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One of the major motivations for low-energy heavy-ion collision is the synthesis of

superheavy nuclei. Based on the following two main aspects, various theoretical and

experimental studies have been performed to explore the fusion dynamical process of

superheavy nuclei production. The first reason is to elucidate and analyze the synthesis

mechanism of superheavy nuclei; the other is to search the favorable incident energy and

the best combination of projectile and target to produce new superheavy elements and

isotopes of superheavy elements.
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1. INTRODUCTION

The maximum mass and charge of a nucleus is a long-standing fundamental problem in nuclear
physics [1, 2]. Pioneer studies have theoretically predicted the “island of stability” of superheavy
nuclei (SHN). Themacroscopic-microscopic models predicted 298Fl to be the double magic nucleus
[3–7]. However, results of the self-consistent models showed that the closed shell of Z = 114
becomes weaker, and Z = 114 is replaced by Z = 120 or 126 [8–13].

The production process of superheavy nuclei is a very complicated dynamical problem [14].
Many theoretical models have been developed to explain the experimental data. On one hand, the
synthesis mechanism of superheavy nuclei needs to be elucidated [15–21]. Different approaches
are devoted to calculate and analyze the fusion probability and the distribution of quasifission
fragments [15–41]. However, none of them has absolute advantage. On the other hand, in order to
produce the new superheavy elements, or isotopes of superheavy elements, the favorable incident
energy and the best combination of projectile and target should be evaluated.

The extended nuclear landscape allows us to investigate the nuclear structure of superheavy
nuclei and the nuclear reaction mechanism. To search for the optimal condition of synthesis, the
influence of the entrance channel [29, 42, 43] and the isospin of heavy colliding nuclei [44–46]
on the evaporation residual cross section have been studied systematically in many works. The
predictions of the possible way to synthesize the new superheavy elements Z = 119 and 120 have
also been carried out [17, 47–52].

2. EXPERIMENTAL PROGRESS

Producing superheavy nuclei in the laboratory is one of the major motivations of low-energy
heavy-ion physics [1, 2, 53–55]. Over the past 30 years, great progress has been achieved
for superheavy nuclei production in experimental studies [53–55]. The experimental trends
α decay half-lives, and the evaporation residue cross sections of the superheavy nuclei show
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that the stability of superheavy nuclei increases as the neutron
number approaches the closed neutron shell closure N = 184.
However, the location of the “island of stability” has not been
determined by experiment. Up until now, based on the fusion-
evaporation reaction, the superheavy nuclei with charge numbers
in the range of Z = 104118 have been synthesized successfully.

The superheavy elements Z = 107− 112 was first synthesized
by using the cold fusion reactions [1, 53, 54, 56, 57]. The
excitation energy range of the formed compound nucleus was
10–18 MeV. The measurement of the evaporation residue cross
section decreased dramatically from Z = 107 to Z = 113.
Moreover, the final evaporated residual nuclei were extremely
neutron deficient. Experiments of producing superheavy nuclei
by cold fusion have been repeated and verified by other
laboratories [54, 58, 59].

The 48Ca-induced hot-fusion reactions were used to
synthesize Z = 112 − 118 superheavy nuclei in experiment
[54, 55, 60]. From the measurement of evaporation residue cross
sections, we found that there was no significant difference from
Z = 112–118, and the values of the evaporation residual cross
sections were all in the order of picobarn. Experiments based on
hot fusion for synthesizing Z = 112 and 114–117 superheavy
nuclei have been verified by other laboratories [60].

To search for the optimal condition of the superheavy nuclei
production, various experiments have been performed to study
the entrance channel effect on the evaporation residual cross
section [61–65]. Recently, the isospin effect of the target nucleus
on the evaporation residue cross section has been explored [66–
68]. Some laboratories have also attempted to synthesize the Z =

119 and 120 superheavy elements by using hot fusion [69, 70].
Experimentally, the measurement of fusion probability is

required to distinguish quasifission between fusion-fission and
fast fission [71–76]. The experimental characteristics of the
quasifission process are different from the fusion-fission process
[77]. Therefore, it is important to distinguish the fusion
and quasifission fragments for a better understanding of the
fusion mechanism.

