx)+ 2β(t)((A+ BP)2

+(C + DQ)2)(A+ BP)+ 2γ (t)(C + DQ)

+ω(t)x2(A+ BP) = 0, (4)

−2(C + DQ)(ζt + λτt)+ 2(At + BtP + BPξ ξt + BPτ τt)

+α(t)(A+ BP)ζxx − α(t)(C + DQ)ζ 2
x + 2α(t)BPξ ξxζx

+α(t)(DQξξ ξ
2
x + DQξ ξxx)+ 2β(t)((A+ BP)2

+(C + DQ)2)(C + DQ)− 2γ (t)(A+ BP)

+ω(t)x2(C + DQ) = 0. (5)

Simplifying the above equations, we perform the similarity
reduction in the following way.

ξxx = 0, (6)

ξt + α(t)ξxζx = 0, (7)

ω(t)x2 − 2ζt − α(t)ζ 2
x = 0, (8)

2σt + (α(t)ζxx − 2γ (t))σ = 0, for (σ = A,B,C,D), (9)

−2(A+ BP)λτt − 2DQτ τt + α(t)BPξξ ξ
2
x

+2β(t)(A+ BP)(|A+ BP|2 + |C + DQ|2) = 0, (10)

−2(C + DQ)λτt + 2BPτ τt + α(t)DQξξ ξ
2
x

+2β(t)(C + DQ)(|A+ BP|2 + |C + DQ|2) = 0. (11)

where ξ (x, t), ζ (x, t),A(t),B(t),C(t),D(t), P(ξ , τ ), and Q(ξ , τ ) are
different functions and are determined later. After algebraic
computation, the above equations produce the following results.

ξ = δ(t)x+ δ0(t), (12)

ω =
2ζt + α(t)ζ 2

x

x2
, (13)

ζ(x,t) = −
1

α(t)

(

δ(t)t

2δ(t)
x2 +

δ0(t)

δ(t)
x

)

, (14)

A(t) = a0 exp

[

1

2

∫ t

0

(

δ(k)k

δ(k)
+ 2γ (k)

)

dk

]

,

B(t) = bA, D(t) = dA, (15)

where a0, b, and d are constants, and C = 0. The variables τ (t)
and β(t) are given by

τ (t) =
1

2

∫ t

0
α(k)δ2(k)dk, (16)

β(t) =
α(t)δ2

2A2
. (17)

To further reduce to Equations (4) and (5) to the partial
differential equations, we require

−2(1+ bP)λ − 2dQτ + α(t)bPξξ

+2β(t)(1+ bP)(|1+ bP|2 + |1+ dQ|2) = 0, (18)

−2(c+ dQ)λ + 2bPτ + α(t)dQξξ

+2β(t)(c+ dQ)(|1+ bP|2 + |1+ dQ|2) = 0. (19)

According to the direct method, we obtain the first-order
rational solution

P(ξ , τ ) = −
4

R1(ξ , τ )b
, Q(ξ , τ ) = −

8τ

R1(ξ , τ )d
, (20)

where R1 = 1+ 2ξ 2 + 4τ 2. Moreover, the second-order solution
is obtained as

P(ξ , τ ) =
P1(ξ , τ )

R2(ξ , τ )b
, Q(ξ , τ ) =

Q1(ξ , τ )τ

R2(ξ , τ )d
, (21)

P1(ξ , τ ) =
3

8
− 9τ 2 −

3ξ 2

2
− 6ξ 2τ 2 − 10τ 4 −

ξ 4

2
, (22)

Q1(ξ , τ ) = −
15

4
+ 2τ 2 − 3ξ 2 + 4ξ 2τ 2 + 4τ 4 + ξ 4, (23)

R2 =
3

32
+

33

8
τ 2 +

9ξ 2

16
−

3ξ 2τ 2

2
+

9τ 4

2
+

ξ 4

8

2ξ 6

3
+ ξ 2τ 6 +

ξ 4τ 2

2
+

ξ 6

12
. (24)

The direct reduction solution is considered in the following form:

q = A(1+ bP + idQ)ei(ζ+τ ), (25)

where ξ (x, t), ζ (x, t),A(t), τ (t), P(ξ , τ ), and Q(ξ , τ ) are expressed
by the relations given in Equations (12), (14)–(16), and
(20), respectively.

