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We present a novel Bayesian approach to semiotic dynamics, which is a cognitive analog

of the naming game model restricted to two conventions. The model introduced in

this paper provides a general framework for studying the combined effects of cognitive

and social dynamics. The one-shot learning that characterizes the agent dynamics in

the basic naming game is replaced by a word-learning process in which agents learn

a new word by generalizing from the evidence garnered through pairwise-interactions

with other agents. The principle underlying the model is that agents—like humans—can

learn from a few positive examples and that such a process is modeled in a Bayesian

probabilistic framework. We show that the model presents some analogies with the basic

two-convention naming game model but also some relevant differences in the dynamics,

which we explain through a geometric analysis of the mean-field equations.

Keywords: complex systems, language dynamics, bayesian statistics, cognitive models, consensus dynamics,

semiotic dynamics, naming game, individual-based models

1. INTRODUCTION

A basic question in complexity theory is how the interactions between the units of the system lead
to the emergence of ordered states from initially disordered configurations [1, 2]. This general
question can concern different phenomena ranging from phase transitions in condensed matter
systems and self-organization in living matter to the appearance of norm conventions and cultural
paradigms in social systems. In order to study social interactions and cooperation, different models
have been used: from those based on analogies with condensed matter systems (such as spin
systems) or statistical mechanical models (e.g., using a master equation approach) to those formally
equivalent to ecological competition models [1] or many-agents models in a game-theoretical
framework [3–5]. Among the various models, opinion dynamics and cultural spreading models
represent an example of a valuable theoretical framework for a quantitative description of the
emergence of social consensus [2].

Within the spectrum of phenomena associated with consensus dynamics, the emergence of
human language remains a challenging question because of its multi-fold nature, characterized
by biological, ecological, social, logical, and cognitive aspects [6–10]. Language dynamics [11, 12]
has provided a set of models describing various phenomena of language competition and language
change in a quantitative way, focusing on themutual interactions of linguistic traits (such as sounds,
phonemes, grammatical rules, or the use of languages understood as fixed entities), possibly under
the influence of ecological and social factors, modeling such interactions through analogy with
biological competition and evolution.

However, even the basic learning process of a single word has a complex dynamics due to the
associated cognitive dimension: to learn a word means to learn both a concept, understood as a
pointer to a subset of objects [10, 13, 14], and a corresponding linguistic label, for example the
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name used for communicating the concept. The double
concept↔name nature of words has been studied in semiotic
dynamics models, which study the consensus dynamics of
language, i.e., if and how consensus about the use of certain
names to refer to a certain object-concept emerges in a group of
N interacting agents.

Examples of semiotic models are those of Hurford [15] and
Nowak et al. [16] (see also [17, 18]). In the basic version of
the model of Nowak et al. [16], the language spoken by each
agent i (i = 1, . . . ,N) is defined by two personal matrices, U(i)

and H(i), representing the links of a bipartite network joining Q
names and R concepts: (1) the active matrix U

(i) represents the

concept→ name links, where the element U
(i)
q,r (q ∈ (1,Q), r ∈

(1,R)) gives the probability that agent i will utter the qth name
to communicate the rth concept; (2) the passive matrix H(i)

represents the name→ concept links, in which the element

H
(i)
q,r represents the probability that an agent interprets the qth

name as referring to the rth concept. In Hurford’s and Nowak’s
models, the languages (i.e., the active and passive matrices) of
each individual evolve over time according to a game-theoretical
dynamics in which agents gain a reproductive advantage if their
matrices are associated with a higher communication efficiency.
These studies have achieved interesting results, showing, e.g.,
that the system self-organizes in an optimal way with only non-
ambiguous one-to-one links between objects and sounds, when
possible, and explaining why homonyms are more frequent than
synonyms [15–18].

Another example of a semiotic model is the naming game
(NG) model [19, 41], detailed below, where only one concept is
considered (R = 1) together with its links to a set of Q > 1
different names. It is possible to reformulate the model through
the lists of the name↔concept connections Li known to each
agent i rather than in terms of the matrices U(i) and H(i). In the
case of the NG with two names A and B, the list of the generic ith
agent can be Li = ∅ if no such connection is known, Li = (A)
or Li = (B), if only one name is known to refer to concept C,
or Li = (A,B) if both name↔concept connections are known.
At variance with Hurford’s and Nowak’s models, in the basic
NG model, there is no population dynamics, and consensus is
achieved through horizontal interactions between pairs of agents,
who carry out a negotiation dynamics in which theymay agree on
the use of a word, possibly erasing the other word from their lists.

In the signaling game of Lenaerts et al. [20], the basic
add/remove agreement dynamics of the NG model is replaced
by a reinforcement scheme describing an underlying cognitive
dynamics. Such a scheme is defined within a learning automata
framework in which the single probabilities, linking the qth word
and the rth object, are updated in time depending on the outcome
of pair-wise communications—the system is characterized by
the same complex landscape of R concepts and Q names as
in Hurford’s and Nowak’s models. The model works with a
basic horizontal dynamics, as in the NG model, but it has
a general framework of language change, which can include
oblique (teacher↔student) and vertical (parent↔offspring)
communications. An NG-like language dynamics, with a
similar cognitive reinforcement mechanism, was also studied by

Lipowska & Lipowski, both in the single- and the many-object
version [21]. They also studied how the underlying topology, e.g.,
a random network or a regular lattice, can have a crucial role
in determining the type of final state, characterized by a global
consensus or by different types of local consensus fragmented
into patches.

In the models mentioned, words and concepts are fixed,
though their links are dynamically determined through the
interactions between agents. To make further extensions of such
semiotic dynamics models toward a cognitive direction is not
a trivial task, both because of the complexity of the problem—
for example, a two-opinion variant of the NG model that takes
into account committed groups produces a remarkable phase
diagram [22]—and because, in order to describe mathematically
actual cognitive effects, entirely new features need to be taken
into account [23]. A natural framework is represented by
Bayesian inference, both for its general analogy with actual
learning processes and especially because supported by various
experiments. For example, Bayes inference underlies the agent-
based model of binary decision-making introduced by [24],
which is shown to interpolate well some real datasets on binary
option choices. See Pérez et al. [25] for another example of
Bayes-based modeling and reproduction of a real decision-
making experiment.