3. THEORETICAL DESCRIPTION OF
FUSION REACTIONS

Theoretically, the synthesis process of superheavy nuclei can be
divided into three stages [39]. A schematic diagram for this
process is shown in Figure 1. The first stage is the capture
process, which can be evaluated by the capture cross section.
The second stage is that the dinuclear system evolves from
the touching configuration to the formation of the compound
nucleus, which can be evaluated by the fusion probability. The
last stage is where the excited compound nucleus cools down
through emitting neutrons or fission, and this can be evaluated by
the survival probability. Finally, a very small evaporation residue
cross section is obtained for the superheavy nuclei production.
The evaporation residue cross section can be expressed as [39],

σER(Ec.m.) =
∑

J

σcap(Ec.m., J)PCN(Ec.m., J)Wsur(Ec.m., J), (1)

FIGURE 1 | (Color online) Schematic diagram of production of superheavy

nuclei.

where Ec.m. is the incident energy in the center-of-mass frame.

3.1. Capture Cross Sections
For the low-energy heavy-ion collision, the capture cross section
from the sub-barrier region to above the Coulomb barrier is an
important issue for theoretical and experimental studies [78–
83]. One of reasons is that the overall uncertainties in predicting
superheavy nuclei production are associated with the calculations
of capture cross sections [50, 84, 85].

The capture process is closely related to the nuclear structure
of the interacting nuclei [86–97]. This is because the nucleus-
nucleus potential contains nuclear structure information. To
precisely describe the measurements of capture cross sections,
the nucleus-nucleus interaction potential is the most important
input quantity. In addition, the heavy-ion capture process is
intimately linked to nuclear deformation [87, 88]. Thus, the
nuclear deformation must be reliable to some extent.

Theoretically, the capture cross section is one of the important
components in the synthesis of superheavy nuclei. The capture
cross section have been explored extensively [82–84] from light to
superheavy by averaging the penetration probability over barrier
heights. Most of them have tested a number of experimental
data of capture cross sections, however, these experimental data
do not contain the capture cross sections of superheavy nuclei
[84]. Therefore, it is very important to examine carefully the
capture process for the study of the synthesis mechanism of
superheavy nuclei.

Usually, the capture cross section σcap is mainly calculated
with an empirical coupled-channel approach for the superheavy
nuclei production [17, 44–52]. From a theoretical point of
view, one of the powerful methods is to solve coupled-channels
equations numerically. This may help us to understand the
influence of the couplings between nuclear intrinsic degrees of
freedom and the relative motion on capture cross sections.

Recently, the quantum diffusion approach [98–101] has also
been used to calculate capture cross sections. This model takes
into consideration the influence of fluctuations and dissipation
effects on capture cross sections. The nuclear deformation
effects and mutual orientations of the colliding nuclei are taken
into account through using a double folding potential, and
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the influence of two neutrons transfer onto the sub-barrier
capture through the change of the deformations of the colliding
nuclei [100].

Another powerful theoretical tool is to calculate the
capture cross section by the time-dependent Hartree Fock
(TDHF) method. Recently, the pioneering work of studying
capture cross section based on TDHF has been completed
for the 40Ca+238U reaction [102]. In addition, Umar
et al. found that the capture cross sections calculated by
TDHF method agreed with the experimental data within
20% [103].

3.2. Fusion Dynamics
In order to explain the fusion dynamics process (the second
stage), various theoretical approaches and models have been
developed. The simplification can be made in different ways, and,
as a result, we can obtain different theoretical pictures for the
same real nuclear process. Some of the models can be roughly
divided into two types. The first type is based on transport
equations to describe the fusion dynamics process [15–41]. The
second one is based on the time-dependent Hartree Fock method
to describe the mainly experimental features in the process of
fusion dynamics [104–115].

The first approach is that the multitude of degrees of freedom
are decomposed into a dominating collective degree of freedom
and other degrees (non-collective) of freedom. Therefore, the
dissipative processes are introduced to account for the coupling
between the collective motions and the intrinsic motions of
the freedom of the system. Many models based on transport
equations have been developed, and they assumed that the main
characteristics of fusion dynamics process can be described by
using the main collective degrees of freedom.