The rogue wave solution of first order to Equation (1) can be
obtained using Equations (20) and (25); thus, after simplification,
we may have the following form:

q = a0

(

−3+ 2ξ 2 + 4τ 2 − 8iτ

1+ 2ξ 2 + 4τ 2

)

× exp

[

1

2

∫ t

0

(

δ(k)k

δ(k)
+ 2γ (k)

)

dk

]

ei(ζ ,τ ), (26)

whose amplitude can be written as

|q|2 = a20
[−3+ 2(δ(t)x+ δ0(t))

2 + 4τ 2]2 + 64τ 2(t)

[1+ 2(δ(t)x+ δ0(t))
2 + 4τ 2(t)]2
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× exp

[ ∫ t

0

(

δ(k)k

δ(k)
+ 2γ (k)

)

dk

]

. (27)

The rogue wave (rational-like) solution of second order
to Equation (1) can be obtained using Equations (21) and
(25); thus, after simplification, we may have the following form:

q = a0

(

1−
4(−3+ 4ξ 4 + 72τ 2 + 80τ 4 + 12ξ 2(1+ 4τ 2))

3+ 18ξ 2 + 4ξ 4 + 24ξ 6 + 4(33+ 4ξ 2(−3+ ξ 2))τ 2 + 144τ 4 + 32ξ 2τ 6

+i
8τ (4ξ 2(−3+ ξ 2 + 4τ 2)+ (−5+ 8t2))

3+ 18ξ 2 + 4ξ 4 + 24ξ 6 + 4(33+ 4ξ 2(−3+ ξ 2))τ 2 + 144τ 4 + 32ξ 2τ 6

)

× exp

[

1

2

∫ t

0

(

δ(k)k

δ(k)
+ 2γ (k)

)

dk

]

ei(ζ+τ ), (28)

whose intensity is written as

|q|2 = a20

[(

1−
(

4(−3+ 4ξ4 + 72τ2 + 80τ4 + 12ξ2(1+ 4τ2))/(3+ 18ξ2

+4ξ4 + 24ξ6 + 4(33+ 4ξ2(−3+ ξ2))τ2 + 144τ4 + 32ξ2τ6
))2

+
(

8τ (4ξ2(−3+ ξ2 + 4τ2)+ (−5+ 8t2))/(3+ 18ξ2 + 4ξ4

+24ξ6 + 4(33+ 4ξ2(−3+ ξ2))τ2 + 144τ4 + 32ξτ6
)2]

× exp

[ ∫ t

0

(

δ(k)k
δ(k)

+ 2γ (k)

)

dk

]

, (29)

The following section discusses the dynamical behavior of waves.

3. DYNAMICAL BEHAVIOR OF WAVES

The behavior of constructed waves is demonstrated using the
relation δ(t) = b+ l cos(ωt). The first term on the right-hand side

FIGURE 1 | 3D graphical representations of first-order rogue waves. (A) b = 0.5 and δ0(t) = 0.5, (B) b = 0.79 and δ0(t) = 0.61, (C) δ0(t) = 0.5t2 and

δ(t) = 0.7+ 0.9 cos(0.1t), (D) δ0(t) = 0.35t2 and δ(t) = 0.86+ 1.2 cos(0.1t), and (E) δ0 (t) = 0.35t2, δ(t) = 0.1+ 1.2 cos(0.1t), and δ0 (t) = 0.35t2.
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represents the gravity field (GF) b = δmg with the real parameter
δ, and the second term on the same side is the external magnetic
field (EMF) and is given by l cos(ωt).

There are two possibilities for the occurrence of the waves in
the presence of GF. The first is that when the GF (i.e., b 6= 0 and
l = 0) is acting, and the second is that when both the GF and
EMF are present (i.e., b 6= 0 and l 6= 0).