The goal of the present paper is to construct a minimal

model to study the interplay of cognitive and social dynamical

dimensions. The new model (see section 2.3) is similar to
the two-conventions NG but contains relevant differences

that describe the cognitive dimension of word-learning. Using
semiotic dynamics models as a starting point is a natural
choice, and the NG is a convenient framework due to its
simple yet general underlying idea, which allows applications
to the emergence of different conventions. Furthermore, the
NG can be coupled to various underlying processes, such
as mutations, population growth, and ecological constraints,
and can be easily embedded in the topology of a complex
network [19, 26]. The cognitive extension of the NG is done
within the experimentally validated Bayesian framework of
Tenenbaum [10] (see also [13, 14, 27–30]). In the resulting
cognitive framework, an individual can learn a concept from
a small number of examples, a very remarkable feature of
human learning [10, 31, 32], in contrast with machine learning
algorithms, which require a large number of examples to
generalize successfully [33–35]. In section 3, we present and
discuss the features of the semiotic dynamics emerging from
the numerical simulations and quantitatively compare them with
those of the two-conventions NG model. It is shown that while
the Bayesian NG model always reaches consensus, like the basic
NG, the corresponding dynamics presents relevant differences
related to the probabilistic learning process. We study in detail
the stability and the other novel features of the dynamics in
section 4. A summary of the work and a discussion of other
possible outcomes to be expected from the interplay of the
cognitive and the social dynamics, not considered in this paper
but representing natural extensions of the present study, are
outlined in section 5.
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2. A BAYESIAN LEARNING APPROACH TO
THE NAMING GAME

2.1. The Two-Conventions Naming Game
Model
Before introducing the new model, we outline the basic two-
conventions NG model [36], in which there is a single concept
C, corresponding to an external object, and two possible names
(synonyms) A and B for referring to C. Thus, the possibility of
homonymy is excluded [26]. Each agent i is equipped with the
list Li of the names known to the agent. We assume that at t = 0,
each agent i knows either A or B and therefore has a list Li = (A)
or Li = (B), respectively.

During a pair-wise interaction, an agent can act as a speaker,
when conveying a word to another agent, or as a hearer, when
receiving a word from a speaker. One can think of an agent
conveying a word as uttering a name, e.g., A, while pointing
at an external object, corresponding to concept C: thus, the
hearer records not only the name A but also the name↔concept
association between A and C. At a later time t > 0, the list Li

of the ith agent can contain one or both names, i.e., Li = (A),
(B), or (A,B).

The system evolves according to the following update rules
[26]:

1. Two agents i and j, the speaker and the hearer, respectively, are
randomly selected.

2. The speaker i randomly extracts a name (here, either A
or B) from the list Li and conveys it to the hearer j.
Depending on the state of agent j, the communication is
usually described as:

a. Success: the conveyed name is also present in the hearer’s
list Lj, i.e., agent j also knows its meaning; then, the two
agents erase the other name from their lists, if present.

b. Failure: the conveyed name is not present in the hearer’s list
Lj; then, agent j records and adds it to list Lj.

3. Time is increased by one step, t → t + 1, and the simulation
is reiterated from the first point above.

Examples of unsuccessful and successful communications are
each schematized in the left panel (A) of Figure 1; see [41] for
more examples. Despite its simple structure, the basic NG model
describes the emergence of consensus about which name to use,
which is reached for any (disordered) initial configuration [37].

2.2. Toward a Bayesian Naming Game
Model
From a cognitive perspective, a “communication failure” of the
NG model can be understood as a learning process in which the
hearer learns a new word. It is a “one-shot learning process”
because it takes place instantaneously (in a single time step)
and independently of the agent’s history (i.e., of the previous
knowledge of the agent). However, modeling an actual learning
process should take into account the agents’ experience, based
on previous observations (the data already acquired) as well as

the uncertain/incomplete character naturally accompanying any
learning process.

Here, the one-shot learning is replaced by a process that can
describe basic but realistic situations, such as the prototypical
“linguistic games” [38]. For example, consider a “lecture game,”
in which a lecturer (speaker) utters the name A of an object and
shows a real example “+” of the object to a student (hearer),
repeating this process a few times. Then, the teacher can e.g.,
(a) show another example and ask the student to name the
object, (b) utter the same name and ask the student to show
an example of that object, or (c) do both things (uttering the
name and showing the object) and asking the student whether the
name↔object correspondence is correct. The student will not be
able to answer correctly if they have not received some examples
enabling them to generalize the concept C corresponding to the
object in association with name A. To model these and similar
learning processes, we need a criterion enabling the hearer to
assess the degree of equivalence between the new example and
the examples recorded previously.

The starting point for the replacement of the one-shot learning
is Bayes’ theorem. According to Bayes’ theorem, the posterior
probability p

(

h|X
)

that the generic hypothesis h is the true
hypothesis, after observing new evidence X, reads [39, 40],

p
(

h|X
)

=
p
(

X|h
)

p
(

h
)

p (X)
. (1)

Here, the prior probability p
(

h
)

gives the probability of
occurrence of the hypothesis h before observing the data, and
p
(

X|h
)

gives the probability of observing X if h is given. Finally,
p (X) gives the normalization constraint; in applications, it can
be evaluated as p (X) =

∑

h′ p
(

X|h′
)

p
(

h′
)

, where {h′} ∈ H
represents the set of hypotheses, within the hypothesis space H.

The next step is to find a way to compute explicitly the
posterior probability p

(

h|X
)

through a representation of the
concepts and their relative examples in a suitable hypothesis
space H of the possible extensions of a given concept C,
constituted by the mutually exclusive and exhaustive hypotheses
h. Following the experimentally verified Bayesian statistical
framework of Tenenbaum [10, 31], we adopt the paradigmatic
representation of a concept as a geometrical shape. For example,
the concept of the “healthy level” of an individual in terms of
the levels of cholesterol x and insulin y, defined by the ranges
xa ≤ x ≤ xb and ya ≤ y ≤ yb, where xi and yi (i = a, b) are
suitable values, represents a rectangle in the Euclidean x-y plane
R
2. Examples of healthy levels of specific individuals 1, 2, . . .

correspond to points (x1, y1), (x2, y2), · · · ∈ R
2. In the following,

we assume that a hypothesis h is represented by an axis-parallel
rectangular region in R

2. Figure 2 shows four positive examples,
denoted by the symbol “+,” associated to four different points
of the plane, consistent with (i.e., contained in) three different
hypotheses, shown as rectangles.

The problem of learning a word is now recast into an
equivalent problem, consisting of acquiring the ability to infer
whether a new example z recorded, corresponding to a new
point “+” in R

2, corresponds to the concept C after having seen
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FIGURE 1 | Comparison of the basic and Bayesian NG models. (A) Basic two-conventions NG model. In a communication failure (upper figure), the name conveyed,

B in the example, is not present in the list of the hearer, who adds it to the list. In a communication success (lower figure), the word B is already present in the hearer’s

list, and both agents erase A from their lists. (B) Bayesian NG model. In order to convey an example “+” to the hearer in association with name A, the speaker must

have already generalized concept C in association with A, represented here by the label [A]. In a communication failure (upper figure), the hearer computes the Bayes

probability p, and the result is a p < 1/2; then, the only outcome is that the hearer records the example (reinforcement). In the Bayesian NG, there are two ways in

which the communication can be successful. The first way (lower figure) is when p ≥ 1/2: the hearer generalizes C in association with A and attaches the label [A] to

the inventory. The second way (not shown) is the agreement process, analogous to that of the basic NG, when both agents had already generalized concept C in

association with name A and remove label [B] from their lists, if present. See text for further details.