On the one hand, after eliminating the intrinsic motion, a
stochastic equation can be derived theoretically. Many models
adopted the Langevin forces (Langevin equation) to describe
stochastic characteristics of the coupling between collective
motions and intrinsic degrees of freedom. One can calculate a
bundle of trajectories by solving a stochastic equation [16, 17, 28,
31, 35, 36].

On the other hand, through eliminating the intrinsic degrees
of freedom, a diffusion equation can be derived theoretically to
describe the distribution of collective degrees of freedom in the
phase space [19–21, 27, 29, 29, 30, 32, 41–43, 46, 47, 49, 51, 116,
117]. Diffusion equations (the master equation, Smoluchowski
equation, etc.,) may be used to describe the transport process of
collective degrees of freedom in phase space.

The second approach is the time-dependent Hartree Fock
method. The basic idea of this method is that the mean field
produced by all nucleons not only determines the intrinsic
motion of a single particle but also describes the evolution
characteristics of collective degrees. TDHF calculations may be
used to compute the ratio of fusion cross sections to capture cross
sections. In addition, the TDHF method may be used to explore
the effect of the orientation of the projectile and the target at
the contact point, and the role of the nuclear shell structure and
tensor force [104–115].

3.3. Fusion Mechanism
For the real fusion dynamics process, a theoretical model may
be considered as a collection of theoretical assumptions. Up
to now, there have been proposed fusion mechanisms that
are incompatible with the compound nucleus formation. One
assumption is that all the nucleons are immediately collectivized
into one superdeformed mononucleus. Then, the dynamic
evolution behavior of the superdeformed mononucleus can be
described by the equation of motion or transport theory [15–17,
33, 34, 118]. The macroscopic dynamical model is the first model
to describe the fusion mechanism based on the idea of forming
one superdeformed mononucleus [15]. However, it encountered
serious difficulties in attempts to describe evaporation residue
cross sections for the synthesis of superheavy nuclei.

As the macroscopic dynamical models, the same
approximations are used in the fluctuation-dissipation model
[16, 118], the two-step model [17], and the fusion-by-diffusion
model [33, 34]. But two significant improvements are taken
into account for the description of the fusion-dynamics
mechanism: shell effects in the calculation of the potential energy
surface of the reaction system and statistical fluctuations in the
interaction of colliding nuclei. These improvements permit one
to describe the evaporation residue cross section of superheavy
nuclei, the mass distribution of quasifission, and fusion-fission
products [16, 17, 33, 34, 118, 119].

Another assumption is that two touching nuclei always
keeps its own identity with their ground state characteristics
and deformations (dinuclear system model) [19–21, 29], fusion
is achieved by means of nucleon transfer. However, the real
situation is due to strong Coulomb and nuclear interactions
between projectile and target; the dinuclear system should be
gradually deformed [30, 48]. This assumption has recently been
improved upon. The coupling of the deformations evolution of
project and target and the nucleon transfer has been studied
numerically [120, 121]. The calculated results for the cold and
hot fusion reactions by using the dinuclear system model match
well with the available experimental data [20, 27, 29, 29, 30,
32, 41–43, 46, 47, 49, 51, 116, 117]. The fusion probability and
the distribution of the quasifission fragments can be reasonably
described based on the dinuclear system model [120–122].

A new fusion mechanism on compound nucleus formation
was proposed by Zagrebaev [18]. The concept of a nucleon
collectivization model assumes that two nuclei gradually
lose their individualities through increasing the number of
collectivized nucleons [18]; the reliability of the theoretical
hypothesis needs further demonstration [123]. The nucleon
collectivization model allows us to describe reasonably the fusion
probability as well as the charge and mass distributions of the
quasifission products [124].

3.4. Selection of Collective Degree and
Calculation of Related Input Quantity in
Transport or Diffusion Equations
To theoretically describe fusion dynamics and the mechanism
based on transport equations as mentioned above, one needs
to assume that several important degrees of freedoms can be
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used to describe the main characteristics of fusion dynamics
process [15–21]. These important degrees of freedoms include
the distance between the nuclear centers, the neutron and
proton asymmetries of projectile-target combinations,
deformations, and corresponding orientation effects, which
influence the dynamics from touching the configuration to the
compound nucleus.