Now, we discuss the first possibility for nonlinear dynamical
behavior, when there is only the GF. Say δ(t) = b, and
the amplitude (corresponding to l = 0) is given by the
following relation:

|q|2 = a20
[−3+ 2(bx+ δ0(t))

2 + 4τ 2]2 + 64τ 2(t)

[1+ 2(bx+ δ0(t))
2 + 4τ 2(t)]2

× exp

[ ∫ t

0

(

δ(k)k

δ(k)
+ 2γ (k)

)

dk

]

. (30)

The behavior of the second-order rogue wave is considered when
there is only the GF. Then, the value of δ(t) = b, so the amplitude

(corresponding to l = 0) is given by

|q|2 = a20

[(

1−
(

4(−3+ 4(bx+ δ0(t))
4 + 72τ 2 + 80τ 4

+12(bx+ δ0(t))
2(1+ 4τ 2))/(3+ 18(bx+ δ0(t))

2

+4(bx+ δ0(t))
4 + 24(bx+ δ0(t))

6 + 4(33+ 4(bx

+δ0(t))
2(−3+ (bx+ δ0(t))

2))τ 2 + 144τ 4 + 32(bx

+δ0(t))
2τ 6

))2

+
(

8τ (4(bx+ δ0(t))
2(−3+ (bx

+δ0(t))
2 + 4τ 2)+ (−5+ 8t2))/(3+ 18(bx+ δ0(t))

2

+4(bx+ δ0(t))
4 + 24(bx+ δ0(t))

6

+4(33+ 4(bx+ δ0(t))
2(−3+ (bx+ δ0(t))

2))τ 2 + 144τ 4

+32(bx+ δ0(t))τ
6

)2]

× exp

[ ∫ t

0

(

δ(k)k

δ(k)
+ 2γ (k)

)

dk

]

. (31)

FIGURE 2 | 3D graphical representations of second-order waves. (A) δ(t) = 0.5 and δ0(t) = 0.1, (B) δ(t) = 0.4 and δ0(t) = 0.1, (C) δ(t) = 0.7 and

δ0(t) = 0.2 exp(sech(0.2t)), (D) δ(t) = 0.5sech(0.2t) and δ0(t) = 0.5 exp(sech(0.2t)), (E) δ(t) = 0.5+ 1.2 cos(0.005t) and δ0(t) = 0.35t2, and (F) δ(t) = 0.1+ 1.2 cos(0.1t)

and δ0(t) = 0.35t2.
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4. ANALYSIS OF MODULATION
INSTABILITY

In this section, we study the modulation instability (MI). The
linear stability analysis technique [34] has been applied, and we
suppose that Equation (1) has the perturbed steady-state (PSS)
solution in the following form:

q(x, t) = {
√
P + χ(x, t)} × e(iϕNL), ϕNL = βPx, (32)

where χ << P, P is the incident optical power, and ϕNL is the
phase component. The perturbation χ(x, t) is examined by using
linear stability analysis. Now, we substitute Equation (32) into
Equation (1) and, after linearizing it, we obtain

i
∂χ

∂t
+

1

2
α(t)

∂2χ

∂x2
+ β(t)P(χ + χ∗)

+
(

− iγ (t)+
ω(t)x2

2

)

χ = 0, (33)

where “∗” denotes a complex conjugate. Consider that the
solution of Equation (33) has of the form

χ(x, t) = η1e
i(kx−νt) + η2e

−i(kx−νt), (34)

where ν and k are the frequency of perturbation and normalized
wave number, respectively. After putting Equation (34) into

Equation (33) and by separating the obtained equation into its
real and imaginary parts, we get the dispersion relation:

−ν2 + ανk2 − 2iγ ν −
α2

4
k4 + iαγ k2

+βPωr2 + γ 2 +
ω2r4

4
= 0. (35)

The dispersion relation given in Equation (35) has the following
solutions in terms of frequency ν after taking the modulus of the
above equation. We have

ν =
1

2
αk2 ±

1

2
√

−4γ 2 + ω2r4 + 4βPr2ω ± 4
√

−γ 2ω2r4 − 4βPr2ωγ 2.(36)

The above dispersion relation determines the PSS stability,
and that depends on the harmonic potential or distributed
gain (loss) coefficient of the model. If the frequency ν

has an imaginary part, the PSS solution is unstable since
the perturbations grow exponentially. On the other hand,
if ν is real, then the PSS solution is stable against small