FIGURE 2 | Three different hypotheses represented as axis-parallel rectangles

in R
2, and four positive examples “+” that are all consistent with the three

hypotheses. The set of all the rectangles that can be drawn in the plane

constitutes the hypothesis space H.

a small set of positive examples “+” of C. More precisely, let
X =

{(

x1, y1
)

, . . . ,
(

xn, yn
)}

be a sequence of n examples of the
true concept C, already observed by the hearer, and z = (z1, z2)
the new example. The learner does not know the true concept
C, i.e., the exact shape of the rectangle associated to C, but can
compute the generalization function p (z ∈ C|X) by integrating
the predictions of all hypotheses h, weighted by their posterior
probabilities p

(

h|X
)

:

p (z ∈ C|X) =
∫

h∈H
p
(

z ∈ C|h
)

p
(

h|X
)

dh . (2)

Clearly, p
(

z ∈ C|h
)

= 1 if z ∈ h and 0 otherwise. By
means of Bayes’ theorem (1), one can obtain the right Bayesian
probability for the problem at hand. A successful generalization
is then defined quantitatively by introducing a threshold p∗,
representing an acceptance probability: an agent will generalize
if the Bayesian probability p (z ∈ C|X) ≥ p∗. The value p∗ = 1/2
is assumed, as in Tenenbaum [31].

We assume that an Erlang prior characterizes the agents’
background knowledge. For a rectangle in R

2 defined by the
tuple

(

l1, l2, s1, s2
)

, where l1, l2 are the Cartesian coordinates of
its lower-left corner and si its sides along dimension i = 1, 2, the
Erlang prior density is Tenenbaum [10, 31]

pE = s1s2 exp

{

−
(

s1

σ1
+

s2

σ2

)}

, (3)

where the parameters σi represent the actual sizes of the concept,
i.e., they are the sides of the concept rectangle C along dimension
i. The choice of a specific informative prior, such as the Erlang
prior, is well motivated by the fact that, in the real world,
individuals always have some prior knowledge or expectation. In
fact, a Bayesian learning framework with an Erlang prior of the
form (3) well describes experimental observations of the learning
processes of human beings [31]. The final expression used below
for computing the Bayesian probability p that, given the set of
previous examplesX, the new example z falls in the same category
of concept C, reads [31].

p (z ∈ C|X) ≈
exp

{

−
(

d̃1
σ1

+ d̃2
σ2

)}

[(

1+ d̃1
r1

) (

1+ d̃2
r2

)]n−2
. (4)

Here, ri (i = 1, 2) is an estimate of the extension of the set
of examples along direction i, given by the maximum mutual

distance along dimension i between the examples of X; d̃i
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measures an effective distance between the new example z and

the previously recorded examples, i.e., d̃i = 0 if zi falls inside the
value range of the examples of X along dimension i, otherwise

d̃i is the distance between z and the nearest example in X along
the dimension i. Equation (4) is actually a “quick-and-dirty”
approximation that is reasonably good, except for n ≤ 3 and
ri ≤ σ/10, estimating the actual generalization function within
a 10% error; see Tenenbaum [10, 31] for details. Despite these
approximations, Equation (4) will ensure that our computational
model, described in the next section, retains the main features
of the Bayesian learning framework. It is to be noticed that,
for the validity of the Bayesian framework, it is crucial that
the examples are drawn randomly from the concept (strong
sampling assumption), i.e., they are extracted from a probability
density that is uniform in the rectangle corresponding to the true
concept [31]. This definition of generalization is now applied
below to word-learning.

2.3. The Bayesian Word-Learning Model
Based on the Bayesian learning framework discussed above, in
this section we introduce a minimal Bayesian individual-based
model of word-learning. For the sake of clarity, in analogy with
the basic NG model, we study the emergence of consensus in the
simple situation, in which two names A and B can be used for
referring to the same concept C in pair-wise interactions among
N agents.

At variance with the NG model, here, in each basic pair-wise
interaction, an agent i, acting as a speaker, conveys an example
“+” of concept C, in association with either name A or name B,
to another agent j, who acts as hearer (i, j = 1, . . . ,N). In order
to be able to communicate concept C by uttering a name, e.g.,
name A, the speaker i must have already generalized concept C
in association with name A. This is signaled by the presence of
name A in list Li. On the other hand, the hearer j always records
the example received in the respective inventory, in the example,
the inventory [+++ . . . ]A.

The state of a generic agent i at time t is defined by:

• List Li, to which a name is added whenever agent i generalizes
concept C in association with that name; agent i can use any
name in Li to communicate C;

• Two inventories [+ + + . . . ]A and [+ + + . . . ]B containing
the examples “+” of concept C received from the other agents
in association with name A and B, respectively.

It is assumed that, initially, each agent knows one word: a fraction
nA(0) of the agents know concept C in association with name
A, and the remaining fraction nB(0) = 1 − nA(0) in association
with name B—no agent knows both words, nAB(0) = 0. We will
examine three different initial conditions:

Symmetric initial conditions (SIC): nA(0) = nB(0) = 0.5

Asymmetric initial conditions (AIC): nA(0) = 0.3, nB(0) = 0.7

Reversed case of AIC (AICr): nA(0) = 0.7, nB(0) = 0.3

Initially, each agent i, within the fraction nA(0) of agents that
know name A is assigned nex,A = 4 examples “+” of concept C in

association with name A but no examples in association with the
other name B, so that agent i has an A-inventory [++++]A and
an empty B-inventory [·]B. The complementary situation holds
for the other agents that know only name B, who initially receive
nex,B = 4 examples of concept C in association with name B
but none in association with A. This choice, somehow arbitrary,
is dictated by the condition that (Equation 4) becomes a good
approximation for n > 3 [10].

Examples are points uniformly generated inside the fixed
rectangle corresponding to the true concept C, here assumed
to be a rectangle with lower-left corner coordinates (0, 0) and
sizes σ1 = 3 and σ2 = 1 along the x- and y-axis, respectively.
Results are independent of the assumed numerical values; in
particular, no appreciable variation in the convergence times tconv
is observed as the rectangle area is varied, which is consistent with
the strong sampling assumption on which the Bayesian learning
framework rests; see Tenenbaum [10] and section 3.

Furthermore, we introduce an element of asymmetry between
the namesA and B, related to the word-learning process: different
minimum numbers of examples n∗ex,A = 5 and n∗ex,B = 6 will
be used, which are needed by agents to generalize concept C
in association with A and B, respectively. This is equivalent to
assuming that concept C is slightly easier to learn in association
with name A than B. Such an asymmetry plays a relevant role in
themodel dynamics in differentiating the Bayesian generalization
functions pA and pB from each other; see section 4.