Because equations of motion contain time derivatives up to
the second order, there are three quantities in each equations
of motion. The first quantity is the conservative potential.
The second and third are the friction tensor (friction force)
and the inertia tensor (inertia parameter), respectively. For the
conservative potential, two different approaches have been taken
into account to calculate the potential energy surface. The two
assumptions of calculating potential energy surface are frozen
density or sudden approximation [19–21] and the adiabatic
approximation [15–18].

Recently, Diaz-Torres showed that the gradual transition
of potential energy surface from the diabatic to the adiabatic
should be more realistic for describing the fusion or quasifission
[125, 126]. In addition, one needs to consider how the shell
structure evolutes with excitation energy and deformation. The
excitation energy dissipated from kinetic energy of relative
motion makes the individual shell structure of nuclei become
damped [127–131], and deformation tends to be spherical
[132]. Thus, the dynamical potential energy surface has to
be further studied. However, a small amount of research
work has involved the shell correction energy employed in
the fusion process being temperature dependent [133] and
the potential energy surface from diabatic approximation
to adiabatic approximation to describe the whole dynamic
evolution process.

The dissipation tensor arises from the distinction between
collective motion and intrinsic motion. The dissipation
tensor accounts for the coupling between the collective
degrees of freedom and other degrees (non-collective) of
freedom. When equations of motion or stochastic equations
are used to describe the dynamic process, the friction
coefficients are mainly treated by the phenomenological
approaches for the description of the fusion dynamics
process [16, 124].

The inertial tensor describes the response of the system
to small changes in the collective degrees of freedom. The
macroscopic approach, macroscopic-microscopic approach,
and microscopic approach are used to calculate the inertia
tensor of the fission dynamics process [134–137]. However,
in the low-energy heavy-ion collisions process, it seems
that the proper calculation on inertial parameters has
not been paid enough attention compared to the fission
dynamics process. In the stochastic equation, the inertia
parameter is calculated by the Werner-Wheeler approach
[124, 127]. In the diffusion equation, the inertia parameter
is treated as a reduced mass of relative motion [138]. From
the theoretical point of view, the inertia parameters and
friction coefficient of theoretical calculations have to match
our understanding of the potential energy surface in the
transport equations.

3.5. Survival Probabilities
The last important factor is the survival probability of the
compound nucleus against fission in the deexcitation process.
For exciting compound nuclei, there are two methods to
describe the fission process: the statistical approach and the
dynamical approach. Based on the statistical model, two different
approaches are taken into account for the excitation energy
dependent shell structure. The first one is to introduce the
influence of excitation energy on the shell structure through the
energy level density parameter [139]. The second one is to ensure
the excitation energy-dependent shell effect is taken into account
by the effective potential energy surface [140].

The uncertainty of survival probability calculation based on
statistical model mainly comes from two aspects. On one hand,
a number of approximations are adapted in the calculation
of survival probability. One the other hand, the survival
probabilities for the xn evaporation channels are very sensitive
to the model input. The level densities, fission barriers, neutron-
separation energies, as well as the transmission coefficients
have to be known with sufficient accuracy. Only systematic
calculations based on the same assumptions and parameters can
help to confirm the validity and reliability of the theoretical
approximations and input quantities [28, 117].

4. THE OPTIMUM PROJECTILE-TARGET
COMBINATION AND BOMBARDING
ENERGY

4.1. Influence of Entrance Channel on
ERCSs
Systematic studies of the existing experimental ERCSs are helpful
to reveal reactionmechanisms. In addition, searching the optimal
combination of the projectile and target and the range of the
favorable beam energy is essential.

Some work systematically studies the influence of the neutron
number of a target or projectile on the evaporation residue cross
section [32, 36, 44–46]. Many researchers have found that the
fusion probability and survival probability are sensitive to the
neutron number of the target or projectile nuclei [32, 36, 44–
46]. For 48Ca-induced hot fusion, the excess neutron of target
nucleus is beneficial to the increase of the evaporation residue
cross section of the synthesized superheavy nuclei [32, 45, 46].