FIGURE 3 | 3D graphical representations of first-order rogue waves. The figures correspond with (A) b = 1.3, δ0(t) = exp(0.5+ 0.5 cos t) and α = tan2(0.02t), (B)

b = 1.5, δ0(t) = exp(0.05+ 0.5 cos t) and α = tan2(0.02t), (C) δ(t) = 1.4+ 0.05 cos t, δ0(t) = exp(0.002+ 0.4 cos t) and α = tan2(0.02t), and (D)

δ(t) = 1.3+ 0.01 cos t, δ0 (t) = exp(0.05+ 0.5 cos t), and α = tan2(0.02t).
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perturbations. The necessary condition for the existence
of MI is

γ 2ωr2(ωr2 + 4βP) > 0, (37)

or

(

− 4γ 2 + ω2r4 + 4βPr2ω ± 4
√

−γ 2ω2r4 − 4βPr2ωγ 2

)

< 0.

(38)

The MI gain spectrum is given as

g(ν) = 2Im(ν)

=
√

−4γ 2 + ω2r4 + 4βPr2ω ± 4
√

−γ 2ω2r4 − 4βPr2ωγ 2.

(39)

The MI is significantly affected by P. If P is increased, the growth
rate of MI will appear to disperse.

5. GRAPHICAL RESULTS AND
DISCUSSION

The graphical representation of the amplitude defined by
Equation (30) considering a0 = 1,α = t, and γ (t) = sin3(0.005t)
is depicted in Figures 1A,B, with the values of only GF b (0.5

and 0.79) and δ0 (0.5 and 0.61). The graph with the maximum
peak can be obtained at b = 0.5 and δ0 = 0.5. For the
second possibility, when the GF and the EMF are both present,
we discuss the graphical behavior of the solutions. For this, let
us consider δ(t) = 0.7 + 0.9 cos(0.1t), δ0(t) = 0.5t2, δ(t) =
0.86 + 1.2 cos(0.1t), δ0(t) = 0.35t2 and δ0(t) = 0.35t2, and
δ(t) = 0.1 + 1.2 cos(0.1t) and δ0(t) = 0.35t2. The graphical
representations are demonstrated in Figures 1C–E, respectively.

The results show that there are no different effects of GF on
first- and second-order rogue waves. Graphical representations
of the amplitude given by Equation (31) at a0 = 1 and γ (t) =
sin3(0.005t) with different values of GF and δ0(t) is depicted
in Figures 2A–C. Six small peaks appear around the one high
peak of the second-order solution. Graphical representations of
second-order rogue waves with both GF and EMF are also shown
in Figures 2D–F.

Graphical representations of the amplitudes given by equation
(30) at a0 = 1 and γ (t) = t are depicted in Figures 3A–D

with the different parameter values. The curves in Figures 3A,B

are formed under the GF, and those in Figures 3C,D are formed
when both the GF and EMF are present.

Graphical representations of the amplitude given by Equation
(31) at a0 = 1 and γ (t) = t with different values of GF and
δ0(t) are depicted in Figures 4A,B. Small lumps appear in the
graph of the second-order solution. Graphical demonstrations
of second-order rogue waves with both GF and EMF are shown
in Figures 4C,D.

FIGURE 4 | 3D graphical representations of second-order rogue waves. These are constructed with (A) b = 0.9, δ0(t) = 0.001t and α = 5 tan2(0.05t), (B)

b = 0.9, δ0(t) = 0.001t and α = 5 tan2(0.05t), (C) δ(t) = 1.5+ 0.4 cos t, δ0(t) = 0.001t and α = 25 tan2(0.05t), and (D) δ(t) = 1.5+ 0.001 cos t, δ0(t) = 0.001t and

α = 35 tan2(0.05t).
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6. CONCLUSION

This article studies the construction of rogue waves in NLSE
with a variable coefficient in the presence of harmonic potential.
The graphical demonstration shows that the dynamical behavior
of waves under the influence of gravity and magnetic fields
in linear potential. It is observed that in the presence of GF,
the density remains constant, while peak height and width
remain invariant. The obtained solutions are of first and second

order and are constructed using the ST approach. Moreover,

the MI is calculated and is significantly affected by incident
optical power.
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