The dynamics of the model can be summarized by the
following dynamical rules:

1. A pair of agents i and j, acting as speaker and hearer,
respectively, are randomly chosen among the agents.

2. The speaker selects randomly (a) a name from the list Li (or
selects the name present if Li contains a single name), for
example, A (analogous steps follow if the word B is selected);
(b) an example z among those contained in the corresponding
inventory [+++ . . . ]A;
then the speaker i conveys the example extracted z in
association with (e.g., uttering) the name selected A to the
hearer j.

3. The hearer adds the new example z (in association with A) to
the inventory [+++ . . . ]A. This reinforcement process of the
hearer’s knowledge always takes place.

4. Instead, the next step depends on the state of the hearer:

(a) Generalization. If the selected name, A in the example,
is not present in the hearer’s list Lj, then the hearer j
computes the relative Bayesian probability pA = p(z ∈
C|XA) that the new example z falls in the same category
of concept C, using the examples previously recorded in
association with A, i.e., from the set of examples XA ∈
[+ + + . . . ]A. If pA ≥ 1/2, the hearer has managed to
generalize concept C and connects the inventory [+ +
+ . . . ]A to name A; this is done by adding name A to list
Lj. Starting from this moment, agent j can communicate
concept C to other agents by conveying an example taken
from the inventory [+ + + . . . ]A while uttering the
name A. If pA < 1/2, the hearer has not managed to
generalize the concept and nothing more happens (the
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reinforcement of the previous point is the only event
taking place).

(b) Agreement. The name uttered by the speaker, A in the
example, is present in the hearer’s list Lj, meaning
that agent j has already generalized concept C in
association with name A and has connected the
corresponding inventory [+ + + . . . ]A to A. In this
case, the hearer and the speaker proceed to make
an agreement, analogous to that of the NG model,
leaving A in their lists Li and Lj and removing B,
if present. No examples contained in any inventory
are removed.

5. Time is updated, t → t + 1, and the simulation is reiterated
from the first point above.

Two examples of the Bayesian word-learning process, a
successful and an unsuccessful one, are illustrated in the cartoon
in the Figure 1B. Table 1 lists the possible encounter situations,
together with the corresponding relevant probabilities.

Notice that an agent i can enter a pair-wise interaction with a
non-empty inventory of examples, e.g., [+++ . . . ]A, associated
to name A, without being able to use name A to convey examples
to other agents, i.e., without having the name A in list Li due to
not having generalized concept C in association with A. Those
examples can have different origins: (1) in the initial conditions,
when nex,A randomly extracted examples associated to A and
nex,B to B are assigned to each agent; (2) in previous interactions,
in which the examples were conveyed by other agents; (3) in
an agreement about convention B, which removed label A from

list Li while leaving all the corresponding examples in the
inventory associated to name A. In the latter case, the inventory
[+ + + . . . ]A may be “ready” for a generalization process, since
it contains a sufficient number of examples, i.e., agent i will
probably be able to generalize as soon as another example is
conveyed by an agent. This situation is not as peculiar as it may
look at first sight. In fact, there is a linguistic analog in the case
where a speaker that loses the habit of using a certain word (or a
language) A can regain it promptly if exposed to A again.

Notice also that without the agreement dynamics scheme
introduced in the model, borrowed from the basic NGmodel, the
population fraction nAB of individuals who know both A and B
(nA+nB+nAB = 1) would be growing, until eventually nAB = 1.

3. RESULTS

In this section, we numerically study the Bayesian NG
model introduced above and discuss its main features. We
limit ourselves to studying the model dynamics of a fully-
connected network.

In the new learning scheme, which replaces the one-shot
learning of the two-conventions NG model, an individual
generalizes concept C on a suitable time scale 1t > 1 rather
than during a single interaction. However, a few examples are
sufficient for an agent to generalize concept C, as in a realistic
concept-learning process. This is visible from the Bayesian
probabilities pA and pB computed by agents in the role of
hearer, according to Equation (4), once at least n∗ex,A = 5 and
n∗ex,B = 6 examples “+”, respectively, have been stored in the

TABLE 1 | Pair-wise interactions in the Bayesian NG model.

S-List Name H-List Branching Process Condition S-List H-List

(before) conveyed (before) probability (after) (after)

(A)
A−→ (A) (q = 1) Reinforcement always (A) (A)

(A)
A−→ (B) (q = 1) Reinforcement pA < 1/2 (A) (B)

(q = 1) Learning pA ≥ 1/2 (A) (A,B)

(A)
A−→ (A,B) (q = 1) Agreement always (A) (A)

(B)
B−→ (A) (q = 1) Reinforcement pB < 1/2 (B) (A)

(q = 1) Learning pB ≥ 1/2 (B) (A,B)

(B)
B−→ (B) (q = 1) Reinforcement always (B) (B)

(B)
B−→ (A,B) (q = 1) Agreement always (B) (B)

(A,B)
A−→ (A) q = 1/2 Agreement always (A) (A)

(A,B)
B−→ (A) q = 1/2 Reinforcement pB < 1/2 (A,B) (A)

Learning pB ≥ 1/2 (A,B) (A,B)

(A,B)
A−→ (B) q = 1/2 Reinforcement pA < 1/2 (A,B) (B)

Learning pA ≥ 1/2 (A,B) (A,B)

(A,B)
B−→ (B) q = 1/2 Agreement always (B) (B)

(A,B)
A−→ (A,B) q = 1/2 Agreement always (A) (A)

(A,B)
B−→ (A,B) q = 1/2 Agreement always (B) (B)

The speaker (S) conveys a name
A−→ or

B−→ to the hearer (H) together with an example taken from the speaker’s inventory, [+ + + . . . ]A or [+ + + . . . ]B, respectively—this happens

with a branching probability q = 0.5 if the speaker has the list (A,B) and knows the meaning of both names. The outcome can be: (1) reinforcement (only); (2) generalization of concept

C if the Bayes probability is p ≥ 1/2; (3) an agreement between hearer and speaker if both agents know the meaning of the conveyed name. Even if not indicated, reinforcement takes

place also in cases (2) and (3).
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inventories associated with the names A and B: Figure 3 shows
the histograms of the pAs and pBs computed from the initial
time until consensus for a single run with N = 2000 agents and
starting with SIC. The low frequencies at small values of pA and
pB and the highest frequencies at values close to unity are due to
the fact that the Bayesian probabilities reach values pA ≈ pB ≈ 1
very fast, after a few learning attempts, consistently with the size
principle, on which the Bayesian learning paradigm, and in turn
Equation (4), are based [10].

In order to visualize how the system approaches consensus, it
is useful to consider some global observables, such as the fractions
nA(t), nB(t), and nAB(t) of agents that have generalized concept C
in association with name A only, name B only, or both names A
and B, respectively, or the success rate S(t). The dynamics of a
population of N = 1, 000 agents (Figures 4A,B) using different
initial conditions, SIC, AIC, and AICr, and that of a population
of N = 100 agents starting with SIC (Figures 4C,D) are shown
in Figure 4.