Using a different combination of projectile and target to
produce the same compound nucleus may help us to reveal the
effect of the ground-state deformations, the reaction Q value,
the asymmetry of charge and mass of target and projectile, and
the Coulomb barrier on the evaporation residual cross section
[33, 138, 141]. The results calculated by Liu et al. show that the
Q value of reaction has a significant effect on the capture cross
section and fusion probability [142].

4.2. The ERCS of Production Using
Radioactive Beams
In order to investigate the possibility of neutron-rich superheavy
nuclei production with radioactive beams, some calculations
have been made [25, 116, 143, 144]. The evaporation residue
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cross section by using radioactive beams are comparable with a
stable beam for some superheavy nuclei production [116, 143].
However, the choice of reaction channels is determined by
the product of beam intensity and evaporation residue cross
section [143].

The intensities of stable beams, in most of the cases, are
significantly larger than those of the radioactive beams [143],
and the results have shown that the calculated evaporation
residue cross section based on stable beam is more favorable
for the production of many superheavy nuclei [116, 143].
In addition, due to small evaporation residue cross sections
and low radioactive beam intensities, the synthesis of higher
charge number superheavy nuclei by using the neutron-
rich radioactive beams seems impossible based on today’s
experimental conditions [116, 143].

4.3. Prediction ERCS Z = 119 and 120
By comparing evaporation residue cross sections for production
Z = 119 and 120, we found that the calculations from different
models were obviously different [17, 47–52, 124]. On one hand,
the survival probability of the compound nucleus was very
sensitive to the fission barrier. However, the difference in fission
barriers of superheavy nuclei calculated by different models
was obvious not only due to the absolute values but also the
trends with charge number Z [2, 85]. On the other hand, due
to different assumptions, the fusion probability calculated by
different models was significantly different for synthesis Z = 119
and 120 [84].

According to our calculation and other theoretical
predictions, almost all the models that predicted evaporation
residue cross sections to produce superheavy new element
Z = 119 are generally greater than those in producing
Z = 120 [17, 47–52].

5. THE FUTURE

The synthesis of SHN in the laboratory has made great progress,
and all the elements up to Z=118 have been synthesized
successfully. However, the location of the island of stability has
not been confirmed in experiments. Although many theoretical
approaches were used to study the fusion mechanism, there
are still many problems that have not been solved properly.

In my opinion, the transport theory is the least developed
one due to three factors: (i) the neck formation itself and the
relationship between dynamic deformation and neck formation
should be included to improve the theoretical description of
fusion dynamic mechanism; (ii) the gradual transition of the
potential energy surface from the diabatic approximation to the
adiabatic approximation needs to be further explored; and (iii)
the further study of inertia and damping coefficients to match
our understanding of the potential energy surface in the transport
equations should be performed.

6. SUMMARY

The evaporation residue cross section of superheavy nuclei
depends on three factors: the capture cross section σcap, the fusion
probability PCN , and the survival probability Wsur . We found
that the reasonable description of the capture cross section near
the Coulomb barrier is very important. The coupled channel or
TDHF can be better approached to calculate the value, especially
for superheavy nuclei calculations.

I think the fusion probability PCN for producing superheavy
nuclei is still not well understood. Not only the magnitude of the
fusion probability PCN but also the dependence of PCN on the
excitation energy and the entrance channel are lacking in clarity.
The fusion mechanism must be further studied.

The uncertainty of survival probability calculation based on a
statistical model mainly comes from theoretical approximations
and input quantities. Systematic calculations based on the
same assumptions and parameters can help to confirm the
validity and reliability of the theoretical approximations and
input quantities.
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7. Smolańczuk R. Properties of the hypothetical spherical superheavy nuclei.