Figure 4A shows only the population fractions corresponding
to the name found at consensus, for the sake of clarity (the
remaining population fractions eventually go to zero). For an
asymmetrical initial condition (AIC or AICr), it is the initial
majority that determines the convention found at consensus (that
is, B for AIC and A for AICr). If the system starts from SIC,
convention A, for which agents can generalize earlier (n∗ex,A =
5 < n∗ex,B = 6), is always found at consensus—in this case, it is
the asymmetry in the thresholds n∗ex,A and n∗ex,B, characterizing
the Bayesian learning process, that determine consensus.

Figure 4B shows the success rate S(t = tk), representing the
average over different runs of the instantaneous success rate Sk
of the kth interaction at time tk, defined as follows: Sk = 1 in
case of agreement between the two agents or when successful
learning by the hearer takes places, following a Bayes probability
p ≥ 1/2; or Sk = 0 in case of unsuccessful generalization, when
p < 1/2 and only reinforcement takes place. The success rate S(t)
varies between S(0) ≈ (nA(0))

2 + (nB(0))
2, due to the respective

fractions of agents that initially know the two conventions A and
B, to S ≈ 1 at consensus, following a typical S-shaped curve of
learning processes [41]. In the case of SIC, the initial value is
S(0) ≈ 0.52 + 0.52 = 0.5, while for AIC or AICr the initial value
is S(0) ≈ (0.3)2 + (0.7)2 ≈ 0.58.

We now investigate how the modified Bayesian dynamics
affects the convergence times to consensus. The study of the size-
dependence of the convergence to consensus shows that there is a
critical value N∗ ≈ 500 in the case of SIC, such that for N ≤ N∗,
there is a non-negligible probability that the final absorbing state
is B. Figures 4C,D, representing the results for a system starting
with SIC and a smaller size N = 100, show the existence of
two possible final absorbing states, and that there are different
timescales associated with the convergence to consensus: name
A is found at consensus in about 90% of cases and name B
in the remaining cases. The branching probability into A or B
consensus is further investigated in Figure 5A, where we plot
the branching probabilities pe,A, pe,B vs. the system sizes N. The
nonlinear behavior (symmetrical sigmoid) signals the presence of
finite-size effects, which are particularly clear for relatively small
N-values. In fact, when the fluctuations in the system are larger,

FIGURE 3 | Histograms of the Bayesian probabilities pA,pB computed by

agents during their learning attempts during a single run (for N = 2000 agents,

starting with SIC; n*ex,A = 5, n*ex,B = 6).

the system size can play an important role in the dynamics of
social systems, as an actual thermodynamic limit is only allowed
for simulations of macroscopic physical systems [42].

The convergence time tconv follows a simple scaling rule with
the system size N, related to the average number of examples
n̄ex,A, n̄ex,B relative to A,B respectively, stored in the agents’
inventories at consensus. These values depend on the number of
learning and reinforcement processes, and hence are related to
the system sizeN. The average number of interactions undergone
by the agents until the system reaches the consensus is given by
the sum n̄int = n̄ex,A + n̄ex,B

1. One expects that:

tconv ≈ n̄intN , (5)

which suggests a linear scaling law (tconv ∼ N) for convergence
time with the system size N for all the possible initial
conditions. Linear behavior is indeed confirmed by the numerical
simulations with population sizes N = 50, 100, 500, 1,000,
1,500, and 2,000 starting from SIC, AIC, and AICr. The relative
numerical results are reported in Table 2. Moreover, in Equation
(5) the size-dependence of n̄int is ignored as it shows a weak
dependence upon N; see Figure 5B.

From the above-mentioned scaling law, it is clear that
the average number of examples stored by the agents at
consensus plays an important role in the semiotic dynamics.
In particular, it is found that if the final absorbing state is A
(or B), then n̄ex,A > n̄ex,B (n̄ex,B > n̄ex,A). Moreover, the
average number of examples, relative to the absorbing state,
always increases monotonically with the system size while a
size-independent behavior is observed in the opposite case;
see Figure 5B.

Finally, we compare the convergence time of the Bayesian
word-learning model, tconv, with that of the two-conventions
NG model, t̄conv [36] by studying the corresponding ratio

1The nex,A = nex,B = 4 examples given initially to each agent are not accounted

for by n̄ex,A and n̄ex,B.
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FIGURE 4 | Average population fraction associated to the name shared in the final consensus state (A,C) and success rate S(t) (B,D) vs. time. (A,B) System with

N = 1, 000 agents starting from different initial conditions, SIC, AIC, and AICr; averages obtained over 600 runs. (C,D) System with N = 100 agents starting from SIC;

averages obtained over 1, 000 runs—notice that due to the smaller size N = 100, the system can converge to consensus both with name A (in a fraction of cases

pe,A ≈ 0.9) and with name B (pe,B ≈ 0.1).

FIGURE 5 | (A) Probabilities pe,A and pe,B that the system reaches consensus at A and B respectively, vs. the system size N, obtained by averaging over 1, 000 runs

of a system starting with SIC. (B) Average number of examples n̄ex,A and n̄ex,B recorded by an agent at consensus for a system of N = 50, 100, 500, 1,000, 1,500, or

2,000 agents, starting with SIC, AIC, and AICr. Averages are obtained over 600 runs.

R = tconv/t̄conv for common initial conditions and population
sizes. When starting with SIC, the values of the convergence
times obtained from the two models become of the same
order by increasing N: R decreases with N, reaching unity
for N = 10, 000; see Figure 6. In other words, the time
scales of the two models become equivalent for relatively
large system sizes, i.e., the learning processes of the two
models perform equivalently and the Bayesian approach
roughly gives rise to the one-shot learning that characterizes
the two-conventions NG model. In the next section, we
discuss how the Bayesian model becomes asymptotically
equivalent to the minimal NG model. The inset of Figure 6

represents R vs. N for N < 2000, given different starting
configurations, with SIC, AIC, and AICr, and different
population sizes.

4. STABILITY ANALYSIS

In this section, we investigate the stability and convergence
properties of the mean-field dynamics of the Bayesian NGmodel,
in which statistical fluctuations and correlations are neglected.

4.1. Mean-Field Equations
In the Bayesian NGmodel, as in the basic NG, agents can use two
non-excluding options A and B to refer to the same concept C.
The main difference between the Bayesian model and the basic
NG model is in the learning process: a one-shot learning process
in the basic NG and a Bayesian process in the Bayesian NG
model. In the latter case, the presence of a name in the word
list indicates that the agent has generalized the corresponding
concept from a set of positive recorded examples.
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TABLE 2 | Scaling laws tconv ∼ Nα with the system size N.

α n̄ex,A n̄ex,B Outcome

SIC 1.06 20 8 A,B

AIC 1.08 3 19 B

AICr 1.09 18 3 A

Here the parameters are n*ex,A = 5, n*ex,B = 6 with initial conditions SIC, AIC, and AICr.

The average number of examples, n̄ex,A, n̄ex,B, stored at tconv , are obtained by averaging

over 600 runs of a system with N = 1,000 agents.

FIGURE 6 | The ratio of the convergence times of the Bayesian word-learning

model and the two-conventions NG model, R = tconv/t̄conv vs. the system size

N for a system starting with SIC. The inset illustrates the dependence of R on

different initial conditions. The curves are obtained by averaging over 900 runs.

FIGURE 7 | Model scheme with two non-excluding options. Arrows indicate

allowed transitions between the “bilingual” state (A,B) and the “monolingual”

states A and B. Direct A ↔ B transitions are not allowed.

The NG model belongs to the wide class of models with
two non-excluding options A and B, such as many models of
bilingualism [43], in which transitions between state (A) and state
(B) are allowed only through an intermediate (“bilingual”) state
(A,B), as schematized in Figure 7. The mean-field equations for
the fractions nA(t) and nB(t) can be obtained by considering
the gain and loss contributions of the transitions depicted
in Figure 7,

ṅA = pAB→A nAB − pA→AB nA ,

ṅB = pAB→B nAB − pB→AB nB . (6)

Here, ṅa(t) = dna(t)/dt and the quantities pa→b represent the
respective transition rates per individual, corresponding to the
arrows in Figure 7 (a, b = A,B,AB). The equation for nAB(t)
was omitted, since it is determined by the condition that the total
number of agents is constant, nA(t)+ nB(t)+ nAB(t) = 1.

The details of the possible pair-wise interactions in the
Bayesian naming game are listed in Table 1. By adding the
various contributions, one obtains the equation for the average
population fractions,

ṅA = −pBnAnB + n2AB +
3− pB

2
nAnAB ,

ṅB = −pAnAnB + n2AB +
3− pA

2
nBnAB , (7)

which can be rewritten in the form (6) with transition rates per
individual given by:

pA→AB = pBnB +
1

2
pBnAB , pB→AB = pAnA +

1

2
pAnAB ,

(8)

pAB→A =
3

2
nA + nAB , pAB→B =

3

2
nB + nAB .

(9)

Equations (8) provide the transition rates of learning
processes, while Equations (9) give the transition rates of
agreement processes.

In the rest of the paper, we set x ≡ nA, y ≡ nB, and z = nAB ≡
1− x− y, so that the autonomous system (7) becomes:

ẋ = fx
(

x, y
)

≡ −pBxy+ (1− x− y)2 +
1

2
(3− pB)x(1− x− y) ,

(10)

ẏ = fy
(

x, y
)

≡ −pAxy+ (1− x− y)2 +
1

2
(3− pA)y(1− x− y) ,

(11)

in which we have defined the velocity field v =
(

fx(x, y), fy(x, y)
)

in the phase plane. The Bayesian probabilities pA and pB appear
in these equations as time-dependent parameters of the model,
but they are actually highly non-linear functions of the variables.
In fact, they can be thought as averages of the microscopic
Bayesian probability in Equation (4) over the possible dynamical
realizations. For this reason, they have also a complex non-
local time-dependence on the previous history of the interactions
between agents. For the moment, we assume pA(t) = pB(t) =
p(t), returning later to the general case.

From the conditions defining the critical points, fx
(

x, y
)

=
fy

(

x, y
)

= 0, one obtains
(

x− y
)

z = 0. Setting z = 0, one
obtains two solutions that correspond to consensus in A or B,
given by (x1, y1, z1) = (1, 0, 0) and (x2, y2, z2) = (0, 1, 0). Instead,
setting

(

x− y
)

= 0 leads to the equation:

2x2 − (p+ 5)x+ 2 = 0 , (12)
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which has the solutions,

x± =
p+ 5±

√

(p+ 5)2 − 16

4
. (13)

One can check that for every value of p ∈ (0, 1], the
corresponding solutions (x±, x±, 1 − 2x±) are not suitable
solutions, because z± = 1− 2x± < 0.

This analysis is valid for p > 0. In fact, p = p(t) is a
function of time and, for a finite interval of time after the initial
time, one has that p = 0, which defines a different dynamical
system: the transition from p = 0 to p > 0 is accompanied
by a bifurcation, as becomes clear by analyzing the equilibrium
points. In the initial conditions used, z(0) = 0, which implies
z(t) = 0, x(t) = x(0), and y(t) = y(0) at any later time t as long
as p(t) = 0, since ẋ(t) = ẏ(t) = ż(t) = 0 (see Equation 7); in
fact, the whole line x + y = 1 (for 0 < x, y < 1) represents
a continuous set of equilibrium points. The reason why, in this
model, p(0) = 0 at t = 0 and also during a subsequent finite
interval of time is twofold. First, agents do not have any examples
associated to the name not known, and they have to receive at
least n∗ex,A or n∗ex,B examples before being able to compute the
corresponding Bayesian probability pA(t) or pB(t)—thus, it is
to be expected that p(t) = 0 meanwhile. Furthermore, even
when agents can compute the Bayesian probabilities, the effective
probability to generalize is actually zero, due to the threshold
p∗ = 0.5 for a generalization to take place. The existence of
the (temporary) equilibrium points on the line x + y = 1 ends
as soon as the parameter p(t) > p∗ and, according to Equation
(7), a bifurcation takes place: the two A- and B-consensus states
become the only stable equilibrium points, and the representative
point in the x-y-plane is deemed to leave the initial conditions on
the z = 1 − x − y = 0 line due to the stochastic nature of the
dynamics, which is not invariant under time reversal [44].

To determine the nature of the critical points (x1, y1) = (1, 0)
and (x2, y2) = (0, 1), one needs to evaluate at the equilibrium
points the 2× 2 Jacobian matrix A(x, y) = {∂ifj}, where i, j = x, y.
Equations (10, 11) give:

A(1, 0) =
(

1
2

(

p− 3
)

− 1
2

(

p+ 3
)

0 −p

)

,A(0, 1) =
(

−p 0

− 1
2

(

p+ 3
)

1
2

(

p− 3
)

)

, (14)

whose eigenvalues at a given time t are λ1 = [p(t) − 3]/2
and λ2 = −p(t). As they are both negative and distinct for
0 < p ≤ 1, λ1 < λ2 < 0, the critical points (0, 1) and (1, 0)
are asymptotically stable [45]. It can be easily checked that these
conclusions are unchanged if the generalization probabilities are
different, pA(t) 6= pB(t). For instance, one would have:

A(1, 0) =
(

1
2

(

pB − 3
)

− 1
2

(

pB + 3
)

0 −pA

)

, (15)

associated to eigenvalues with different numerical values but the
same sign, not changing the nature of the critical point. Thus, the
asymptotically stable nodes (x1, y1) = (1, 0) and (x2, y2) = (0, 1)
are the only absorbing states of the Bayesian naming game.

4.2. A Geometric Analysis of Consensus
We consider a system starting from SIC, defined by the point
(x0, y0) = (0.5, 0.5) located on the line x + y = 1 of the phase
plane, representing a system that initially has 50% of agents with
list (A), 50% with list (B), and no agent with list (A,B).