Phys Rev C. (1997) 56:812. doi: 10.1103/PhysRevC.56.812

8. Decharge J, Berger JF, Dietrich K, Weiss MS. Superheavy and hyperheavy

nuclei in the form of bubbles or semi-bubbles. Phys Lett B. (1999) 451:275–

82. doi: 10.1016/s0370-2693(99)00225-7

9. Bender M, Nazarewicz W, Reinhard PG. Shell stabilization of super- and

hyperheavy nuclei without magic gaps. Phys Lett B. (2001) 515:42–8.

doi: 10.1016/S0370-2693(01)00863-2

10. Ring P. Relativistic mean field theory in finite nuclei. Prog Part Nucl Phys.

(1996) 37:193–263. doi: 10.1016/0146-6410(96)00054-3

11. Meng J, Toki H, Zhou SG, Zhang SQ, Long WH, Geng LS.

Relativistic continuum Hartree Bogoliubov theory for ground-state

Frontiers in Physics | www.frontiersin.org 5 February 2020 | Volume 8 | Article 14

https://doi.org/10.1103/RevModPhys.72.733
https://doi.org/10.1103/RevModPhys.91.011001
https://doi.org/10.1016/0031-9163(66)91243-1
https://doi.org/10.1007/BF01392125
https://doi.org/10.1016/0375-9474(69)90809-4
https://doi.org/10.1006/adnd.1995.1002
https://doi.org/10.1103/PhysRevC.56.812
https://doi.org/10.1016/s0370-2693(99)00225-7
https://doi.org/10.1016/S0370-2693(01)00863-2
https://doi.org/10.1016/0146-6410(96)00054-3
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Bao Fusion Dynamics of SHN

properties of exotic nuclei. Prog Part Nucl Phys. (2006) 57:470–563.

doi: 10.1016/j.ppnp.2005.06.001

12. Li JJ, Long WH, Margueron J, Van Giai N. Superheavy magic structures

in the relativistic HartreeCFockCBogoliubov approach. Phys Lett B. (2014)

732:169–73. doi: 10.1016/j.physletb.2014.03.031

13. Cwiok S, Dobaczewski J, Heenen PH, Magierski P, Nazarewicz W. Shell

structure of the superheavy elements. Nucl Phys A. (1996) 611:211–46.

doi: 10.1016/S0375-9474(96)00337-5

14. Swiatecki WJ. Three lectures on macroscopic aspects of nuclear dynamics.

Prog Part Nucl Phys. (1980) 4:383. doi: 10.1016/0146-6410(80)90014-9

15. Swiatecki WJ. The dynamics of the fusion of two nuclei. Nucl Phys A. (1982)

376:275. doi: 10.1016/0375-9474(82)90065-3

16. Aritomo Y, Wada T, Ohta M, Abe Y. Fluctuation-dissipation model

for synthesis of superheavy elements. Phys Rev C. (1999) 59:796.

doi: 10.1103/PhysRevC.59.796

17. Shen CW, Abe Y, Boilley D, Kosenko G, Zhao EG. Isospin dependence

of reactions 48Ca+243−251Bk. Int. J. Mod. Phys. E. (2008) 17:66.

doi: 10.1142/S0218301308011768

18. Zagrebaev VI. Synthesis of superheavy nuclei: nucleon collectivization as a

mechanism for compound nucleus formation. Phys Rev C. (2001) 64:034606.

doi: 10.1103/PhysRevC.64.034606

19. Adamian GG, Antonenko NV, Scheid W, Volkov VV. Treatment of

competition between complete fusion and quasifission in collisions of heavy

nuclei. Nucl Phys A. (1997) 627:361. doi: 10.1016/S0375-9474(97)00605-2

20. Feng ZQ, Jin GM, Fu F, Li JQ. Production cross sections of superheavy

nuclei based on dinuclear system model. Nucl Phys A. (2006) 771:50.

doi: 10.1016/j.nuclphysa.2006.03.002

21. Diaz-Torres A, Adamian GG, Antonenko NV, Scheid W. Quasifission

process in a transport model for a dinuclear system. Phys Rev C. (2001)

64:024604. doi: 10.1103/PhysRevC.64.024604

22. Zagrebaev V, Greiner W. Synthesis of superheavy nuclei: a search

for new production reactions. Phys Rev C. (2008) 78:034610.

doi: 10.1103/PhysRevC.78.034610
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