From Equation (7) and the fact that, initially, pA(0) = pB(0) =
0 (and z(0) = 0), one can see that the corresponding velocity
is v(0) = (fx(x(0), y(0)), fy(x(0), y(0))) = (0, 0), meaning that
the initial SIC state (x(0), y(0)) = (0.5, 0.5) is a temporary
equilibrium point. As soon as pA(t), pB(t) > 0, at a time t =
t∗ > 0, the velocity becomes different from zero, and the
representative point (x(t), y(t)) moves away in the phase plane
with velocity v(t) = (fx(x(t), y(t)), fy(x(t), y(t))). The system is
observed to eventually reach either A-consensus at (x1, y1) =
(1, 0) or B-consensus at (x2, y2) = (0, 1). These two types of
evolution are illustrated in Figure 8 through the population
fractions nA(t) and nB(t) vs. time t taken from two single runs
of a population with size N = 100 agents.

In order to determine the conditions for this to happen, we
evaluate the scalar product between the velocity v(t∗) at time t∗

and the versor u = (1/
√
2,−1/

√
2), parallel to the line x+ y = 1

and directed toward the A-consensus state (1, 0); see Figure 9.
If the velocity vector v has a positive component along u, the
representative point will move from the initial state (0.5, 0.5)
toward the A-fixed point (1, 0); instead, in the case of a velocity
vector v′ with a negative component along u, the representative
point will move toward the B-fixed point (1, 0); see Figure 9.
From the simulations, we know that during the initial transient,
the population dynamics is characterized by a nA(t) ≈ nB(t),
until the critical time t = t∗ is reached. This allows one to set
x ≈ y in this interval of time—this phenomenon is a sort of
stiffness of the system before starting to explore the phase plane.
The scalar product u · v, where the velocity vector’s components
are given explicitly in Equation (7), is positive at t = t∗ when:

u · v =
fx − fy√

2
=

1
√
2

[

pA(t
∗)− pB(t

∗)
]

x2

+
1

2
√
2

[

pA(t
∗)− pB(t

∗)
]

x(1− 2x) > 0 , (16)

which gives the condition:

pA
(

t∗
)

> pB
(

t∗
)

. (17)

Equation (17) clearly shows that the values of the Bayesian
probabilities pA, pB become different at the critical time t∗, thus
allowing the solutions to split into different orbits, going toward
the state of consensus in A and B. The same reasoning, applied
to the case of an orbit bending toward the consensus state in B
at (0, 1), would give pA(t

∗) < pB(t
∗). The difference between

the probabilities pA and pB can be traced back to the way the
generalization function p(t) is used by agents to compute either
pA(t) or pB(t). In fact, the value of p(t) depends on the examples
recorded, which constitute the inputs of the function. We argue
that this behavior is due to the fluctuations of the numbers
of examples n̄ex,A(t) and n̄ex,B(t), recorded by the agents until
time t, together with the initial asymmetry of the thresholds
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FIGURE 8 | Results from two single simulations of a system with N = 100 agents, starting from SIC at (x0, y0) = (0.5, 0.5) and reaching two different consensus states

about name A or B. (A,C) Show the population fractions x(t) = nA(t) and y(t) = nB(t). (B,D) Show the corresponding average number of examples recorded by an

agent, n̄ex,A (t) and n̄ex,B(t).

for generalizing, n∗ex,A 6= n∗ex,B. In fact, the stochastic nature of
the pairwise-interactions leads to different examples (that can
be better or worse for the aim of generalizing) and to different
inventory sizes, i.e., the numbers of examples stored by agents
at time t; clearly all this strongly affects the path to consensus.
Furthermore, asymmetrical thresholds (n∗ex,A = 5 < n∗ex,B = 6
were used) produce a bias favoring consensus in A and play a
crucial role in the subsequent Bayesian semiotic dynamics, letting
concept C be learnedmore often in association withA than B and
contributing to making consensus in Amore frequent: swapping
the threshold values (setting n∗ex,A = 6 > n∗ex,B = 5), the
approach to consensus occurs with the outcomes A, B swapped.

For N & N∗ ≈ 500, the chances that the system converges
to (B) become negligible. This can be seen in of Figures 8B,D,
showing n̄ex,A(t) and n̄ex,B(t) vs. time (averaged over the agents
of the system) for a single run of a system with a population of
N = 100 agents, starting with SIC. Panels (B) and (D) compare
the results obtained from selected runs ending at consensus A
and B, respectively. It is evident that, after an initial transient,
in which n̄ex,A(t) ≈ n̄ex,B(t), they start to differ more and more
significantly from each other at times t > t∗. In turn, starting
from this point, also pA and pB begin to differ significantly from
each other, thus affecting the rate of depletion of the populations
during the subsequent dynamics. For instance, if pA > pB,
then pB→AB > pA→AB (see Equations (8)), which means that
the depletion of nB occurs faster then that of nA. In turn, this
favors the decay of the mixed states (A,B) into the state (A) (see
Equations (9)), being nA > nB.

The asymmetry discussed above, about the rate of convergence
toward the final consensus states, also affects the values of
convergence times tAconv and tBconv needed for a system to reach
consensus at A and B, respectively: we find tBconv > tAconv in all
the numerical simulations. The difference in the convergence
times is already appreciable, despite the noise, in the output
of a single run, such as the population fractions shown in
Figures 8A,C. Mean fractions nA(t), nB(t), and nAB(t) vs. time,

obtained by averaging overmany runs, result in less noisy outputs
and provide a more clear picture of the difference, which is
visible in Figure 10, obtained using 600 runs starting with SIC
and for N = 100 agents (Figures 10A,C) and N = 200
agents (Figures 10B,D). In addition, one can notice that the
convergence times strongly depend on the system size: increasing
the number of agents N slows down the relaxation, and both
the times tAconv and tBconv increase, as is evident by comparing the
(Figures 10A,C) (N = 100 agents) with the (Figures 10B,D)
(N = 200 agents).

The possibility that a system starting with the same initial
conditions and with the same parameters can reach both
consensus states is a consequence of the stochastic nature of
the pairwise-interactions, together with the asymmetry in the
threshold values n∗ex,A = 5 and n∗ex,B = 6. It stops occurring for
N & N∗, when both n̄ex,A and n̄ex,B reach some threshold values
close to those observed at tconv, which is clearly a value sufficient
for the agents to generalize concept C. In fact, the scaling law of
tconv withN shows that the sum of n̄ex,A with n̄ex,B becomes nearly
constant for N & N∗, implying that the dynamics is uniquely
determined, that is, the consensus always occurs at A from SIC,
once the agents have stored a threshold number of n̄ex,A, n̄ex,B. It
is found that these threshold values correspond to n̄ex,A = 21,
n̄ex,B = 12. Note that, to the latter values n̄ex,A, n̄ex,B, we also add
the four initial given examples stored in the agents’ inventories
at the beginning. This is because the generalization function p(t)
outputs will effectively depend on them all. Therefore, at these
threshold values, it would be very unlikely that pB > pA, and so
it would be the same for the consensus at B.

Now, we consider some variables that characterize the
Bayesian process underlying pair-wise interactions and how they
vary with time, in particular the Bayesian probabilities pA(t) and
pB(t), computed by agents, and the corresponding number of
learning attempts noA(t) and noB(t) made by agents at time t to
learn concept C in association with word A or B, respectively, i.e.,
the number of times that the agents compute pA or pB. Only the
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case of a system starting with SIC is considered, but the other
cases present similar behaviors. We consider a single run of a
system with N = 5, 000 agents and study the average values
p̄A(t), p̄B(t) obtained by averaging pA(t) and pB(t) over the agents
of the system. Furthermore, employing a coarse-grained view,
an additional average (of both the probabilities p̄A(t), p̄B(t) and
the numbers of attempts noA, noB) over a suitable time-interval
(a temporal bin 1t = 16 × 103) reduces random fluctuations.
Figure 11 shows the time evolution of the average probabilities
p̄A(t) and p̄B(t) in the time-range where data allow good statistics.
The probabilities grow monotonically and eventually reach the
value one. While this points at an equivalence between the
mean-field regime of the Bayesian naming game and that of the
two-conventions NG model, in which agents learn at the first
attempt (one-shot learning), such an equivalence is suggested

FIGURE 9 | The vectors v and v′ represent two possible velocities emerging

from the point (x0, y0) = (0.5, 0.5) at t = t*. The unit vector u is directed along

the line x + y = 1 joining the asymptotically stable nodes (x1, y1) = (1, 0) and

(x2, y2) = (1, 0).

but not fully reproduced by the coarse-grained analysis. The
time evolution of the number of learning attempts noA(t) and
noB(t) shows that they are negligible both at the beginning and
at the end of the dynamics—see inset in Figure 11. This is due
to the fact that at the beginning it is most likely that either
interactions between agents with the same conventions take place
(starting with SIC, each agent has a probability of 50% to interact
with an agent having the same convention) or that interactions
between agents with different conventions but with still too
small inventories to be able to generalize concept C take place,
leading to reinforcement processes only. When approaching

FIGURE 11 | Average values p̄A(t) and p̄B(t) computed using a (temporal) bin

1t = 16× 103 vs. time from for a single run of a system reaching consensus

at A. The convergence time is tconv ≈ 160× 103, and the population size is

N = 5, 000. The inset shows the average number of learning attempts noA,

noB vs. time for the same single run.

FIGURE 10 | Population fractions nA(t), nB(t), and nAB(t) vs. time, starting from SIC; results are obtained by averaging over 600 runs. Left column (A,C): a system with

N = 100 agents can reach consensus with name A (A, about 91% of runs) or name B (C, about 9% of runs). Right column (B,D): system with N = 200 agents,

reaching consensus with name A in about 96% of runs (B) and with name B in about in the remaining 4% of runs (D).
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consensus, agents with one of the conventions constitute the large
majority of the population, and thus they are again most likely to
interact through reinforcements only. Thus, the largest numbers
of attempts to learn concept C in association with A and B are
expected to occur at the intermediate stage of the dynamics. In
fact, noA(t) and noB(t) are observed to reach a maximum at
t ≈ tconv/2 for any given system size N, as is visible in the inset
of Figure 11. Notice that also the fraction of agents nAB who
know both conventions and can communicate using both name
A and name B, possibly allowing other agents to generalize in
association with name A or B, reaches its maximum roughly at
the same time.

5. CONCLUSION

We constructed a new agent-based model that describes the
appearance of linguistic consensus through a word-learning
process, representing an original example of an opinion dynamics
or culture competition model translated at a cognitive level,
something that is not apparent. The model represents a Bayesian
extension of the semiotic dynamics of the NG model, with an
underlying cognitive process that mimics the human learning
processes; it can describe in a natural way the uncertainty
accompanying the first phase of a learning process, the gradual
reduction of the uncertainty as more and more examples are
provided, and the ability to learn from a few examples.

The work presented is exploratory in nature, concerning the
minimal problem of a concept, C that can be associated to
two different possible names A and B. The resulting semiotic
dynamics of the synonyms is different from the basic NG, in
that it depends on parameters that are strictly cognitive in nature,
such as a minimum level of experience (quantified by the number
of examples n∗ex necessary for generalizing) and the threshold
for generalizing a concept (represented by a critical value of
the Bayesian acceptance probability p∗). The interplay between
the asymmetry of the conventions A and B, the system size,
and the stochastic character of the time evolution have dramatic
consequences on the consensus dynamics, leading to a critical
time t∗ > 0 before the system begins to move in the phase-plane,
to converge eventually toward a consensus state; a critical system
size N∗, below which there is an appreciable probability that the
system can end up in any of the two possible consensus states
and, in general, a dependence of the convergence times on N;
an asymmetry in the convergence times and the corresponding
branching probabilities that the system converges toward one of
the two possible conventions; different scaling of the convergence
times vs.N with respect to those observed in the basic NGmodel,
due to the dependence on the learning experience of the agents.

The cognitive dimension of the novel model offers the
possibility to study the effects that are out of the reach of other
opinion dynamics or cultural exchange models, such as the basic
NG model. The corresponding dynamical equations, Equations
(10, 11), provide a general mean-field description of a group of
individuals communicating with each other while undergoing
cognitive processes. The cognitive dynamics are fully contained
in the functions pA(t) and pB(t). Similar models but with different

or more general underlying cognitive dynamics are expected to
leave the form of Equations (10, 11) unchanged, only changing
the functional forms of pA(t) and pB(t). In this sense, the model
introduced in this work represents a step toward a generalized
Bayesian approach to the problem of how social interactions can
lead to cultural conventions.

Future work can address specific problems of current interest
from the point of view of cognitive processes or features relevant
from the general standpoint of complexity theory. In the first
case, it is possible to study the semiotic dynamics of homonyms
and synonyms, e.g., the problem of a name A1, associated to a
concept C1, that at some points splits into two related but distinct
concepts C1 and C2, analyzing the cognitive conditions for the
corresponding splitting of name A1 into two names A1 and A2,
as the two concepts eventually become distinguishable to the
agents—this type of problem cannot be tackled within models of
cultural competition. In the second case, one can mention the
classical problem of the interplay between a central information
source (bias) and the local influences of individuals—this time,
in a cognitive framework—and the role of heterogeneity. In fact,
heterogeneity concerns most of the known complex systems at
various levels, from the diversity in the dynamical parameters
of, e.g., the different competing names and concepts to that
of the agents. The heterogeneity of individuals is known to
lead to counter-intuitive effects, such as resonant behaviors
[46, 47]. Furthermore, the complex, heterogeneous nature of a
local underlying social network can drastically change the co-
evolution of the conventions in competition with each other and
therefore the relaxation process [48].
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